ScaL APACK
(An Introduction)

Osni Marques
L awrence Berkeley National Laboratory (LBNL)
National Energy Scientific Computing Center (NERSC)
(osni @nersc.gov, http://www.nersc.gov/~osni)

Outline

http://acts.ner sc.gov/scalapack

e Designof ScaLAPACK
e Basic Linear Algebra Subprograms (BLAYS)
e Linear Algebra PACKage (LAPACK)
e Basic Linear Algebra Communication Subprograms (BLACYS)
 Pardlel BLAS (PBLAYS)

e Contentsof ScaLAPACK
e Performance

o Applications

e Hands-on

10/10/2001 ScalL APACK (An Introduction)

YDUD YO JDOLISWNAT Qe |qmoF aady mesydiy oy saBe A gy jonpatiuoig

sdamdwios jappand
Lo WE-PAMGLISIE 40

HIVAVIV.IS

FRUDULT PN Jouoynindiiuo)

SOVIg \ SVIg

saamdios japppand Lowaw-paanys
m:.mmmmx...i B30 DU J01438 20UDULIOf4 0 J-YTIE] 404

BIq28[e JBIUT] ISUIP 10J SIUBI]T]
dUeUL0JIdJ Y31 ‘“Apendd Y31y

| SPAUDIL SIDVIVIVOS PUD J[OVIVT

ScalL APACK: structure of the software

http://acts.ner sc.gov/scalapack

ScaLAPACK

Global

i —
QAPACD BLacs D

platform specific f

T R

10/10/2001 ScalL APACK (An Introduction)

BLAS

10/10/2001

http://acts.ner sc.gov/scalapack
(Basic Linear Algebra Subroutines)

Clarity: code is shorter and easier to read.
Modularity: gives programmer larger building blocks.

Performance. manufacturers (usually) provide tuned
machine-specific BLAS.

Program portability: machine dependencies are confined
tothe BLAS.

Key to high performance in effective use of memory
hierarchy (true on all architectures).

ScalL APACK (An Introduction)

BLAS: 3levds

http://acts.ner sc.gov/scalapack

* Level 1BLAS: H — H H
: + o,
VECtor-vector operations.

« Level 2BLAS H — H
*
matrix-vector operations.

 Level 3BLAS
matrix-matrix operations.

10/10/2001 ScalL APACK (An Introduction)

BLAS: performance

http://acts.ner sc.gov/scalapack

IBM RS/6000-590 (66 MHz, 264 Mflop/s Peak)

250 +
Level 3 BLAS
200 -
2 150 1 Level 2 BLAS
=100 -
90 1 Level 1 BLAS
0 | | | | | |

200 300 400 500

Order of vector/Matrices

Development of blocked algorithms is important for performance!

10/10/2001 ScalL APACK (An Introduction)

LAPACK

10/10/2001

http://acts.ner sc.gov/scalapack

Linear Algebralibrary written in Fortran 77 (C and C++
versions also available).

Combine algorithms from LINPACK and EISPACK into
a single package.

Efficient on awide range of computers (RISC, Vector,
SMPs).

User interface similar to LINPACK (Single, Double,
Complex, Double Complex).

Built atop level 1, 2, and 3 BLAS for high performance,
clarity, modularity and portability.

ScalL APACK (An Introduction)

LAPACK: contents

10/10/2001

http://acts.ner sc.gov/scalapack

Basic problems:

e Linear systems: AX=Db

» Least squares: min|Ax—b|,

e Singular value decomposition: A=UXV'

 Eigenvalues and eigenvectors: Az= Az, Az= ABz
LAPACK does not provide routines for structured problems

or general sparse matrices (i.e. sparse storage formats such
as compressed-row, -column, -diagonal, skyline ...).

LAPACK Users Guide, Third Edition (1999)

ScalL APACK (An Introduction)

BLACS

http://acts.ner sc.gov/scalapack

(Basic Linear Algebra Communication Subroutines)

e A design tool, they are a conceptual aid in design and coding.

e Associate widely recognized mnemonic hames with
communication operations. This improves.
e program readability
 self-documenting quality of the code.
* Promote efficiency by identifying frequently occurring
operations of linear algebra which can be optimized on
various computers.

