Networking and High Performance Computing Group (GRyCAP)

José M. Alonso
Fernando Alvariuz
Department of Information Systems and Computation (DSIC)
Valencia University of Technology (UPV)
Talk Outline

• Introduction
• Research Lines and Technological Capabilities
• Research Projects
• Software Tools Used
GRyCAP

Networking and High Performance Computing Group

- http://www.grycap.upv.es
- Created in 1986
- Responsible: Vicente Hernández García (vhernand@dsic.upv.es)
- 20 members
- Developed Doctoral Dissertations: 15
- Ongoing Doctoral Dissertations: 12
- European Projects: 14
- Journal Articles: ~120
- International Congresses: ~220
Our Group is a Member of the ITACA Institute
Innovation and Technology Transfer to Society
Composed of
- Research Groups in the Valencia University of Technology
- Private Companies
- Public Administration Bodies
- Professional Associations

http://www.itaca.upv.es
Research Lines

- Structured Matrices
- Solution of Sparse Large-Scale Systems of Linear Equations
- Eigenvalues and Singular Values Computation for Sparse Large-Scale Problems
- Systems of Non-linear Equations and Optimization
- Partial Differential Equations and Finite Elements
- Numeric Algorithms for Process Control
- Networked Computer Systems
- Image Graphics Processing
Technological Capabilities

• **Advanced Software**
 - Optimization of Industrial Codes and Software Migration
 - Development of Numerical Computing Software
 - Generation of Highly Realistic Images
 - Internet-based High Performance Computing and E-Commerce Systems
 - Development of Distributed Applications
 - Development of User Interfaces

• **Software applied to Engineering**
 - Development of Environments for Industrial Processes
 High Performance Simulation
 - Robust Efficient Accurate Software Tools for Control Engineering
Technological Capabilities

• **Medical Images**
 - High Performance Processing of Medical Images
 - Development of Surgical Simulation Systems

• **Technology Transfer**
 - Hipercosme, Hiperttn, Eutist-m

• **Services and Consultancy**
 - High Performance Computing Platforms
 - High Performance Computing Software
Research Projects

• **Simulation for Engineering**
 - **Construction**: Hipercosme-cs1, Vasses, Gasses, Masses, Easses, Padem, Hiperbuild, Calma3D
 - **Water Supply**: Hiperwater, Powadima, Calnet
 - **Electromagnetic Field**: Fed-com
 - **Plastic Injection**: Hiperplast
 - **Nuclear Energy**: Atrapas, Lambda Modes
 - **Bioelectric**: Camaec, Camav
 - **Ports and Coasts**: Neurebata

• **Medical Sector**: Hipercir, Dismedi, Petri-med, Fed-med, Vrsur

• **Image Visualisation**: Fed-RV, Vre-commerce

• **Control Applications**: Niconet
Construction Simulation

“High Performance Computing for 3D Analysis of Building Structures”

(HIPERBUILD)

- Objectives:
 - Structural Analysis of Large Buildings
 - High Capacity Visualization
 - Static and Dynamic 3D, Realistic and Rigorous Analysis (6 Degrees of Freedom), Without Simplifications
Hydraulic Simulation

“High Performance Computing in Water Distribution Simulation” (HI PERWATER)

- Objectives:
 - A Tool for the Hydraulic and Water Quality Simulation of Supply Networks
 - A Tool for Leakage Simulation and Minimization
 - A Powerful Tool that Provides the Quickest Response by Using HPCN Technology
Hydraulic Simulation

“Potable Water Distribution Management”

(POWADI MA)

• Objectives:
 - Establish the Feasibility and Efficacy of Introducing Real-time Optimal-control for Water Distribution Networks
 - Reducing Operating Costs, Ensuring Service
 - Efficient Tools for Simulation and Optimization
Hydraulic Simulation

“Calibration and Exploitation of Hydraulic Models for Water Distribution Networks by means of GIS and SCADA Systems Connection”

(CALNET)

