
Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

The Trilinos Solver Framework

Kevin Long (SNL/CA)
Mike Heroux (SNL/Minnesota)



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

Trilinos Project Overview

EPetra
Core matrix-vector

AztecOO
Aztec wrappers

NOX
Nonlinear solvers

IFPack
Incomplete factorizations

ML
Algebraic Multilevel

TSF
High-level interface

• PI: Mike Heroux
• http://www.cs.sandia.gov/Trilinos/



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

TSF 

• Interface for representation-independent solvers
• Abstract interfaces for vectors and operators
• Composable operators
• Block operators 

• Design goal
• Matlab-like simplicity, running on a supercomputer

• High-level conveniences
• Minimal-overhead operator overloading
• Transparent memory management

• Many design ideas derived from Gockenbach and Symes’ Hilbert 
Class Library



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

Simple example: a representation-
independent conjugate gradients solver



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

written with block and composed 
operators



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

But is it fast?

; The TSF approach involves considerable overhead
» Handle classes involve smart pointer dereferencing overhead
» Inheritance-based design is costlier than template-based generic 

programming
» Operator overloading 

; However...
» Overhead is constant as problem size increases
» Operator overloading can be done carefully to avoid large temporaries



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

Operator overloading can be made fast

• Overloaded TSFVector
operations are deferred
• Alternative to expression 

templates
• Temporaries are 

unavoidable with overloaded 
C++ operators

• Result of each binary 
operation is a deferred linear 
combination object

• Carry out actual calculations 
only when necessary



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

The overhead incurred by using TSF is 
negligible in a linear solve

• Figure shows low-level Epetra and BLAS times relative to total TSF solve 
time.

• Poisson solved with TSF BICGSTAB and ILU(1) 
• TSF and operator overloading overhead is < 5% for problems larger than N~1500



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

A short TSF tutorial

• About the code
• Creating vectors and matrices
• Filling a matrix with values
• Building complicated linear operators
• Preconditioners and Preconditioner Factories
• Linear solvers
• Nonlinear operators
• Nonlinear solvers



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

General code style

; TSF is in C++ 
; User-level objects such as TSFVector, TSFLinearSolver are 

handle classes
» At the user level, vectors are created from the createMember() method 

of vector space
» Create objects such as solvers from a concrete type as follows:

� TSFLinearSolver solver = new BICGSTABSolver(...):

; Concrete implementations, e.g, PetraVector, derived from 
extensible base classes



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

Core interface components

; Vectors
» TSFVectorTypeBase
» TSFVectorSpaceBase
» TSFVectorBase

; Operators
» TSFLinearOperatorBase
» TSFMatrixOperator
» TSFNonlinearOperatorBase

; Preconditioners
» TSFPreconditionerFactoryBase

; Solvers
; TSFLinearSolverBase
; TSFNonlinearSolverBase

; I/O
» TSFMatrixReaderBase
» TSFMatrixWriterBase

» Utilities
» TSFErrorHandlerBase
» TSFWriterBase



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

Use TSFVectorType and TSFVectorSpace 
objects to create vectors and matrices of a 
specified type



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

TSF provides an interface for 
configuring and loading a matrix

; First build the matrix as shown previously
; Next, configure the matrix 

» setColumnSize()
» freezeStructure()

; Load the values
» setRowStructure() and addToRow() for each row

; Finalize the matrix, distributing ghost rows
» freezeValues()



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

Adjoint, inverse, and adjoint-inverse 
operators can be created at a high level

•TSFAdjointOperator applies the adjoint of another operator

TSFLinearOperator adj = new TSFAdjointOperator(A);
or more simply,

TSFLinearOperator Aadj = A.adjoint();

•TSFInverseOperator applies the inverse of another operator 
using a specified solver. The inverse is never formed.

