SuperLU: Sparse Direct Solvers

X. Sherry L1
xsli@lbl.gov
ACTS Collection Workshop
September 4, 2002

Contents

¢ Introduction

¢ Use of SuperLU 1n large scale applications

¢ Overview of the algorithms

¢ Sparse matrix distribution and parallel performance

¢ Summary

X Li

What is SuperlU s

*Solve general sparse linear system A x =b.
= Example: A of dimension 10 only 10 ~ 100 nonzeros per row

¢ Algorithm: Gaussian elimination (LU factorization: A =
LU), followed by lower/upper triangular solutions.

= Store only nonzeros and perform operations only on nonzeros.

¢ Efficient implementation for high-performance
architectures.

¢Software portable on many platforms.

X Li

Software Status

SuperLU SuperLU MT SuperLU DIST
Platform Serial SMP Distributed
Language C C + Pthread C + MPI
(callable from F77) (or pragmas)
Data type Real/complex, Real, double Real/complex,
Single/double Double

¢ Source, Users’ Guide, papers available:

X Li

www.nersc.egov/~xiaove/SuperLLU

; A
FFErere ‘||||

* Original zero entry A;; becomes nonzero in L or U.

Fill-in in Sparse GE

Min. Degree order: nonzeros = 207

Natural order: nonzeros = 233

Faciors L+U

Factors L+) using min—degrea ardaring

- 4a | #+ 4 & 8 B B
a1 B
a1 B - 4 & B [I 3
a & a & 1 B B » B
- 4 B | - 4 B B E BB
B [| L
|] | - & B B B B
| & F B B B
|] - 4 & 8 L J
[| L
L L J
i &+
a
E] 2 g 4
L
L E J
L L J
L] L
a
a L
H & & L
3 0 & & L
| N B |
" B B
B E B i
a 8 i
- 4 F B " & 4
a & a P ®E B B
% & B | N B |
a & & a3 B B
- 4 B PR B
H & d 8 4 F 8
a & 4 B
a & a1
a B
[|
1 L 1 1 1
g g 2 S 7

2h

=0

16

10

25

=20

15

10

=207

nonzens

=233

nonzancs

X Li

Supernode f

EEEEEEEEEEE

¢ Exploit dense submatrices in the L & U factors

R~ R i I R

Supernode [6: 9]

L5

& 7 B &

¢ Why are they good?
» Permit use of Level 3 BLAS
» Reduce inefficient indirect addressing (scatter/gather)

= Reduce graph algorithms time by traversing a coarser graph

X Li 6

SuperlU in Quantum Chemistry

¢ First solution to a long-standing unsolved
problem of scattering in a quantum system
of 3 charged particles. [Recigno, Baertschy,
Isaacs & McCurdy, Science, 24 Dec 1999]

¢ The simplest nontrivial example 1s the
1onization of a hydrogen atom by collision
with an electron.

e+ H—> H"+ 2¢

¢ Seek the particles’ wave functions
represented by the time-independent
Schrodinger equation.

X Li

Quantum Chemistry (con't)

¢ Sparse, complex (non-Hermitian), unsymmetric

linear systems.

* Diagonal blocks have the structure of 2D finite

difference Laplacian matrices.

Agy

= Off-diagonal block is a diagonal matrix.

= Between 6 to 24 blocks, each of dimension between
200K and 350K =»Total dimension as large as 8.4M.

¢ SuperLU DIST as block diagonal preconditioner.
M-1A x=M-b
M = diag(A,;, Ay, Ass, -.0)
¢ 12 to 35 iterations (@ 2 to 3 minutes/iteration on
24 processors of IBM SP.

X Li

||||

SuperlLU in Accelerator Cavity Design g

¢ Model large, complex cavities accurately for Next
Generation Accerlator.

¢ Maxwell equation in electromagnetic simulation.

¢ Finite element methods lead to large sparse
generalized eigensystem K x =AM x.

¢ Seek interior eigenpairs, tightly clustered.

¢ Need to speed up Lanczos convergence by shift-
invert = Seck largest eigenpairs, well separated,
of the transformed system.

MEK-ocM)!'x=uMx
u=1/(A-o0)
¢ Shifted linear system 1is ill-conditioned and needs

to be solved accurately =» Hard for iterative
solvers!

X Li 9

Accelerator Cavity Design (con't) ceeees]]

¢ Build exact shift-invert eigen solver with SuperLU DIST integrated
into Lanczos code PARPACK.

¢ DDS model on IBM SP

* Damped, Detuned Structure, include linear and quadratic elements
= 380K with 15.8M nonzeros

e ~4.2 solves per eigenpair (@ 24 seconds/solve on 8 procs.

= 1.3M with 20.1M nonzeros

* ~4.5 solves per eigenpair (@ 39 seconds/solve on 32 procs.

¢ Solution accurate to more than 12 sig. digits in double precision.