10/10/2001 ScalL APACK (An Introduction) 10

BLACS: basics

10/10/2001

http://acts.ner sc.gov/scalapack

Processes are embedded in atwo-dimensional grid,
example: 3x4 grid

0 1 2 3

O O 1 2 3

ScalL APACK (An Introduction)

11

BLACS: scopes

http://acts.ner sc.gov/scalapack

An operation which involves more than one sender and one
receiver is called a scoped operation. Using a 2D-grid,
there are 3 natural scopes:

Scope |Meaning
All processes in a process row participate.
Column |All processes in a process column participate.

All processes in the process grid participate.

10/10/2001 ScalL APACK (An Introduction)

12

BLACS: communication routines

http://acts.ner sc.gov/scalapack

Send/Receive

Send (sub)matrix from one process to another:
_xxSD2D (ICTXT, [UPLO,DIAG],M,N,A,LDA,RDEST, CDEST)
_xxRV2D (ICTXT, [UPLO,DIAG],M,N,A,LDA, RSRC,CSRC)

_ (Data type) xx (Matrix type)

|: Integer, GE: General rectangular matrix
S: Real, TR: Trapezoidal matrix

D: Double Precision,
C: Complex,
/. Double Complex.

10/10/2001 ScalL APACK (An Introduction)

13

BLACS: communication routines

http://acts.ner sc.gov/scalapack

Broadcast
Send (sub)matrix to all processes or subsection of processes in SCOPE,

using various distribution patterns (TOP):
_xxBS2D (ICTXT, SCOPE, TOP, [UPLO,DIAG] ,M,N,A,LDA)
_xxBR2D (ICTXT, SCOPE, TOP, [UPLO,DIAG] ,M,N,A,LDA,RSRC,CSRC)

“(default)

‘Increasing Ring’
‘1-tree’ ...

10/10/2001 ScalL APACK (An Introduction)

14

BLACS:. combine operations

http://acts.ner sc.gov/scalapack

Global combine operations

10/10/2001

Perform element-wise SUM, [IMAX], IMIN|, operations on triangular
matrices.

_GSUM2D (ICTXT, SCOPE, TOP,M,N,A,LDA, RDEST, CDEST)

_ GAMX2D (ICTXT, SCOPE, TOP,M,N,A,LDA,RA,CA, RCFLAG, RDEST, CDEST)
__ GAMN2D (ICTXT, SCOPE, TOP,M,N,A,LDA,RA,CA, RCFLAG, RDEST, CDEST)

RDEST = -1 indicates that the result of the operation should be |eft on all
processes selected by SCOPE.

For IMAX], IMIN|, when RCFLAG = -1, RA and CA are not referenced,
otherwise RA and CA are set on output with the coordinates of the process
owning the corresponding maximum (or minimum) element in absolute
value of A.

ScalL APACK (An Introduction)

15

BLACS:. example

10/10/2001

http://acts.ner sc.gov/scalapack

BLACS SETUP
(out) uniquely identifies each process
Get system information (out) number of processes available
CALL BLACS PINFO(IAM, NPROCS)

If underlying system needs additional setup, do it now

IF(NPROCS.LT.1l) THEN (in) uniquely identifies each process

IF(IAM.EQ.0) NPROCS =‘//(in) number of processes available

CALL BLACS SETUP(IAM, NPROCS)

END IF
Get default system context
CALL BLACS GET(0, 0, ICTXT)

‘\\ (out) BLACS context (see dlide 21)
(in) use (default) system context

(in) integer handle indicating the context

ScalL APACK (An Introduction) 16

BLACS:. example

http://acts.ner sc.gov/scalapack

BLACS GRIDINFO

* define 1 x (NPROCS/2+1l) process grid
NPROW = 1

NPCOL NPROCS / 2 + 1

/ BLACS context (see slide 21)

CALL BLACS GRIDINIT(ICTXT, ‘Row’, NPROW, NPCOL)

CALL BLACS GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)

* TIf I’m not in the grid, go to end of program \\\////
IF(MYROW.EQ.-1) GO TO 10

process row and column
coordinate (output)

CALL BLACS_ GRIDEXIT(ICTXT)
10 CONTINUE
CALL BLACS EXIT(0)

