
CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

Introduction to the Ccaffeine
Framework

Using CcaffeineCCA
Common Component Architecture

2

Outline

• What is a CCA Framework and what is
Ccaffeine?

• How can I slip my own component into
Ccaffeine?

• How do I run Ccaffeine?
• Live Demo – how does it work?

Using CcaffeineCCA
Common Component Architecture

3

CCA What CCA compliant framework
is expected to do …

• Exchange interfaces among components without one
component needing to know more about the other
than the interface itself

Component 1 Component 2

CCAServices
2

CCAServices

4

registerUsesPort("A")
1

addProvidesPort(,"A")

= getPort("A")

3

Port

Port

Port

Port

Using CcaffeineCCA
Common Component Architecture

4

Interactive Parallel Components:
what Ccaffeine does

• Executable ccafe-client:
– PVM, MPI, or whatever is used for

communication between clients
– Muxer enforces “single process

image” of SPMD parallel computing

• How To:
– Build Ccaffeine
– Run Ccaffeine

http://www.cca-forum.org/ccafe/

Using CcaffeineCCA
Common Component Architecture

5

How to build Ccaffeine

• Have a look at
http://www.cca-forum.org/ccafe
1. Obtain the required packages

• gcc (http://gcc.gnu.org)
• Java (>jdk1.2) (http://java.sun.com)
• MPI (http://www.mcs.anl.gov/mpi/mpich)
• BOOST headers (http://www.boost.org)
• Babel (http://www.llnl.gov/casc/components/babel.html)
• Ccaffeine tar ball download (or rpm)
• Optional software

– Fortran 77 and 90 compilers
– Ruby
– Python 2.x

2. Install prerequisites

Using CcaffeineCCA
Common Component Architecture

6

How to build Ccaffeine (cont’d)

• Untar Ccaffeine-xxx.tgz in build dir
– 3 directories appear cca-spec-babel (the spec),

cca-spec-classic (old C++ spec), dccafe
• Run configure

– If confused type “configure --help”; example options:

(cd ./cca-spec-babel; configure --with-babel=/usr/local/babel \
--with-jdk12=/usr/local/java;make; make install)

(cd ./cca-spec-classic; configure; make; make install)

(cd ./dccafe; ./configure --with-cca-babel=`pwd`/../cca-spec-babel \
--with-cca-classic=`pwd`/../cca-spec-classic –with-babel=/usr/local/babel-0.8.4 \
--with-mpi=/usr/local/mpich --with-jdk12=/usr/local/java \
--with-lapack=/home/rob/cca/dccafe/../LAPACK/liblapack.a \
--with-blas=/home/rob/cca/dccafe/../LAPACK/libblas.a; make; make install)

Using CcaffeineCCA
Common Component Architecture

7

Ccaffeine build (cont’d)
• Example output at “make install” completion:
===

Testing the Ccaffeine build ...

proceeding with env vars:

LD_LIBRARY_PATH=/home/norris/cca/dccafe/cxx/dc/babel/babel-
cca/server:/home/software/mpich-1.2.5-
ifc/lib/shared:/home/norris/cca/babel-
0.8.4/lib:/usr/local/lib/python2.2/config:/usr/local/intel/compiler70/
ia32/lib:/usr/local/lib:/usr/local/lib

SIDL_DLL_PATH=/home/norris/cca/dccafe/lib

didn't crash or hang up early ... looks like it is working.

Looks like CLASSIC dccafe is working.

Looks like BABEL dccafe is working.

done with Ccaffeine tests.

simpleTests: output is in
/home/norris/cca/dccafe/simpleTests.out.XXXAL8Cmk.

===

Note: depending on environment settings, sometimes the simple tests may fail
but you may still have a functional framework.

Using CcaffeineCCA
Common Component Architecture

8

Running Ccaffeine

• Framework needs to be told:
– Where to find components
– Which components to instantiate
– Which uses port gets connected to which provides port
– Which go port sets the application in motion

• User-Ccaffeine interaction techniques:
– GUI interface (with some Ccaffeine scripting help)
– Pure Ccaffeine scripting (useful in batch mode)
– Python component driver (with some Ccaffeine scripting help)

Using CcaffeineCCA
Common Component Architecture

9

How to run Ccaffeine:

• Ccaffeine interactive language
– Used to configure batch and interactive sessions
– Allows useful “defaults”
– Allows the GUI to talk over a socket

Using CcaffeineCCA
Common Component Architecture

10

The Ccaffeine GUI

• Java front end to one (or more) framework instances
running in the background

• Events propagated to all frameworks through a
muxer

• Framework(s) still need Ccaffeine script to know
about available components

• GUI used to instantiate, connect, and configure
components (and to launch the whole application as
well)

• Usage modes:
– Compose and launch application from scratch (graphically).
– Load pre-composed applications (the .bld files)

Using CcaffeineCCA
Common Component Architecture

11

The GUI

#!ccaffeine bootstrap file.
------- don't change anything ABOVE this line.-------------
path set /home/elwasif/CCA/tutorial/src/sidl/random-component-c++
path append /home/elwasif/CCA/tutorial/src/sidl/function-component-c++
path append /home/elwasif/CCA/tutorial/src/sidl/integrator-component-c++
path append /home/elwasif/CCA/tutorial/src/sidl/driver-component-c++
repository get randomgen.RandRandomGenerator
repository get functions.LinearFunction
repository get functions.PiFunction
repository get functions.NonlinearFunction

Component paths and types needed
by the framework(s) (the .rc files)

Click and drag to interact with
the framework(s)

SIDL_DLL_PATH environment
variable also used for locating
component shared libraries!