X Li 10

rereen)

Sparse Direct Solvers

¢ Sparse LU factorization: P AP '=L U

= Choose permutations P, and P_ for numerical stability, minimizing fill-in, and
maximizing parallelism.

¢ Phases for sparse direct solvers.

1. Order equations & variables to minimize fill-in.

= NP-hard, so use heuristics based on combinatorics.

2. Symbolic factorization.
= [dentify supernodes, set up data structures and allocate memory for L & U.

3. Numerical factorization — usually dominates total time.
= How to pivot?
4. Triangular solutions — usually less than 5% total time.

¢ In SuperLU DIST, only numeric phases are parallel so far.

X Li 11

How and When to pivot? ﬂ

HERKELEY LAE

¢ Goal of p1voting 1s to control element growth 1n L & U for stability
¢ Example: partial pivoting during factorization: PA = LU (GEPP)

* Used in sequential SuperLU and SuperLU MT
¢ Partial pivoting implies:

* Dynamic change of fill patterns of L & U

=>» Must interleave symbolic & numerical factorizations

" Lots of small messages

=» Slow on parallel machines with high latency

¢ Static pivoting used in SuperLU DIST (GESP)

= Before factorization, scale and permute A to maximize diagonal: P. D. A D, = A’

= During factorization of A’ = LU, replace tiny pivots by Ve ||A||, without changing data
structures for L & U

" [fneeded, use a few steps of iterative refinement after the first solution
=» Symbolic and numerical factorizations decoupled

X Li 12

Ordering for Sparse Cholesky weeec])

¢ Local greedy heuristics

* Minimum degree (upper bound on fill-in)

* [Tinney/Walker 67, George/Liu "79, Liu "85, Amestoy/Davis/Duff "94, Ashcraft
'95, Duft/Reid 95, et al.]

* Minimum deficiency (actual fill-in)
* [Tinney/Walker "67, Ng/Raghavan '97, et al.]

¢ Global graph partitioning heuristics
» Nested dissection [George 73]
= Multilevel schemes [Hendrickson/Leland "94, Karypis/Kumar "95, et al.]
= Spectral bisection [Simon et al. "90-"95, et al.]
* Geometric and spectral bisection [Chan/Gilbert/Teng "94]

¢ Hybrid of the above two [Ashcraft/Liu 96, Hendrickson/Rothberg
97]

X Li 13

Ordering for LU - Case of Partial Pivoting Y

¢ Use symmetric ordering for Cholesky of ATA
= [f RTR=A"'A and PA = LU, then for any row permutation P,
struct(L+U) < struct(R™R) [George/Ng "87]
= Making R sparse tends to make L & U sparse
= Strategy:

1. Find a good symmetric ordering P_from ATA
2. Apply P columns of A: A’=AP_!
ATA=APHT (AP =Pc(ATA)P !

¢ (Column minimum degree based solely on A
= Matlab; Larimore/Davis/Gilbert/Ng ‘98

X Li 14

Ordering for LU - Case of Static Pivoting

¢ Use symmetric ordering for Cholesky of AT+A
= If RTR=A"™A and A = LU, then struct(L+U) < struct(R"+R)
"= Making R sparse tends to make L & U sparse

= Strategy:
1. Find a good symmetric ordering P_from AT+A

2. Apply P_to both rows and columns of A: A>’=P_ AP_!
struct(A’) = struct(P A P_1) c struct(P_(A+A) P_1)

¢ Use symmetric ordering based solely on A
* Work in progress [Amestoy/Li/Ng "02]

X Li

15

Ordering Interface in SuperlLU

¢ SuperLU library contains routines:
* Form ATA
* Form AT™+A
= MMD (Multiple Minimum Degree, courtesy of Joseph Liu)
* COLAMD: www.netlib.org/linalg/colamd/

¢ You may use any other — just input a permutation vector to SuperLU
Example:

" (Par)Metis: www-users.cs.umn.edu/~karypis/metis/

" Chaco: www.cs.sandia.gov/~bahendr/chaco.html

X Li 16

Ordering Comparison

X Li

; A
FFErere ‘||||

GEPP, COLAMD

GESP, AMD(AT+A)

Matrix N Fill (10) Flops (10%) | Fill (10%) Flops (10%)
BBMAT 38744 49.8 44.6 40.2 34.0
ECL32 51993 73.5 120.4 42.7 68.4
MEMPLUS | 17758 4.4 5.5 0.15 0.002
TWOTONE | 120750 22.6 8.8 11.9 8.0
WANG4 26068 27.7 353 10.7 9.1

17

Symbolic Factorization %

¢ Cholesky [George/Liu "81 book]

= Use elimination graph of L and its transitive reduction (elimination tree)

* Complexity linear in output: O(nnz(L))

LU

= Use elimination graphs of L & U and their transitive reductions (elimination
DAGs) [Tarjan/Rose "78, Gilbert/Liu "93, Gilbert "94]