END

10/10/2001 ScalL APACK (An Introduction) 17

BLACS:. example

http://acts.ner sc.gov/scalapack

CALL BLACS GRIDINFO(I
IF(MYROW.EQ.O0 .AND. M
CALL DGESD2D(ICTXT,

ELSE IF(MYROW.EQ.1l .AND. MYCOL.EQ.O0) THEN

CALL DGERV2D(ICTXT,
END IF

10/10/2001

SEND/RECEIVE

process row and column
coordinate (output)

[\

CTXT, NPROW, NPCOL, MYROW, MYCOL)
YCOL.EQ.0) THEN
5, 1, X, 5, 1, 0) send X to process (1,0)

5, 1, ¥, 5, 0, 0) receive X from process (0,0)

ScalL APACK (An Introduction)

18

BLACS:. example

http://acts.ner sc.gov/scalapack

BROADCAST

CALL BLACS GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)

* Broadcast A to processes in row 0

IF(MYROW.EQ.O0O) THEN

IF(MYCOL.EQ.0) THEN
‘'Y, 2, 2, A, 3)

CALL DGEBS2D(ICTXT, ‘Row’, ’
ELSE

CALL DGEBR2D(ICTXT, ‘Row’, ‘* ‘, 2, 2, A, 3, 0, 0)
END IF \ f

END IF
: indicate that process (0,0)
called broadcast send

19

10/10/2001 ScalL APACK (An Introduction)

BLACS:. example

10

10/10/2001

http://acts.ner sc.gov/scalapack

COMBINE OPERATIONS

CALL BLACS GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)

IF (| MYROW.EQ.O
K00 = MY
CALL IGSUM2D
KALL = MYCOL
CALL IGSUM2D(ICTXT,

END IF

) THEN

CTXT,

EPS = 1.0D+0
CONTINUE

EPS = EPS / 2.0D+0
IF((1.0D+0 + EPS)

\\\\\\\\‘

.GT.

‘ROW', \ \'

\ROWI’ \ \'

1.0D+0) GO TO 10

\AllI’ \ \’

1, 1, EPS,

CALL DGAMX2D(ICTXT,

ScalL APACK (An Introduction)

1,

IRSRC,

ICSRC,

-1,

-1,

0

)

20

BLACS:. context

10/10/2001

http://acts.ner sc.gov/scalapack

The BLACS context isthe BLACS mechanism for
partitioning communication space.

A message in a context cannot be sent or received in another
context.

The context allows the user to
» create arbitrary groups of processes
 create multiple overlapping and/or digoint grids

o Isolate each process grid so that grids do not interfere with
each other

BLACS context & MPI communicator

ScalL APACK (An Introduction) 21

BLACS: repeatability

10/10/2001

http://acts.ner sc.gov/scalapack

A routineisrepeatable if it is guaranteed to give the same answer
If called multiple times with the same parallel configuration and
INput.

A routineis coherent if all processes selected to receive an answer
get identical results.

« Homogeneous coherency: all processes selected to possess the result receive
the exact same answer if communication does not change the value of the data
or all processes perform floating point arithmetic exactly the same.,

» Heterogeneous coherency: all processes will receive the exact same answer if
communication does not change the value of the communicated data.
Repeatability and coherence do not affect correctness. A routine
may be both incoherent and non-repeatable, and still give the
correct output.

ScalL APACK (An Introduction) 22

PBLAS

http://acts.ner sc.gov/scalapack

(Parallel Basic Linear Algebra Subroutines)

« Similar tothe BLAS in portability, functionality and naming.
e Built atopthe BLASand BLACS
* Provideglobal view of matrix

CALL DGEXXX(M, N, A(IA, JA), LDaA, ...) BLAS

CALL PDGEXXX(M, N, A, IA, JA, DESCA, ...) PBLAS

10/10/2001 ScalL APACK (An Introduction)

PBLAS: 3levels

http://acts.ner sc.gov/scalapack

* Level 1PBLAS: H — H H
: + o,
VECtor-vector operations.

+ Level 2PBLAS H — H
*
matrix-vector operations.

 Level 3PBLAS
matrix-matrix operations.

