CCA

Common Component Architecture

Language Interoperable
CCA Components via

b

J

. - — o D e -

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

@ tutorial-wg@cca-forum.org O
Lo} Almos oml @:=

Goal of This Module

Legacy codes - Babelized CCA Components

e Introduction To:
— Babel
— SIDL

e See Babel In use
— “Hello World” example

— Legacy Code (Babel-wrapped MPI)
— CCA Tutorial Example (Numerical Integration)

* Relationship between Babel & CCA

Common Component Architecture

“LanguaT

Babel

What | mean by

e Interoperability”

Scripting Driver
(Python)

/\

(C)

Simulation Framework

Numerical Routines
(f77)

Solver Library
(C++)

Visualization System
(Java)

Callback Handlers
(Python)

C C A Babel

Common Component Architecture

One reason why mixing

languages iIs hard Native
//f77\ cfortran.h
C 90 SWIG
JNI
Python Siloon
Java Platform
Dependent

CCA Babel

Common Component Architecture

Babel makes all supported
languages peers

This Is not a
Lowest Common
Denominator
Solution!

Once a library has been
“Babelized” it is equally
accessable from all
supported languages

C C A Babel

Common Component Architecture

Babel Module’s Outline

e Introduction

I::} Babel Basics

— How to use Babel in a “Hello World” Example
— SIDL Grammar
— Example: Babel & Legacy Code

e Babel & CCA

— Relationship between them
— How to write a Babelized CCA Component

Common Component Architecture

Babel’'s Two Parts:

Code Generator + Runtime Library

SIDL
interface

L

description

/

Babel
Compiler

XML

Babel
Runtime

Babel

Y

Application

C C A Babel

Common Component Architecture

greetings.sidl: A Sample SIDL File

package greetings version 1.0 {
interface Hello {
void setName(in string name);
string saylt ();

}

class English implements-all Hello { }

(:(: A Babel
Common COrﬂpOﬂeﬂt ATChi[ECtUTe /]|

Library Developer Does This...

[C++ Stubs
|
SIDL IORS
interface L} Cc?r?]b?ller libgreetings.so
description | P C++ Skels
C++ Impls

1. "babel --server=C++ greetings.sidl’
2. Add implementation details
3. Compile & Link into Library/DLL

CCA _ Babel

Adding the Implementation

namespace greetings {

class English_impl {
private:

// DO-NOT-DELETE splicer.begin(greetings.English._impl)

string d_name;

// DO-NOT-DELETE splicer.end(greetings.English._impl)

string
greetings::English_impl::saylt()
throw O

{

// DO-NOT-DELETE splicer.begin(greetings.English.saylt)
string msg(“Hello “);
return msg + d_name + “I”7;

// DO-NOT-DELETE splicer.end(greetings.English.saylt)
+

Common Component Architecture

Library User Does

SIDL
Interface

L

description

\/_

Babel
Compiler

his...

Babel

Babel
Runtime

IOR

F90 Stubs >

Headers

Application

libgreetings.so

1. “babel --client=F90 greetings.sidl
2. Complile & Link generated Code & Runtime
3. Place DLL In suitable location

11

CCA _ Babel

FOO/Babel “Hello World” Application

program helloclient
use greetings English
implicit none
type(greetings_English _t) :: obj
character (1en=80) - . msg
character (1en=20) I I name

These subroutines
come from directly
from the SIDL

name="World~
call new(obj)
call setName(obj, name)
call saylt(obj, msg)
call deleteRef(obj) Some other subroutines
print *, msg are “built in” to every
SIDL class/interface

4

end program helloclient

(:(: A Babel
Common COrﬂpOﬂeﬂt ATChi[ECtUTe /]|

SIDL Grammar (1/3):
Packages and Versions

e Packages can be nested
package foo version 0.1 { package bar { -.. } }

* Versioned Packages

— defined as packages with explicit version number
OR packages enclosed by a versioned package

— Reentrant by default, but can be declared final
— May contain interfaces, classes, or enums

* Unversioned Packages

— Can only enclose more packages, not types
— Must be re-entrant. Cannot be declared final

13

C C A Babel

Common Component Architecture

SIDL Grammar (2/3):
Classes & Interfaces

 SIDL has 3 user-defined objects
— Interfaces — APIs only, no implementation
— Abstract Classes — 1 or more methods unimplemented
— Concrete Classes — All methods are implemented
* |Inheritance (like Java/Objective C)
— Interfaces may extend Interfaces
— Classes extend no more than one Class
— Classes can implement multiple Interfaces

* Only concrete classes can be instantiated

14

C C A Babel

Common Component Architecture

SIDL Grammar (3/3):
Methods and Arguments

 Methods are public virtual by default

— static methods are not associated with an object
Instance

— final methods can not be overridden

e Arguments have 3 parts

— Mode: can be in, out, or inout (like CORBA, but
semantically different than F90)

— Type: one of (bool, char, int, long, float, double,
fcomplex, dcomplex, array<Type,Dimension>, enum,
Interface, class)

— Name

15

C C A Babel

Common Component Architecture

Babelizing Legacy Code

. Stubs
- Babel IORS

mycode.sidl _ libmycode.so
Compiler Skels

legacy library.so

1. Write your SIDL interface
2. Generate server side in your native langauge
3

Edit Implementation (Impls) to dispatch to your code
(Do NOT modify the legacy library itself!)

