
(or why can’t I program in the language I want to?)

Craig Rasmussen
Matt Sottile

Advanced Computing Laboratory
Los Alamos National Laboratory

Computer Language Interoperability
Using Chasm

Slashdot Question

"I'm beginning to wonder if I should invest the time in learning FORTRAN. Although it
is arcane, it seems to be the best tool when it comes to demanding optimization tasks
and heavy computations. C/C++ does not cut it for me - it is simply too easy to make
mistakes and I find myself using half of my time hunting bugs unrelated to the problem
at hand. Additionally, although tools like Matlab exist they don't provide the power that
justify the huge price tag they carry. I find any script based language (Matlab, Numeric
Python, Scilab) to be inadequate as soon as it is necessary to use loops to describe a
problem and using such tools for recursive systems can be a realpain. As another
data-point, the Netlib repository seems to be very FORTRAN oriented, and it is a true
gold mine when it comes to free routines for solving almost any computing task. What
bothers me though is that FORTRAN code is really ugly and the language lacks almost
any modern day language feature (I know about Fortran 90 but it is not much nicer
than F77, and no one seems to use it). Can it really be true that the best tool we have
for heavy duty computing is a 25 year old language, or have you found anything better

- free or non-free?"

Overview

• Motivation
• Language interoperability architecture

– interface definition languages
– bridging code (stubs and skeletons)
– function argument marshalling

• Chasm example
• XML transformations (XSLT)

Why Not Only FORTRAN?

• Physicists were raised on Fortran
• So why is interoperability important

– Because there are both computer scientists and physicists
• Computer scientists prefer C++ (or Java, or Scheme, or …)
• Students increasingly learning C++
• So why not only C++?
• “C++ is for professionals” [Stroustrup]

Anecdotal Evidence

• Two scientific codes that have both Fortran and C++ versions.
• ACTS workshop, mostly Fortran with a few C++ users
• CCA Forum meeting (component middle-ware developers)

– 1/2 person interested in Fortran
– But Fortran required by many users of CCA

• DOE
– Fortran, C++, and Python (Fred Johnson)

• NASA
– Earth System Modeling Framework requires all interfaces to

be in both Fortran and C++

Fortran 95 Interoperability

• NOT!
• Fortran 95 was not designed with interoperability in mind
• We all know the problems of symbol names

– whether to _ or not to _
– module, symbol name example, function.in.module

• But the real problem is with arrays
– F95 passes arrays by descriptor
– F95 descriptors depend on compiler vendor implementation

• No way to pass multidimensional array to from C++ to F95

Interoperability Architecture

• Motivation
• Language interoperability architecture

– interface definition languages
– bridging code (stubs and skeletons)
– function argument marshalling

• Chasm example
• XML transformations (XSLT)

Interface Definition Languages (IDL)

• A way to specify function interfaces in a language independent
manner

• Corba uses an IDL
• Babel uses Scientific IDL (SIDL)
• SIDL, Function-component example:

version tutorial 1.0;

package tutorial {
interface Function extends cca.Port {

double evaluate(in double x);
}

}

version tutorial 1.0;

package tutorial {
interface Function extends cca.Port {

double evaluate(in double x);
}

}

Babel Make All Languages Peers

C

C++

f77

f90

Python

Java

Once a library has been
“Babelized” it is equally

accessable from all
supported languages

This is not
an LCD

Solution!

Chasm Interfaces

• Chasm specifies interfaces in a language dependent manner
– in XML, automatically generated from user source files

• Why XML?
– It’s a standard, lots of existing tools

• Why language dependence?
– use existing source files
– potentially export more of the server language to client language
– performance

• Example

<library lang=“Fortran” name=“LinearFunction.f90”>
<scope name=“LinearFunction”>

<method name=“LF_evaluate”>
<arg name=“x” kind=“ffloat” fkind=“dbl”>
<return kind=“ffloat” fkind=“dbl”>

<library lang=“Fortran” name=“LinearFunction.f90”>
<scope name=“LinearFunction”>

<method name=“LF_evaluate”>
<arg name=“x” kind=“ffloat” fkind=“dbl”>
<return kind=“ffloat” fkind=“dbl”>

Interoperability Architecture

• Motivation
• Language interoperability architecture

– interface definition languages
– bridging code (stubs and skeletons)
– function argument marshalling

• Chasm example
• XML transformations (XSLT)