• Objectives:
 - To Connect GIS and SCADA Systems With Hydraulic Simulator (EPANET)
 - To Make Progress in the Field of the Hydraulic Model Calibration. (Optimization Problem)
Electromagnetism Simulation

“Simulation of Electromagnetic Wave Propagation in Cavities”

Applications:
- Microwave Oven Design
 - Domestic Scope
 - Industrial Scope
- Anecoic Chamber Design
 - Electromagnetic Compatibility
 - Pre-certification
“HPCN Reinforced Plastic Injection Simulation” (HIPERPLAST)

- Objectives:
 - Simulation for Short Fiber Reinforced Thermoplastics Injection Processes
 - Toy Industry
 - Designing More Easily Plastic Pieces
 - Replacing Stainless Steel or Aluminum Pieces by Plastic Ones
Nuclear Engineering Simulation

- **ATRAPAS**
 - TRAC-BF1 Code Parallelization
 - TRAC is a 3D simulator for the analysis of nuclear thermo-hydraulic Transients
 - TRAC Simulates the behavior of a nuclear plant model.
 - TRAC is commonly used for Accident analysis, Transient Analysis, Licensing or Fuel recharge
• **Lambda Modes Calculation**
 - Analysis of Neutrons Diffusion Within a Reactor Core
 - Reactor 3D Model
 • Axial Levels
 • Cells
 - Discretization: Eigenvalue Problem
 - Analysis of Control Bars Insertion
 • Homotopy Techniques

• **Mammography**
 - Early Diagnostic of Breast Tumors
Other Simulations

- Advanced Computation of Electrical Heart Activity (CAMAEC)
- Analysis of Runup, Overtopping and Optimal Crest Freeboard of Mound Breakwaters Using Neural Network Models (NEUREBATA)
- Computational Fluid Dynamics for Airflow Between Turbine Blades (ATHENA)
“High Performance Medical Image Diagnosis in Cluster of PCs”
(HIPERCIR)

- Objectives:
 - Medical Image Diagnosis in PCs
 - Images From TAC, Magnetic Resonance, etc.
 - Cost Reduction With Regard to Commercial Equipment
 - Oriented to Small Hospitals
 - Needed Parallelism to Obtain Similar Performance (Better in Many Cases)
Medical Area

“Distributed High Performance Processing of Medical Images. A New Component in Advanced PACS”

(DISMEDI)

- Objectives:
 - Distributed System Development for Computer-Aided Image Diagnosis
Medical Area

“Virtual Reality Surgery Training System” (VRSUR)

- Objective:
 - Design and Implementation of a Laparoscopic Surgery Training System
Realistic Synthetic Images Generation

“High Performance Virtual Reality Distributed Electronic Commerce: Application for the Furniture and Ceramics Industries”

(VRE-Commerce)

- Objectives:
 - Realistic Synthetic Images Generation for Furniture and Ceramics Industries
 - Used Technologies:
 - Parallel Computing
 - Lighting Algorithms
 - Network Computation
“Numerics In COntrol NETwork”

(NI CONET)

• Objectives:
 - Coordination of all European Initiatives on Numerical Control Software Development. (Network with 17 Partners)
 - Development of the SLICOT Software Library for Control Problems (Software Library In Control Theory)
Software Tools Used

- Dense linear algebra
 - ScaLAPACK
- Solution of sparse linear systems of equations
 - (Direct Methods) SuperLU, PSPASES
 - (Iterative Methods) PETSc, AZTEC, SPARSKIT, P-SPARSELIB
- Solution of nonlinear systems of equations
 - SUNDIALS
- Optimization
 - FSQP
- Eigenvalue problems
 - ARPACK, BLZPACK, PLANSO, TRLAN
Software Tools Used

• Simulation of ODE and DAE systems
 – SUNDIALS, COLNEW, TWPBVP, ODEPACK, DASSL, DASPK, GELDA, RADAU5

• Communication libraries
 – MPI, PVM