SuperLU: Sparse Direct Solvers

X. Sherry L1
xsli@lbl.gov
ACTS Collection Workshop
September 4, 2002




Contents

¢ Introduction

¢ Use of SuperLU 1n large scale applications

¢ Overview of the algorithms

¢ Sparse matrix distribution and parallel performance

¢ Summary

X Li




What is SuperlU s

*Solve general sparse linear system A x =b.
= Example: A of dimension 10 only 10 ~ 100 nonzeros per row

¢ Algorithm: Gaussian elimination (LU factorization: A =
LU), followed by lower/upper triangular solutions.

= Store only nonzeros and perform operations only on nonzeros.

¢ Efficient implementation for high-performance
architectures.

¢Software portable on many platforms.
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Software Status

SuperLU SuperLU MT SuperLU DIST
Platform Serial SMP Distributed
Language C C + Pthread C + MPI
(callable from F77) (or pragmas)
Data type Real/complex, Real, double Real/complex,
Single/double Double

¢ Source, Users’ Guide, papers available:
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Supernode f
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¢ Exploit dense submatrices in the L & U factors

R~ R i I R

Supernode [6: 9]
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¢ Why are they good?
» Permit use of Level 3 BLAS
» Reduce inefficient indirect addressing (scatter/gather)

= Reduce graph algorithms time by traversing a coarser graph
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SuperlU in Quantum Chemistry

¢ First solution to a long-standing unsolved
problem of scattering in a quantum system
of 3 charged particles. [Recigno, Baertschy,
Isaacs & McCurdy, Science, 24 Dec 1999]

¢ The simplest nontrivial example 1s the
1onization of a hydrogen atom by collision
with an electron.

e+ H—> H"+ 2¢

¢ Seek the particles’ wave functions
represented by the time-independent
Schrodinger equation.
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Quantum Chemistry (con't)

¢ Sparse, complex (non-Hermitian), unsymmetric

linear systems.

* Diagonal blocks have the structure of 2D finite

difference Laplacian matrices.

Agy

= Off-diagonal block is a diagonal matrix.

= Between 6 to 24 blocks, each of dimension between
200K and 350K =»Total dimension as large as 8.4M.

¢ SuperLU DIST as block diagonal preconditioner.
M-1A x=M-b
M = diag(A,;, Ay, Ass, -.0)
¢ 12 to 35 iterations (@ 2 to 3 minutes/iteration on
24 processors of IBM SP.
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SuperlLU in Accelerator Cavity Design g

¢ Model large, complex cavities accurately for Next
Generation Accerlator.

¢ Maxwell equation in electromagnetic simulation.

¢ Finite element methods lead to large sparse
generalized eigensystem K x =AM x.

¢ Seek interior eigenpairs, tightly clustered.

¢ Need to speed up Lanczos convergence by shift-
invert = Seck largest eigenpairs, well separated,
of the transformed system.

MEK-ocM)!'x=uMx
u=1/(A-o0)
¢ Shifted linear system 1is ill-conditioned and needs

to be solved accurately =» Hard for iterative
solvers!
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Accelerator Cavity Design (con't) ceeees]]

¢ Build exact shift-invert eigen solver with SuperLU DIST integrated
into Lanczos code PARPACK.

¢ DDS model on IBM SP

* Damped, Detuned Structure, include linear and quadratic elements
= 380K with 15.8M nonzeros

e ~4.2 solves per eigenpair (@ 24 seconds/solve on 8 procs.

= 1.3M with 20.1M nonzeros

* ~4.5 solves per eigenpair (@ 39 seconds/solve on 32 procs.

¢ Solution accurate to more than 12 sig. digits in double precision.
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Sparse Direct Solvers

¢ Sparse LU factorization: P AP '=L U

= Choose permutations P, and P_ for numerical stability, minimizing fill-in, and
maximizing parallelism.

¢ Phases for sparse direct solvers.

1. Order equations & variables to minimize fill-in.

= NP-hard, so use heuristics based on combinatorics.