TSFLinearSolver solver = new BICGSTABSolver(...);
TSFLinearOperator Ainv = A.inverse(solver);

•TSFInverseAdjointOperator applies the inverse adjoint

TSFLinearSolver solver = new BICGSTABSolver(...);
TSFLinearOperator AinvAdj = A.inverseAdjoint(solver);



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

Overloaded operators are used to form 
efficient compound operators

; Operator composition with overloaded *, e.g. A*B*C
; Operator addition with overloaded + and -, e.g. A-B
; Scalar multiplication with overloaded *, e.g, a*A

; All of these are implemented without forming the explicit 
matrix product or sum



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

Linear solvers in TSF

• class TSFLinearSolver
• Iterative solvers are simple to 

code in TSF using overloaded 
vector and matrix operations.
– Currently, we have implemented 

BICGSTAB, CG, GMRES, and 
an interface to AztecOO

– Flexible Krylov methods (FCG, 
FGMRES) implemented by V. 
Howle, used for fault-tolerant 
linear algebra

– Block Krylov methods being 
implemented by M. Heroux and 
T. Barth

• Direct solvers can be 
implemented for matrix operators 
only

• Block solvers, e.g. Schur 
complement, block backsolve can 
be implemented matrix-free



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

Preconditioning

• TSFPreconditionerFactory builds a TSFPreconditioner for a 
given operator

• TSFPreconditioner has left() and right() methods to access 
operators.



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

Preconditioning



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

Example: creating a Kay-Loghin 
preconditioner



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

Current status

; Concrete types
» Epetra and LAPACK vectors and 

matrices
; Matrix-free types

» block, sum, product, diagonal, 
zero, and identity operators

; Preconditioners
» IFPack
» User-defined block 

preconditioners 
; Linear solvers

» BICGSTAB, GMRES, CG, FCG, 
FGMRES

» AztecOO
» LAPACK direct
» Schur complement, block triangular

; Nonlinear operators
» general nonlinear operator 

interface
» Composed operators

; Nonlinear solvers
» Newton with line search
» Picard

; Utilities
» Controllable error handling and 

diagnostic reporting
» reader/writer interfaces

» Matlab and Matrix Market 
readers and writers



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

Where is TSF being used?

; Sundance
» a high-level PDE simulation and optimization package (KL)

; Split/O3D
» a SQP optimization code (Paul Boggs)

; rSQP++
» a rSQP optimization code (Ross Bartlett)



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

Plans

; Development
» Broader selection of components

� AMG preconditioning
� More solvers

» Documentation

; Research 
» Block Krylov methods (Heroux & Barth)
» Physics-based preconditioners (Howle, Heroux, KL, Tuminaro)
» Fault tolerance (Howle, Hough)
» PDE-constrained optimization (KL, Boggs, van Bloemen Waanders, 

Bartlett)
» Preconditioners for inequality constraints (Boggs, Howle, Tuminaro)



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

Acknowledgements

; Helpful design criticism and alpha testing from
» Paul Boggs, Ross Bartlett, Vicki Howle

; Some examples and tests from
» Mike Boldt

; Some solvers and preconditioners from 
» Vicki Howle, George Biros

; EPetra vectors and matrices from
» Epetra/Trilinos development team



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

Some pretty pictures from 
Sundance/TSF

Temperature and sensitivity to
Peclet number computed with a
convection-diffusion model on 
the Sandia Thunderbird

Contours of vorticity in a lid-driven 
cavity, computed using the Kay-Loghin 
block preconditioner on a Taylor-Hood 
discretization of Navier-Stokes



Sandia 
National 
LaboratoriesComputational Science and Mathematics Research Department

Formulation and solution of a source 
inversion problem

•Simulation written by Omar Ghattas – 120 lines of Sundance code
•Advection-diffusion of a contaminant released from a Gaussian source
•Concentration is measured at 16 discrete sensor locations
•Adjoint formulation of inversion problem for distributed source field
•Ill-posed – smoothed with Tikhonov regularization
•Non-symmetric block reordering of adjoint and state variables


