SuperLU
(Sparse Direct Solver)

Osni Marques
Lawrence Berkeley National Laboratory (LBNL)
oamarques@lbl.gov
Outline

- Overview of the software
- Some background of the algorithms
- Sparse matrix distribution and user interface
- Example program (Fortran 90 interface)
- Applications
What is SuperLU

- Solve general sparse linear system $A x = b$.
 - Example: A of dimension 10^5, only 10 ~ 100 nonzeros per row

- Algorithm: Gaussian elimination (LU factorization: $A = LU$), followed by lower/upper triangular solutions.
 - Store only nonzeros and perform operations only on nonzeros.

- Efficient and portable implementation for high-performance architectures, flexible interface.
Software Status

<table>
<thead>
<tr>
<th></th>
<th>SuperLU</th>
<th>SuperLU_MT</th>
<th>SuperLU_DIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform</td>
<td>Serial</td>
<td>SMP</td>
<td>Distributed</td>
</tr>
<tr>
<td>Language</td>
<td>C</td>
<td>C + Pthread (or pragmas)</td>
<td>C + MPI</td>
</tr>
<tr>
<td>Data type</td>
<td>Real/complex, Single/double</td>
<td>Real, double</td>
<td>Real/complex, Double</td>
</tr>
</tbody>
</table>

- Friendly interface for Fortran users
- SuperLU_MT similar to SuperLU both numerically and in usage
Contents of the SuperLU Library

- LAPACK-style interface
 - Simple and expert driver routines
 - Computational routines
 - Comprehensive testing routines and example programs
- Functionalities
 - Minimum degree ordering [MMD, Liu `85] applied to $A^T A$ or $A^{T+}A$
 - User-controllable pivoting
 - Pre-assigned row and/or column permutations
 - Partial pivoting with threshold
 - Solving transposed system
 - Equilibration
 - Condition number estimation
 - Iterative refinement
 - Componentwise error bounds [Skeel `79, Arioli/Demmel/Duff `89]
Fill-in in Sparse GE

- Original zero entry A_{ij} becomes nonzero in L or U

Natural order: nonzeros = 233

Min. Degree order: nonzeros = 207
Supernode

- Exploit dense submatrices in the L & U factors

- Why are they good?
 - Permit use of Level 3 BLAS
 - Reduce inefficient indirect addressing (scatter/gather)
 - Reduce graph algorithms time by traversing a coarser graph
Overview of the Algorithms

- Sparse LU factorization: $P_r A P_c^T = L U$
- Choose permutations P_r and P_c for numerical stability, minimizing fill-in, and maximizing parallelism.

- Phases for sparse direct solvers
 1. Order equations and variables to minimize fill-in.
 - NP-hard, so use heuristics based on combinatorics.
 2. Symbolic factorization.
 - Identify supernodes, set up data structures and allocate memory for L and U.
 - How to pivot?
 4. Triangular solutions – usually less than 5% total time.

- In SuperLU_DIST, only numeric phases are parallel so far
Numerical Pivoting

- Goal of pivoting is to control element growth in L and U for stability
 - For sparse factorizations, often relax the pivoting rule to trade with better sparsity and parallelism (e.g., threshold pivoting, static pivoting, . . .)

- **Partial pivoting** used in sequential SuperLU (GEPP)
 - Can force diagonal pivoting (controlled by diagonal threshold)
 - Hard to implement scalably for sparse factorization

- **Static pivoting** used in SuperLU_DIST (GESP)
 - Before factor, scale and permute A to maximize diagonal: $P_r D_r A D_c = A'$
 - During factor $A' = LU$, replace tiny pivots by $\sqrt{\epsilon} \| A \|$ without changing the data structures for L and U
 - If needed, use a few steps of iterative refinement after the first solution (quite stable in practice)
Ordering for LU (unsymmetric)

- Can use a symmetric ordering on a symmetrized matrix

- Case of partial pivoting (sequential SuperLU):
 Use ordering based on A^TA
 - If $R^TR = A^TA$ and $PA = LU$, then for any row permutation P,
 \[\text{struct}(L+U) \subseteq \text{struct}(R^T+R) \] [George/Ng `87]
 - Making R sparse tends to make L and U sparse

- Case of static pivoting (SuperLU_DIST):
 Use ordering based on A^T+A
 - If $R^TR = A^T+A$ and $A = LU$, then \[\text{struct}(L+U) \subseteq \text{struct}(R^T+R) \]
 - Making R sparse tends to make L and U sparse . . .
 - Can find better ordering based solely on A, without symmetrization [Amestoy/Li/Ng `03]
Ordering Interface in SuperLU

- Library contains the following routines:
 - Ordering algorithms: MMD [J. Liu], COLAMD [T. Davis]
 - Utilities: form $A^T + A$, $A^T A$