2. Symbolic factorization.
= [dentify supernodes, set up data structures and allocate memory for L & U.

3. Numerical factorization — usually dominates total time.
= How to pivot?
4. Triangular solutions — usually less than 5% total time.

¢ In SuperLU DIST, only numeric phases are parallel so far.
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How and When to pivot? ﬂ

HERKELEY LAE

¢ Goal of p1voting 1s to control element growth 1n L & U for stability
¢ Example: partial pivoting during factorization: PA = LU (GEPP)

* Used in sequential SuperLU and SuperLU MT
¢ Partial pivoting implies:

* Dynamic change of fill patterns of L & U

=>» Must interleave symbolic & numerical factorizations

" Lots of small messages

=» Slow on parallel machines with high latency

¢ Static pivoting used in SuperLU DIST (GESP)

= Before factorization, scale and permute A to maximize diagonal: P. D. A D, = A’

= During factorization of A’ = LU, replace tiny pivots by Ve ||A||, without changing data
structures for L & U

" [fneeded, use a few steps of iterative refinement after the first solution
=» Symbolic and numerical factorizations decoupled
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Ordering for Sparse Cholesky weeec] )

¢ Local greedy heuristics

* Minimum degree (upper bound on fill-in)

* [Tinney/Walker 67, George/Liu "79, Liu "85, Amestoy/Davis/Duff "94, Ashcraft
'95, Duft/Reid 95, et al.]

* Minimum deficiency (actual fill-in)
* [Tinney/Walker "67, Ng/Raghavan '97, et al.]

¢ Global graph partitioning heuristics
» Nested dissection [George 73]
= Multilevel schemes [Hendrickson/Leland "94, Karypis/Kumar "95, et al.]
= Spectral bisection [Simon et al. "90-"95, et al.]
* Geometric and spectral bisection [Chan/Gilbert/Teng "94]

¢ Hybrid of the above two [Ashcraft/Liu 96, Hendrickson/Rothberg
97]
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Ordering for LU - Case of Partial Pivoting Y

¢ Use symmetric ordering for Cholesky of ATA
= [f RTR=A"'A and PA = LU, then for any row permutation P,
struct(L+U) < struct(R™R) [George/Ng "87]
= Making R sparse tends to make L & U sparse
= Strategy:

1. Find a good symmetric ordering P_from ATA
2. Apply P columns of A: A’=AP_!
ATA=APHT (AP =Pc(ATA)P !

¢  (Column minimum degree based solely on A
= Matlab; Larimore/Davis/Gilbert/Ng ‘98
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Ordering for LU - Case of Static Pivoting

¢ Use symmetric ordering for Cholesky of AT+A
= If RTR=A"™A and A = LU, then struct(L+U) < struct(R"+R)
"= Making R sparse tends to make L & U sparse

= Strategy:
1. Find a good symmetric ordering P_from AT+A

2. Apply P_to both rows and columns of A: A>’=P_ AP_!
struct(A’) = struct(P A P_1) c struct(P_(A+A) P_1)

¢ Use symmetric ordering based solely on A
*  Work in progress [Amestoy/Li/Ng "02]
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Ordering Interface in SuperlLU

¢ SuperLU library contains routines:
* Form ATA
* Form AT™+A
= MMD (Multiple Minimum Degree, courtesy of Joseph Liu)
* COLAMD: www.netlib.org/linalg/colamd/

¢ You may use any other — just input a permutation vector to SuperLU
Example:

" (Par)Metis: www-users.cs.umn.edu/~karypis/metis/

" Chaco: www.cs.sandia.gov/~bahendr/chaco.html
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Ordering Comparison

X Li
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GEPP, COLAMD

GESP, AMD(AT+A)

Matrix N Fill (10) Flops (10%) | Fill (10%) Flops (10%)
BBMAT 38744 49.8 44.6 40.2 34.0
ECL32 51993 73.5 120.4 42.7 68.4
MEMPLUS | 17758 4.4 5.5 0.15 0.002
TWOTONE | 120750 22.6 8.8 11.9 8.0
WANG4 26068 27.7 353 10.7 9.1
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Symbolic Factorization %