10/10/2001 ScalL APACK (An Introduction)

24

PBLAS:. syntax

http://acts.ner sc.gov/scalapack

Global view of the matrix operands, allowing global addressing
of distributed matrices (hiding complex local indexing)

A(IA:IA+M-1,JA:JA+N-1)

10/10/2001 ScalL APACK (An Introduction)

25

ScalL APACK: structure of the software

10/10/2001

http://acts.ner sc.gov/scalapack

ScaLAPACK

Global

T

ScalL APACK (An Introduction)

26

ScaL APACK: goals

10/10/2001

http://acts.ner sc.gov/sca-lapack

Efficiency

» Optimized computation and communication engines

» Block-partitioned algorithms (Level 3 BLAS) for good node performance
Reliability

* Whenever possible, use LAPACK algorithms and error bounds,
Scalability

» Asthe problem size and number of processors grow

* Replace LAPACK algorithm that did not scale (new ones into LAPACK)
Portability

» |solate machine dependenciesto BLAS and the BLACS
Flexibility

o Modularity: build rich set of linear algebratools (BLAS, BLACS, PBLAYS)
Ease-of-Use

o Caling interface similar to LAPACK

ScalL APACK (An Introduction) 27

ScalL APACK: possible data layouts

10/10/2001

http://acts.ner sc.gov/scalapack

1D block and cyclic column distributions

o 1 2 a JOf 12 081 2EA O (2 30 2330 P ()
G(1jo|1 (0|1 |0)|1
2(3|2|3|2(3(2]3
0| 1]j0)|1|0|1 1

g(1|2)]3|0(1]|2]|3 2|3|2]3|2|3|2(3
a 1]0|1|0][1 1
2(3|2)13|2(3(2]|3
(101 (0[]
2(3|2)13|2(3(2]3

1D block-cycle column and 2D block-cyclic distribution
2D block-cyclic used in ScaLAPACK for dense matrices

ScalL APACK (An Introduction)

28

ScalL APACK: 2D Block-Cyclic Distribution

http://acts.ner sc.gov/scalapack

5x5 matrix partitioned in 2x2 blocks 2X2 process grid point of view
[du drw diz duw dis) du dr dis dus
dz d» dz du dzs da1 @ d23 1 dos

dsi Az dz du dss |:> ds: ds2 dss ds3 dsa

da Aa da Adu dus dss das Az
&8s 8 aw 8 s | s Qu

10/10/2001 ScalL APACK (An Introduction)

Two-Dimensional Block-Cyclic Distribution

11 1.2 1.3 1.4 1.5]
-21 22 2.3 2.4 25
-31 -32 3.3 34 35
-41 -42 -43 4.4 45

| -51 -52 -53 -54 5.5
0 1
adu duw du A
0 dz Q) dx] A
as: ds2 dss ds3 ass
dss ds3 dAas
1 2 3
s A3 A

10/10/2001

http://acts.ner sc.gov/scalapack

CALL BLACS GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)

IF (MYROW.EQ.O0 .AND. MYCOL.EQ.O0) THEN
A(l) = 1.1; A(2) = -2.1; A(3) = -5.1;
A(1+LDA) = 1.2; A(2+LDA) = 2.2; A(3+LDA) = -5.2;
A(1+2*LDA) = 1.5; A(2+3*LDA) = 2.5; A(3+4*LDA) = -5.5;
ELSE IF (MYROW.EQ.0 .AND. MYCOL.EQ.1l) THEN
A(l) = 1.3; A(2) = 2.3; A(3) = -5.3;
A(1+LDA) = 1.4; A(2+LDA) = 2.4; A(3+LDA) = -5.4;
ELSE IF (MYROW.EQ.l1l .AND. MYCOL.EQ.O0) THEN
A(l) = -3.1; A(2) = -4.1;
A(1+LDA) = -3.2; A(2+LDA) = -4.2;

A(1+2*LDA) = 3.5; A(2+3*LDA) = 4.5;
ELSE IF (MYROW.EQ.1l .AND. MYCOL.EQ.1l) THEN
A(l) = 3.3; A(2) = -4.3;
A(1+LDA) = 3.4; A(2+LDA) = 4.4;
END IF

LDA istheleading dimension of thelocal array,
used in the descriptors (see slides 32-35)

ScalL APACK (An Introduction)

30

Two-Dimensional Block-Cyclic Distribution
http://acts.ner sc.gov/scalapack

e Ensure good load balance = performance and scalability
(analysis of many algorithmsto justify thislayourt).

e Encompasses alarge number of data distribution schemes
(but not al).

* Need redistribution routines to go from one distribution to
the other.

10/10/2001 ScalL APACK (An Introduction) 31

ScaL APACK: array descriptors

10/10/2001

http://acts.ner sc.gov/scalapack

Each global data object is assigned an array descriptor.