- Users may input any other permutation vector (e.g., using Metis, Chaco, etc.)

```c
... 
set_default_options_dist( &options );
options.ColPerm = MY_PERMC; /* modify default option */
ScalePermstructInit( m, n, &ScalePermstruct );
METIS ( . . . , &ScalePermstruct.perm_c);
...
pdgssvx( &options, . . . , &ScalePermstruct, . . . );
... 
```
Symbolic Factorization

- Cholesky [George/Liu `81]
 - Use elimination graph of L and its transitive reduction (elimination tree)
 - Complexity linear in output: $O(\text{nnz}(L))$

- LU
 - Use elimination graphs of L and U and their transitive reductions (elimination DAGs) [Tarjan/Rose `78, Gilbert/Liu `93, Gilbert `94]
 - Improved by symmetric structure pruning [Eisenstat/Liu `92]
 - Improved by supernodes
 - Complexity greater than $\text{nnz}(L+U)$, but much smaller than $\text{flops}(LU)$
Numerical Factorization

- **Sequential SuperLU**
 - Enhance data reuse in memory hierarchy by calling Level 3 BLAS on the supernodes

- **SuperLU_MT**
 - Exploit both coarse and fine grain parallelism
 - Employ dynamic scheduling to minimize parallel runtime

- **SuperLU_DIST**
 - Enhance scalability by static pivoting and 2D matrix distribution
How to distribute the matrices?

- Matrices involved:
 - A, B (turned into X) – input, users manipulate them
 - L, U – output, users do not need to see them

- A (sparse) and B (dense) are distributed by block rows

$$
\begin{align*}
\text{P0} & \quad \begin{array}{cccc}
\times & \times & \times & \times \\
\end{array} & \quad \begin{array}{c}
\end{array} \\
\text{P1} & \quad \begin{array}{cc}
\times & \times \\
\end{array} & \quad A & \quad \begin{array}{c}
\end{array} \\
\text{P2} & \quad \begin{array}{c}
\end{array} & \quad \begin{array}{cccc}
\times & \times & \times & \times \\
\end{array} & \quad \begin{array}{c}
\end{array}
\end{align*}
$$

- Local A stored in *Compressed Row Format*

- Natural for users, and consistent with other popular packages: PETSc, Aztec, etc.
2D Block Cyclic Layout for \(L \) and \(U \)

- Better for GE scalability, load balance
- Library has a “re-distribution” phase to distribute the initial values of \(A \) to the 2D block-cyclic data structure of \(L \) and \(U \).
 - All-to-all communication, entirely parallel
 - < 10% of total time for most matrices
Scalability

- 3D KxKxK cubic grids, scale $N^2 = K^6$ with P for constant work per processor
- Achieved 12.5 and 21.2 Gflops on 128 processors
- Performance sensitive to communication latency
 - Cray T3E latency: 3 microseconds (~ 2702 flops)
 - IBM SP latency: 8 microseconds (~ 11940 flops)
SuperLU_DIST Example Program (C)

- SuperLU_DIST_2.0/EXAMPLE/pddrive.c

- Five basic steps
 1. Initialize the MPI environment and SuperLU process grid
 2. Set up the input matrices A and B
 3. Set the options argument (can modify the default)
 4. Call SuperLU routine PDGSSVX
 5. Release the process grid, deallocate memory, and terminate the MPI environment
#include "superlu_ddefs.h"

main(int argc, char *argv[])
{
 superlu_options_t options;
 SuperLUStat_t stat;
 SuperMatrix A;
 ScalePermstruct_t ScalePermstruct;
 LUstruct_t LUstruct;
 SOLVEstruct_t SOLVEstruct;
 gridinfo_t grid;
 · · · · · ·
 /* Initialize MPI environment */
 MPI_Init(&argc, &argv);
 · · · · · ·
 /* Initialize the SuperLU process grid */
 nprow = npcol = 2;
 superlu_gridinit(MPI_COMM_WORLD, nprow, npcol, &grid);
 · · · · · ·
 /* Read matrix A from file, distribute it, and set up the right-hand side */
 dcreate_matrix(&A, nrhs, &b, &ldb, &xtrue, &ldx, fp, &grid);
 · · · · · ·
 /* Set the options for the solver. Defaults are:
 options.Fact = DOFACT;
 options.Equil = YES;
 options.ColPerm = MMD_AT_PLUS_A;
 options.RowPerm = LargeDiag;
 options.ReplaceTinyPivot = YES;
 options.Trans = NOTRANS;
 options.IterRefine = DOUBLE;
 options.SolveInitialized = NO;
 options.RefineInitialized = NO;
 options.PrintStat = YES;
 */
 set_default_options_dist(&options);
}
/* Initialize ScalePermstruct and LUstruct. */
ScalePermstructInit(m, n,
 &ScalePermstruct);
LUstructInit(m, n, &LUstruct);

/* Initialize the statistics variables. */
PStatInit(&stat);

/* Call the linear equation solver. */
pdgssvx(&options, &A, &ScalePermstruct,
b, ldb, nrhs, &grid, &LUstruct,
 &SOLVEstruct, berr, &stat, &info);

/* Print the statistics. */
PStatPrint(&options, &stat, &grid);

/* Deallocate storage */
PStatFree(&stat);
Destroy_LU(n, &grid, &LUstruct);
LUstructFree(&LUstruct);

/* Release the SuperLU process grid */
superlu_gridexit(&grid);

/* Terminate the MPI execution environment */
MPI_Finalize();
}
SuperLU_DIST Example Program (Fortran 90)

- SuperLU_DIST_2.0/FORTRAN/

- All SuperLU objects (e.g., LU structure) are opaque for F90
 - They are allocated, deallocated and operated in the C side and not directly accessible from Fortran side.