¢ Cholesky [George/Liu "81 book]

= Use elimination graph of L and its transitive reduction (elimination tree)

* Complexity linear in output: O(nnz(L))

LU

= Use elimination graphs of L & U and their transitive reductions (elimination
DAGs) [Tarjan/Rose "78, Gilbert/Liu "93, Gilbert "94]

* Improved by symmetric structure pruning [Eisenstat/Liu "92]

" Improved by supernodes

* Complexity greater than nnz(L+U), but much smaller than flops(LU)
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Numerical Factorization weee] )

¢ Sequential SuperLU

* Enhance data reuse in memory hierarchy by calling Level 3 BLAS on the
supernodes

¢ SuperLU MT
= Exploit both coarse and fine grain parallelism
* Employ dynamic scheduling to minimize parallel runtime

¢ SuperLU DIST

* Enhance scalability by static pivoting and 2D matrix distribution
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2D Block Cyclic Layout and Data Structures
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Create 2D Process 6rid from MPI Communicator —

¢ The 2D process grid/communicator must be created from an existing
base MPI communicator (e.g., MPI COMM WORLD).

¢ SuperLU uses the newly created communicator for all the internal
communications.

¢ Example: A
MIAx=M1b Ay oo

M = diag(A,, Ay, Ass, ..0) Ag

Ay | ooe
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Two Ways to Create a SuperlU Process érid —

¢ Superlu_gridinit(MPI Comm Bcomm, int nprow, int npcol,
gridinfo t *grid);
" This maps the first nprow*npcol processes in the MPI communicator Bcomm
to SuperLU 2D grid.

¢ Superlu gridmap(MPI Comm Bcomm, int nprow, int npcol,

int usermap| ], int Idumap, gridinfo t *grid);
* This maps an arbitrary set of nprow*npcol processes in the MPI communicator

Bcomm to SuperLU 2D grid. The ranks of the selected MPI processes are
given in Usermap[] array. For example:

0O 1 2
of11 12|13

1|14 15|16
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Example Matrices
Matrix Source | Symm N | nnz(A)| nnz(L+U) Flops
BBMAT Fluid flow S4 38,744 | 1.77TM 40.2M 31.2G
ECL32 Device sim. 93| 51,993 38M 42.TM 68.4G
TWOTONE | Circuit sim. 431 120,750 | 1.22M 11.9M 8.0G
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Scalability %

HERKELEY LAE

*T3E

» 3D KxKxK cubic grids, scale N> = K¢ with P for constant work per processor
= Up to 12.5 Gflops on 128 processors

Performance for solving nx nx n grid on T3E, constant work per processor ) )
140 T T T : ; : ; : Time to solve nxnx n grid on T3E, constant work per processor
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Summary - Content of SuperlLU Library ceeecd] )

* LAPACK-style interface

* Simple and expert driver routine
» Computational routines

* Comprehensive testing routines and example programs

¢ Functionalities
* Minimum degree ordering [MMD, Liu "85] applied to ATA or AT+A
= User-controllable pivoting

* Pre-assigned row and/or column permutations

* Partial pivoting with threshold
" Solving transposed system
* Equilibration
= Condition number estimation
= [terative refinement

= Componentwise error bounds [Skeel "79, Arioli/Demmel/Duff "89]
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Conclusions o)

¢ Good implementations of sparse LU on high-performance machines
¢ More sensitive to latency than dense case
¢ Need more families of unsymmetric test matrices

¢ Continuing developments — being funded by DOE TOPS SciDAC
and NSF NPACI programs

" Improve triangular solution

* [LU preconditioner

» Parallel ordering and symbolic factorization
" Integrate into applications

¢ “Eigentemplates” book (www.netlib.org/etemplates) for survey of
other sparse direct solvers
« LLT, LDLT, LU
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