Language Pairs

Ruby

C++

Makefile

F95

Python

Java

F95
HTML

Matlab

Stub and Skeleton Code

C++ Client

C++
Stub Interface

Fortran
Skeleton Interface

Fortran Server

Stub and Skeleton Code

• Has major advantages
• Stubs

– natural C++ interface
– e.g., Function::evaluate(C++ parameters…)
– no “_” routines or strange macros

• Skeletons
– marshal parameters
– e.g., converts C++ array class to fully typed F95 array

• Chasm normally combines the two
– reduces overhead

Marshalling of Arguments

• Motivation
• Language interoperability architecture

– interface definition languages
– bridging code (stubs and skeletons)
– function argument marshalling

• Chasm example
• XML transformations (XSLT)

Type Conversion

F95 C++

integer

real

type(user_type)

character(len=)

real, dimension(:,:)

int &

float &

struct

string &

F95Array<float>

Fortran Derived Types

• Fortran derived type is essentially just a C struct
• Chasm creates a shadow struct in C++

type particle
real :: position(3)
real :: velocity(3)
real :: mass

end type

type particle
real :: position(3)
real :: velocity(3)
real :: mass

end type

typedef Particle_ {
float position[3]
float velocity[3]
float mass

} Particle;

typedef Particle_ {
float position[3]
float velocity[3]
float mass

} Particle;

Marshalling Fortran Arrays

• Fortran arrays passed by descriptor
– contains array meta data

– rank (# of dimensions)
– extent (# of elements in each dimension)

• Compiler specific representation (yuk)
• F95Array< T > class supplied

– can supply your own
– chasm is extensible (yea)

• C descriptor library
– long getArrayRank(void* desc);

Chasm Example

• Motivation
• Language interoperability architecture

– interface definition languages
– bridging code (stubs and skeletons)
– function argument marshalling

• Chasm example
• XML transformations (XSLT)

Using Chasm

Source
Code
(F95)

Code
Analysis
(PDT,

DUCTAPE)

Generated
Interface

Code

C++ Executable Stub &
Skeleton

Interface
Generation
(CHASM)

F95 Executable

XML Transformations

• Motivation
• Language interoperability architecture

– interface definition languages
– bridging code (stubs and skeletons)
– function argument marshalling

• Chasm example
• XML transformations (XSLT)

Stylesheet Example
• Code segment to print the names of procedures in a module

<library name="LinearFunction.f90” lang=“f90”>
<scope name="LINEARFUNCTION">

<method name="EVALUATE_LINEAR" kind="static”>
<arg name="X" kind="ffloat" fkind="dbl”/>
<return kind="ffloat" fkind="dbl”/>

<library name="LinearFunction.f90” lang=“f90”>
<scope name="LINEARFUNCTION">

<method name="EVALUATE_LINEAR" kind="static”>
<arg name="X" kind="ffloat" fkind="dbl”/>
<return kind="ffloat" fkind="dbl”/>

<xsl:template match=“/”>
<xsl:apply-templates select=“library/scope/method”/>

</xsl:template>

<xsl:template match=“library/scope/method”>
<xsl:text> Found procedure: </xsl:text>
<xsl:value-of select=“@name”/>
<xsl:value-of select=“$newline”/>

</xsl:template>

<xsl:template match=“/”>
<xsl:apply-templates select=“library/scope/method”/>

</xsl:template>

<xsl:template match=“library/scope/method”>
<xsl:text> Found procedure: </xsl:text>
<xsl:value-of select=“@name”/>
<xsl:value-of select=“$newline”/>

</xsl:template>

Chasm Status

• Received funding in July
• C++ calling Fortran mostly completed
• C array-descriptor library completed for 3 compilers (MIPSpro,

Compaq, Absoft)
• Demonstration stylesheet transformations for

– Fortran CCA Components
– Ruby

• Would like to talk to people interested in
– Matlab
– Python
– ?

Conclusions

• Chasm transforms code
• Why use Chasm

– shear drudgery of hand coding
– bridging code doesn’t get out of sync
– impose project-wide language transformation standards

• Chasm is extensible
– modify code generation to fit the needs of your project

• No long-term “dependency” on Chasm project
– except for array-descriptor library?

• Your project “owns” the generated code

Links

Babel - http://www.llnl.gov/CASC/components/

Chasm - http://sourceforge.net/projects/chasm-interop/