Using CcaffeineCCA
Common Component Architecture

12

The Command Line Way:
Using Ccaffeine Scripting

• Simple scripting “language” to talk to the framework.
• For the full list of commands:

UNIX>ccafe-single
cca> help

• Some commands:
– path set <initial path to components>

– path append <directory containing component code>

– repository get <component class>

– instaniate <component class> <component name>

– connect <use component name> <use port name> \
<provide component name> <provide port name>

– go <component name> <Go port name>

– bye

Using CcaffeineCCA
Common Component Architecture

13

Ccaffeine scripting language for batch use
• Two modes of execution:

– ccafe-single : uniprocessor, interactive, no MPI
– ccafe-batch or ccafe-client: parallel jobs, GUI

• Refer to
http://www.cca-forum.org/ccafe/ccafe-man/Ccafe_Manual.html
for more detailed description of the commands

You can run Ccaffeine interactively by typing:
prompt> ccafe-single

MPI_Init called in CmdLineClientMain.cxx

my rank: 0, my pid: 25989

... (output cruft deleted)

cca>help

(complete listing of commands and what they do)

Using CcaffeineCCA
Common Component Architecture

14

Quick run-through of the Ccaffeine
scripting language

• Scripting language does everything that the
GUI does

• Warning: there are two files that Ccaffeine
uses to locate and load component libraries:
– “rc” and script files for building and running apps
– GUI “.bld” files that store state saved by the

Ccaffeine GUI
These are not the same and will give, sometimes

spectacular, undefined behavior when used
improperly.

Using CcaffeineCCA
Common Component Architecture

15

Example: example1_rc
#!ccaffeine bootstrap file.

------- don't change anything ABOVE this line.-------------

path set /home/elwasif/CCA/tutorial/random-component-c++

path append /home/elwasif/CCA/tutorial/function-component-c++

path append /home/elwasif/CCA/tutorial/integrator-component-c++

path append /home/elwasif/CCA/tutorial/driver-component-c++

load components into the “pallet”

repository get functions.PiFunction

repository get integrators.MonteCarloIntegrator

repository get integrators.MidPointIntegrator

repository get integrators.ParallelIntegrator

repository get randomgen.RandRandomGenerator

repository get tutorial.driver

functions.PiFunction

integrators.MonteCarloIntegrator

integrators.MidPointIntegrator

integrators.ParallelIntegrator

randomgen.RandRandomGenerator

tutorial.driver

Component
classes/types

At this point no components are instantiated, but are simply
known to the system

SIDL_DLL_PATH environment
variable also used for locating
component shared libraries!

Using CcaffeineCCA
Common Component Architecture

16

Example (cont.): Instantiation

create randomgen.RandRandomGenerator rand

create functions.PiFunction function

create integrators.MonteCarloIntegrator integrator

create tutorial.Driver driver

rand

function

integrator

driver

Component
intances names

Using CcaffeineCCA
Common Component Architecture

17

Example (cont.): Connection

Connect uses and provides ports
connect integrator FunctionPort function FunctionPort
connect integrator RandomGeneratorPort rand RandomGeneratorPort
connect driver IntegratorPort integrator IntegratorPort

FunctionPort

IntegratorPort

RandomGeneratorPort

“Provides” ports names

FunctionPort

IntegratorPort

RandomGeneratorPort

“Uses” ports names

Using CcaffeineCCA
Common Component Architecture

18

Example (cont.): Application Launch

Good to go()
go driver

GoPort
GoPort Provided Go port name

At this point Ccaffeine gets
completely out of the way

–So much so that it will not
respond until (or if) your
application returns from the
invocation of the “go()” method
–There is only one thread of
control

Using CcaffeineCCA
Common Component Architecture

19

The third way:
Using CCA BuilderService

• Deficiencies of Ccaffeine Scripting
– Non “standard”
– No error checking !!!!

• Solution: Use a more “complete” scripting language,
e.g. Python

• Why Python?? Supported By Babel
• Strategy:

– Use a Python “mega driver” to assemble the application
– Talk to the framework through BuilderService interface
– Still need snippets of Ccafeine scripting to set paths,

instantiate python driver, and launch it

Using CcaffeineCCA
Common Component Architecture

20

The BuilderService Port

• “Provided” by the Framework, “used” by any component
• Major methods:

– createInstance(instanceName, className,
properties)

– connect(userID, usePortName, providerID,
providPortName)

– See file cca.sidl for complete interface.
• Many more methods
• Can be “used” from any language, Python just more

convenient
• See driver-python for details

Using CcaffeineCCA
Common Component Architecture

21

Component discovery and instantiation
• CCA is working on an XML component delivery

specification, until then Ccaffeine has some specific
requirements

• “.cca” file describes what the type of the component
is: e.g., “babel” or “classic”(Pre-Babel / C++ only
binding).
– Previously there was type “Classic”.!date=Thu Jul 3 14:53:23 EDT 2003

!location=
!componentType=babel
dummy_libIntegrator-component-c++.so
dummy_create_MonteCarloIntegrator integrators.MonteCarloIntegrator

Component type(class); (pre-Babel)

Component type: “babel” or “classic” (C++)

.so library containing component (pre-Babel)

Component creation function; (pre-Babel)

Using CcaffeineCCA
Common Component Architecture

22

Showing How it All Works

The Scripts