- C objects are accessed via handles that exist in Fortran’s user space

- In Fortran, all handles are of type INTEGER
program f_pddrive
 use superlu_mod
 include 'mpif.h'

! Declarations
 integer(superlu_ptr) :: grid
 integer(superlu_ptr) :: options
 integer(superlu_ptr) :: ScalePermstruct
 integer(superlu_ptr) :: LUstruct
 integer(superlu_ptr) :: SOLVEstruct
 integer(superlu_ptr) :: A
 integer(superlu_ptr) :: stat

! Create Fortran handles for the C structures used in SuperLU_DIST
 call f_create_gridinfo(grid)
 call f_create_options(options)
 call f_create_ScalePermstruct(ScalePermstruct)
 call f_create_LUstruct(LUstruct)
 call f_create_SOLVEstruct(SOLVEstruct)
 call f_create_SuperMatrix(A)
 call f_create_SuperLUStat(stat)

! Initialize MPI environment
 call mpi_init(ierr)

! Set up the distributed input matrix A
 call f_dcreate_dist_matrix(A, m, n, nnz, values, rowind, colptr, grid)

! Set the default solver options
 call f_set_default_options(options)

! Initialize ScalePermstruct and LUstruct
 call get_SuperMatrix(A,nrow=m,ncol=n)
 call f_ScalePermstructInit(m, n, ScalePermstruct)
 call f_LUstructInit(m, n, LUstruct)

! Initialize the statistics variables
 call f_PStatInit(stat)

! Call the linear equation solver
 call f_pdgssvx(options, A, ScalePermstruct, b, ldb, nrhs, grid, LUstruct, SOLVEstruct, berr, stat, info)
! Deallocate SuperLU allocated storage
 call f_PStatFree(stat)
call f_ScalePermstructFree(ScalePermstruct)
call f_Destroy_LU(n, grid, LUstruct)
call f_LUstructFree(LUstruct)

! Release the SuperLU process grid
 call f_superlu_gridexit(grid)

! Destroy Fortran handles pointing to the C objects
 call f_destroy_gridinfo(grid)
call f_destroy_options(options)
call f_destroy_ScalePermstruct(ScalePermstruct)
call f_destroy_LUstruct(LUstruct)
call f_destroy_SOLVEstruct(SOLVEstruct)
call f_destroy_SuperMatrix(A)
call f_destroy_SuperLUStat(stat)

! Terminate the MPI execution environment
 call mpi_finalize(ierr)

stop
end
Applications

- Used to solve open Quantum Mechanics problem
 (Science, 24 Dec 1999):
 - \(n = 736K \) on 64 PEs,
 Cray T3E in 5.7 minutes
 - \(n = 1.8M \) on 24 PEs,
 ASCI Blue Pacific in 24 minutes
- Eigenmodes of accelerator cavities:
 - Quadratic Finite Element discretization (Omega3P)
 - \(Kx = \lambda Mx \), with \(K \) and \(M \) large, sparse and symmetric.
 - Parallel exact shift-invert eigensolver
 - Problem of size 380698 with 15844364 nonzeros (\(npes = 8 \))
 - Early tests show that the computation of \(~100\) eigenvalues is faster than the current eigensolver in the electromagnetic simulation code (which can compute only a few eigenvalues at the moment)
Adoptions of SuperLU

- Industrial
 - Mathematica
 - FEMLAB
 - Python
 - HP Mathematical Library
 - NAG (planned)

- Academic/Lab:
 - In other ACTS Tools: PETSc, Hyper
 - NIMROD (simulate fusion reactor plasmas)
 - Omega3P (accelerator design, SLAC)
 - OpenSees (earthquake simulation, UCB)
 - DSpice (parallel circuit simulation, SNL)
 - Trilinos (object-oriented framework encompassing various solvers, SNL)
 - NIKE (finite element code for structural mechanics, LLNL)
Efficient implementations of sparse LU on high-performance machines
More sensitive to latency than dense case
Continuing developments funded by DOE/SciDAC/TOPS
 • Integrate into more applications
 • Improve triangular solution
 • Parallel ordering and symbolic factorization
 • ILU preconditioner
Survey of other sparse direct solvers in “Eigentemplates” book
 (www.netlib.org/etemplates): LL^T, LDL^T, LU
See also http://acts.nersc.gov/events/Workshop2004/slides/superlu.pdf
 (by Sherry Li) for more details and applications