The array descriptor:

» Contains information required to establish mapping between a
global array entry and its corresponding process and memory location
(uses concept of BLACS context).

» |sdifferentiated by the DTYPE_ (first entry) in the descriptor.
* Provides aflexible framework to easily specify additional data
distributions or matrix types.
User must distribute all global arrays prior to the invocation
of a ScaL APACK routine, for example:
» Each process generates its own submatrix.

* One processor reads the matrix from afile and send piecesto other
processors (may require message-passing for this).

ScalL APACK (An Introduction)

32

Array descriptor for Dense Matrices

DESC_() Symbolic Name Scope Definition

Array descriptor for Narrow Band Matrices

DESC_() Symbolic Name Scope Definition

Array descriptor for Right Hand Sdes
for Narrow Band Linear Solvers

DESC_() Symbolic Name Scope Definition

ScalL APACK: Functionality

ScaLAPACK: error handling

http://acts.ner sc.gov/scalapack

* Driver and Computational routines perform global and
local input error-checking.

» Global checking = synchronization
e Local checking = validity

* No input error-checking is performed on the auxiliary
routines.

e |f anearorisdetectedinaPBLAS or BLACS routine
program execution is stopped.

10/10/2001 ScalL APACK (An Introduction)

37

ScaL APACK: debugging hints

10/10/2001

http://acts.ner sc.gov/scalapack

Look at ScaL APACK example programs.

Always check the value of INFO on exit from a
ScaL APACK routine.

Query for size of workspace, LWORK = —1.

Link to the Debug Level 1 BLACS (specified by
BLACSDBGLVL=1 in Bmake.inc).

Consult erratafiles on netlib:
http: //mww.netlib.org/scal apack/errata.scal apack
http: //mww.netlib.org/blacderrata.blacs

ScalL APACK (An Introduction) 38

ScalL APACK: Performance

10/10/2001

http://acts.ner sc.gov/scalapack

e For dense matrix computations, an implementation is said
to be scalable if the parallel efficiency is an increasing
function of N4/P, the problem size per node. The algorithms
Implemented in ScaLAPACK are scalable in this sense.

« Maintaining memory use per node constant allows
efficiency to be maintained (in practice, a slight degradation
IS acceptable).

ScalL APACK (An Introduction)

39

ScaL APACK: Achieving High Performance

10/10/2001

http://acts.ner sc.gov/scalapack

Distributed-Memory Computer

Use the right number of processors

* Rule of thumb: P=MxN/1,000,000 for an MxN matrix. This provides
alocal matrix of size approximately 1000-by-1000.

e Do not try to solve asmall problem on too many processors.
» Do not exceed physical memory.
Use an efficient data distribution.
 Block size(i.e.,, MB,NB) = 64.
e Sguare processor grid: Prow = Pcolumn.
Use efficient machine-specific BLAS (not the Fortran77 reference

implementation from netlib) and BLACS (nondebug,
BLACSDBGLVL=0in Bmake.inc)

ScalL APACK (An Introduction) 40

ScaL APACK: Achieving High Performance

10/10/2001

http://acts.ner sc.gov/scalapack

Network of Workstations

The bandwidth per node, if measured in Megabytes per second per
node, should be no less than one tenth the peak floating-point rate as
measured in megaflops/second/node.

The underlying network must allow simultaneous messages, that is,
not standard ethernet and not FDDI (Fiber Distributed Data I nterface).

Message latency should be no more than 500 microseconds.

All processors should be similar in architecture and performance.
Scal APACK will be limited by the slowest processor. Data format
conversion significantly reduces communication performance.

Dedicated use of processors
No more than one process should be executed per processor.