* Improved by symmetric structure pruning [Eisenstat/Liu "92]

" Improved by supernodes

* Complexity greater than nnz(L+U), but much smaller than flops(LU)

X Li 18

Numerical Factorization weee])

¢ Sequential SuperLU

* Enhance data reuse in memory hierarchy by calling Level 3 BLAS on the
supernodes

¢ SuperLU MT
= Exploit both coarse and fine grain parallelism
* Employ dynamic scheduling to minimize parallel runtime

¢ SuperLU DIST

* Enhance scalability by static pivoting and 2D matrix distribution

X Li 19

. A
FEreers ‘m

2D Block Cyclic Layout and Data Structures

nzval

index

of blocks
LDA 1ionzval

#of full cows r"
row subscripts

block #
il
iz

block #

#of full cows r’r

row subscripts

il

12

Storage of block column of L

Global Matnx

[P DR

I I

I I

I =y |

I

I

I

I

4 I

I I

I I

I I
S

Process Mesh

F=————-F-—==-F=-==-

20

X Li

Create 2D Process 6rid from MPI Communicator —

¢ The 2D process grid/communicator must be created from an existing
base MPI communicator (e.g., MPI COMM WORLD).

¢ SuperLU uses the newly created communicator for all the internal
communications.

¢ Example: A
MIAx=M1b Ay oo

M = diag(A,, Ay, Ass, ..0) Ag

Ay | ooe

X Li 21

Two Ways to Create a SuperlU Process érid —

¢ Superlu_gridinit(MPI Comm Bcomm, int nprow, int npcol,
gridinfo t *grid);
" This maps the first nprow*npcol processes in the MPI communicator Bcomm
to SuperLU 2D grid.

¢ Superlu gridmap(MPI Comm Bcomm, int nprow, int npcol,

int usermap|], int Idumap, gridinfo t *grid);
* This maps an arbitrary set of nprow*npcol processes in the MPI communicator

Bcomm to SuperLU 2D grid. The ranks of the selected MPI processes are
given in Usermap[] array. For example:

0O 1 2
of11 12|13

1|14 15|16

X Li 22

Example Matrices
Matrix Source | Symm N | nnz(A)| nnz(L+U) Flops
BBMAT Fluid flow S4 38,744 | 1.77TM 40.2M 31.2G
ECL32 Device sim. 93| 51,993 38M 42.TM 68.4G
TWOTONE | Circuit sim. 431 120,750 | 1.22M 11.9M 8.0G

Factorization Time Triangular Solutions Time
120 . I I 35 . I)
Il BBMAT Il BBMAT
: : :] ECL32 : : ; [1] ECL32
1{](]_ E_.“““““““““E :- TWDTDNE 1 3_ :. :_ : - TWDTDNE H
BD— --
P N R N T g
4(] ..
ool W g Wi
0 16 64 128 256 512 16 64 128 2656 512
T3E Processors T3E Processors

X Li 23

Scalability %

HERKELEY LAE

*T3E

» 3D KxKxK cubic grids, scale N> = K¢ with P for constant work per processor
= Up to 12.5 Gflops on 128 processors

Performance for solving nx nx n grid on T3E, constant work per processor))
140 T T T : ; : ; : Time to solve nxnx n grid on T3E, constant work per processor

120F

T T T T T

1Y - (4] I ’
=
Q
Q
[0

Ul40, |
£
e o Q
E

0F 4

200]

i ’ 104 8

0 0
1 2 4 8§ 16 32 64

1 2 4 8 16 R 64 128 128
Number of Processors Number of Processors

¢ [BM SP: K =100, N = 1M, 49 Gflops (267 Seconds)

1=

~

=)
T

100 L
g 50
o 80 T
o
[o}
©
Q
0
g 60 2
=
s

N
=

(]
=3

X Li 24

Summary - Content of SuperlLU Library ceeecd])

* LAPACK-style interface

* Simple and expert driver routine
» Computational routines

* Comprehensive testing routines and example programs

¢ Functionalities
* Minimum degree ordering [MMD, Liu "85] applied to ATA or AT+A
= User-controllable pivoting

* Pre-assigned row and/or column permutations

* Partial pivoting with threshold
" Solving transposed system
* Equilibration
= Condition number estimation
= [terative refinement

= Componentwise error bounds [Skeel "79, Arioli/Demmel/Duff "89]

X Li 25

Conclusions o)

¢ Good implementations of sparse LU on high-performance machines
¢ More sensitive to latency than dense case
¢ Need more families of unsymmetric test matrices

¢ Continuing developments — being funded by DOE TOPS SciDAC
and NSF NPACI programs

" Improve triangular solution

* [LU preconditioner

» Parallel ordering and symbolic factorization
" Integrate into applications

¢ “Eigentemplates” book (www.netlib.org/etemplates) for survey of
other sparse direct solvers
« LLT, LDLT, LU

X Li 26