4. Compile & Link into Library/DLL

16

Babel

CCA

Common Component Architecture

Known Projects Using Babel

(see www.lInl.gov/CASC/components/gallery.html for more)

| implemented a Babel-based interface
for the hypre library of linear equation
solvers. The Babel interface was
straightforward to write and gave us
interfaces to several languages for less
effort than it would take to interface to a
single language.

--Jeff Painter, LLNL.

-------- ISAMRA]
E[{f EEFFKTM[% ;;S_truclureﬁ Ad?ptne Mesh Refinement Application Infrastroctare
i
< lhadl]

research CS.Vt. edu/lacsa

17

Tuning and Analysis Utilities

C C A Babel

Common Component Architecture

Babel & Legacy Code (e.g. MPI)

package mpi version 2.0 {
class Comm {
int send[Int](In array<int,l1l,row-major> data,
in int dest, in Int tag);

18

CCA Babel

ooooooooo ponent Architecture

Babel & Legacy Code (e.g. MPI)

struct mpi_Comm__data {
/* DO-NOT-DELETE splicer.begin(mpi.Comm. data) */
MP1_Comm com;

/* DO-NOT-DELETE splicer.end(mpi.Comm._data) */

};

mpi_comm_Impl_h

int32_t
impl_mpi_Comm_sendInt(mpi_Comm self, SIDL _int_ array data,
INt32_t dest, Iint32 t tag) {
/* DO-NOT-DELETE splicer.begin(mpi.Comm.sendInt) */
struct mpi_Comm__data *dptr = mpi_Comm__get data(self);
void * buff = (void*) SIDL int__ array_ first(data);
int count = length(data);
return mpi_send(buff, count, MPI_INT, dest, tag, dptr->comm);
/* DO-NOT-DELETE splicer.end(mpi.Comm.sendInt) */

L
mpi_comm_Impl.c

(:(: A Babel
Common Corﬂpoﬂeﬂt Architecture /]|

Investing in Babelization can improve
the interface to the code.

“When Babelizing LEOS [an equation of
state library at LLNL], | completely ignored
the legacy interface and wrote the SIDL the
way | thought the interface should be. After
running Babel to generate the code, | found
all the hooks | needed to connect LEOS
without changing any of it. Now I've got a
clean, new, object-oriented python interface
to legacy code. Babel is doing much more
than just wrapping here.”

-- Charlie Crabb, LLNL
(conversation)

C C A Babel

Common Component Architecture

Babel Module’s Outline

e Introduction

e Babel Basics

— How to use Babel in a “Hello World” Example
— SIDL Grammar
— Example: Babel & Legacy Code

[Babel & CCA

— Relationship between them
— How to write a Babelized CCA Component

21

CCA Babel

Common Component Architecture

XCAT (Indiana)
SciRUN (Utah)

SCIRun2

Babelized
Frameworks

Babel (LLNL)

Common Component Architecture

The CCA Spec is a SIDL File

Babel

package gov {
package cca version 0.6.1 {
interface Port { }
interface Component {
void setServices(In Services svCs);
}
interface Services {
Port getPort(In string portName);

registerUsesPort(/*etc*/);
addProvidesPort(/*etc*/);
/*etc*/

CCA Babel

Common Component Architecture

24

(:(: A Babel
Common COrﬂpOﬂeﬂt ATChi[ECtUTe /]|

Decaf:
Details & Disclaimers

e Babel Is a hardened tool

e Decaf is an example, not a product

— Distributed in “examples” subdirectory of Babel
— Decaf has no GUI

 Decaf is CCA compliant

— Babelized CCA Components can be loaded into
Decaf, CCAFFEINE, and SCIRun2
 “Understanding the CCA Specification
Using Decaf”
http://www.lInl.gov/ICASC/components/do
cs/decaf.pdf