ScalL APACK (An Introduction) 41

milop/s LU/Solve on Pentium |l 300 MHz Cluster

BEOEEOO@E O

1400

120

100

800 "
Adnpiid
IEERLAAE
I‘HH 11

" oud AT ERA A0 A1

\900 %QQQ %QQQ /\QQQ QQQQ \/\/QQQ &QQQ \(/OQQQ (/\QQQ

Order of the Matrix

LU factorization+solve on IBM SP2 thin nodes

Mflops

800
700
6000
5000

400
300
2000
1000

1000

2000

3000
4000
5000

Problem size

7500

10000

12500

15000

64 nodes
32 nodes
16 nodes
8 nodes

4 nodes

ScaL APACK: Heterogeneous Computing

10/10/2001

http://acts.ner sc.gov/scalapack

o Software intended to be used in cluster computing context
« Difficulties arise with the following issues:

Communication of floating point numbers between
Processors

Repeatability and coherency

Machine precision and other machine specific parameters
Different versions of compilers

Checking global floating-point arguments

|terative convergence across clusters of processors

ScalL APACK (An Introduction)

ScaL APACK: Commercial Use

http://acts.ner sc.gov/scalapack

ScalL APACK has been incorporated in the following commercial packages:

o Fuyjitsu

» Hewlett-Packard/Convex

« Hitachi

* IBM Parallel ESSL

* NAG Numerical PVM (and MPI) Library
 Cray LIBSCI

 NEC Scientific Software Library

» Sun Scientific Software Library

e Visua Numerics (IMSL)

10/10/2001 ScalL APACK (An Introduction)

45

ScalL APACK: Hands-on

http://acts.ner sc.gov/scalapack

o Exercises: http://acts.nersc.gov/scal apack/hands-on/main.html

 Information on the Cray T3E:
e man intro_scalapack
» [usr/local/pkg/acts SCALAPACK-1.5/examples
e Further information on netlib (installation, working notes):
« BLACS: www.netlib.org/blacs
o LAPACK: www.netlib.org/lapack
o ScalL APACK: www.netlib.org/scalapack

10/10/2001 ScalL APACK (An Introduction)

46

ScaL APACK: Development Team

10/10/2001

http://acts.ner sc.gov/scalapack

Susan Blackford, UTK e Greg Henry, Intd

Jaeyoung Choli, Soongsil University Osni Marques, LBNL/NERSC
Andy Cleary, LLNL e Caroline Papadopoulos, UCSD
Ed D'Azevedo, ORNL * Antoine Petitet, UTK

Jm Demmel, UCB « Ken Stanley, UCB

Inderjit Dhillon, UT Austin e Francoise Tisseur, Manchester
Jack Dongarra, UTK o David Walker, Cardiff

Ray Fellers, LLNL o Clint Whaley, UTK

Sven Hammarling, NAG

Scal APACK (An Introduction) 47

URL : http://acts.nersc.gov/scalapack/hands-on/main.html
Copy exercisesfrom: /usr/local/pkg/actd SCALAPACK-1.5/examples/hands-on.tar.gz

Hands-On Exercises for ScaLAPACK

Scal APACK Team
March 2001

Introduction

These exercises provide basic and more advanced programming instruction for wnting parallel programs calling the BLACS, PELAS,
and ScalAPACE. A basic knowledge of Fortran, parallel programrming with message-passing, and IMPI are assumed. Some of the
exercises also require an understanding of two-dimensional block cyclic data distribution,

Detailed information on the BLACS, PBELAS, and Scal APACE may be found at the respective TTRLs:
* hitpJ/fwww.nethb orgfblacs

* hitpdiwww.nethb. ergfscalapack
s hitpdiwww.nethb. orgfscalapaclopblas grefhtml

Exercises 1 and 2 give an introduction to parallel programiming with the Basic Linear Alpebra Communication Subprograms (BLACS).
Exercises 3, 4, and 3 provide a range of simplistic to more complex parallel programs calling Scal APACE and PELAS. More
example programs for ScallAPACE can be found at http /v netlib orgfscalapack/examples.

The mstructions for the exercises assume that the underlying system 15 an IBIM 5P or a Cray T3E; using up to st processes that do
message-passing. These example programs use MPT as the underlying message-passing layer. The version of MPI used mn these
examples 15 the version 3.0, and we assume the user has this version mstalled.

These hands-on exercises were prepared in collaboration with the Joint Tnstitute for Computational Science at the Thiversity of
Tennessee, based on contnbutions from & YarKhan, C. Hastings, 3. Blackford, C Whaley, & Fettet and O Marnques.

Exercise 1: BLACS - Hello World Example
Exercise 2: BLACS - Pi Example

Exercise 3: ScalLAPACK - Example Program 1
Exercise 4: ScaLAPACK - Example Program 2
Exercise 5: PELAS Example

Help: usefil calling sequences

Dowmnload all exercises

Sca L APACK Tools Project Home Search