25

C C A Babel

Common Component Architecture

How | Implemented Decaf

I C++ Stubs
| |
cca.sidl IORS
& L} Cc?r?]b?ller libdecaf.so
decaf.sidl L P C++ Skels
C++ Impls

wrote decaf.sidl file

‘babel --server=C++ cca.sidl decaf.sidl
Add implementation details

Compile & Link into Library/DLL

> W

26

Babel

@ Common Component Architecture

How to Write and Use
Babelized CCA Components

1. Define “Ports” Iin SIDL

2. Define “Components” that implement those
Ports, again in SIDL

3. Use Babel to generate the glue-code
4. Write the guts of your component(s)

27

C C A Babel

Common Component Architecture

How to Write A
Babelized CCA Component (1/3)

1. Define “Ports” in SIDL

— CCA Port =

e a SIDL Interface
» extends gov.cca.Port

package functions version 1.0 {
| nterface Function extends gov.cca. Port {
doubl e evaluate(in double x);

}

28

C C A Babel

Common Component Architecture

How to Write A
Babelized CCA Component (2/3)

2. Define “Components” that implement those Ports

— CCA Component =
« SIDL Class
 implements gov.cca.Component (& any provided ports)

cl ass LinearFunction i nplenments functions. Functi on,
gov. cca. Conponent {
doubl e evaluate(in double x);
voi d set Services(in cca. Services svcs);

cl ass Linear Function inplenents-all
functions. Function, gov.cca. Conponent { }

29

C C A | Babel

ccccccccccccccccccccccccccccc

Tip: Use Babel’s XML output like
precompiled headers in C++

| |
cca.sidl }—} Sl XML
Compiler

1. precompile SIDL into XML 0y
--text=xm| Type
2. store XML In a directory Repository
3. Use Babel's —R option to
specify search directories Stubs
| | | p| Bavel IORS
functions.sidl Compiler SKels
— Impls

30

Common Component Architectur:

e

Babel

How to Write A
lized CCA Component (3/3)

SIDL
Interface
description K

| > Babel
Compiler

C Stubs

IORs

libfunction.so

C Skels

3. Use Babel to generate the glue code
"babel --server=C —Rrepo function.sidl’

4. Add implementation details

31

(:(: A Babel
Common COrﬂpOﬂeﬂt ATChi[ECtUTe /]|

To Use the Decaf Framework

Repo
(XML) Babel
Runtime
Babel Java Stubs
abe v —
Application
SIDL files Compller IOR PP l
B Headers
\./_ libdecaf.so
componentl.so

1. “babel --client=Java —Rrepo function.sidl
2. Compile & Link generated Code & Runtime
3. Place DLLs in suitable location

32

(:(: A Babel
Common Corﬂpoﬂeﬂt Architecture /]|

Limitations of Babel’s Approach
to Language Interoperabilty

« Babel is a code generator
— Do obscure tricks no one would do by hand
— Don’t go beyond published language standards

e Customized compilers / linkers / loaders beyond our
scope
— E.g. icc and gcc currently don’t mix on Linux

— E.g. No C++-style templates in SIDL. (Would require special
linkers/loaders to generate code for template instantiation,
like C++ does.)

« Babel makes language interoperability feasible, but
not trivial

— Build tools severely underpowered for portable multi-
language codes

33

@ Common Component Architecture

SIDL
interface

description K

* Properly building libraries for multi-language use

What’'s the Hardest Part

of this Process?

Babel
Compiler

C Stubs

IORs

Babel

C Skel

libfunction.so

C Impls

 Dynamically loadable .so files are especially error prone

— Not a lot of understanding or expertise in community

— Causality chain between improperly constructed DLLs and

observed bugs is often inscrutable and misleading

34

C C A Babel

Common Component Architecture

Summary
Legacy codes -> Babelized CCA Components

Reclassify your objects in your legacy code

— Things customers create > CCA components

— Logical groups of a component’s functionality > CCA Port
— Low level objects in your implementation - not exposed

Generate SIDL File

— CCA port - Babel Interface that extends the Babel interface
called “gov.cca.Port”

— CCA component - Babel Class that implements the Babel
Interface called “gov.cca.Component” (and possibly its
“provides ports”)

Run Babel (choose server-language for your code)
Articulate Impl files to dispatch to legacy code

35

mmmmmmmmmmm

nent Architecture

Contact Info

Project: http://www.lInl.gov/CASC/components

— Babel: language interoperability tool

— Alexandria: component repository

— Quorum: web-based parliamentary system
— Gauntlet (coming soon): testing framework

Bug Tracking: http://www-casc.lInl.gov/bugs
Project Team Email: components@linl.gov
Mailing Lists: majordomo@lists.linl.gov

subscribe babel-users [email address]
subscribe babel-announce [email address]

Babel

36

C C A Babel

Common Component Architecture

UCRL-PRES-148796 5, July 2002

This work was performed under the auspices of the U.S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

37

