Introduction to PETSc

William Gropp

Argonne National Laboratory

Introduction

e What and why is PETSc?

— PETSc is a portable library for solving linear and
nonlinear systems of equations in parallel

— PETSc was originally designed to provide a library for
experimentation in domain decomposition algorithms

PETSc [eam

Satish
Balay

Kris
Buschelman

Victor
Eijkhout

Plus many users and contributors

Bill
Gropp

Dinesh
Kaushik

Matt
Knepley

Lois
Curfman
Mclnnes

Barry
Smith

Hong
Zhang

PET Sc at Scale

e FUN3d, a legacy Fortran
application, was
parallelized using PETSc

— 3D incompressible
Euler

— Tetrahedral grid

— Up to 11 million
unknowns — Fully implicit

— Based on a legacy steady-state
NASA code, FUN3d, — Primary PETSc tools:
developed by W. K. nonlinear solvers
Anderson (SNES) and vector

scatters (VecScatter)

Performance of FUn3D/PETSc

Dimension = 11,047,096

300 . .
Aggregate Gflop/s
250+
.+ Asci Red

200F

150}

100}

A T3E
50f _
Asci Blue

0 500 1000 1500 2000 2500 3000 3500 4000

Tutorial Overview

e Introduction to PETSc—Hello World

e Building a Poisson Solver in PETSc
— Using distributed arrays to describe data parallelism

e Solving Nonlinear problems
— Algorithms for nonlinear problems
— Bratu example
— More on distributed arrays in PETSc

e Debugging for correctness and performance

e Wrapup

A Few Comments Before We Start

e PETSc is a very large library

— This tutorial is designed to introduce PETSc without
overwhelming you with information

— Many features will not be covered. PETSc comes with
extensive examples and documentation
e PETSc is a freely available and supported research code
— Available viahtt p: // ww. nts. anl . gov/ pet sc
— Free for everyone, including industrial users
— Hyperlinked documentation and manual pages for all routines
— Many tutorial-style examples
— Support via email: pet sc- nai nt @rcs. anl . gov
— Usable from Fortran 77/90, C, and C++

http://www.mcs.anl.gov/petsc
petsc-maint@mcs.anl.gov

e Portable to any parallel system supporting MPI, including

— Tightly coupled systems
Cray T3E, SGI Origin, IBM SP, HP 9000, Sun Enterprise

— Loosely coupled systems, e.g., networks of workstations
HP (including Compag/DEC), IBM, SGI, Sun and PCs running
Linux or Windows

e Whatis notin PETSc

— Discretizations

— Unstructured mesh generation or refinement

— Load balancing tools

— Sophisticated visualization support

— (But PETSc provides ways to interface to other tools)

Prereguisites

This tutorial assumes that you have at least a
basic background in

e Finite difference methods for PDES
e |terative methods for solving linear systems
In addition

e Familiarity with MPI (the Message Passing
Interface) is helpful but not required.

A First PETSc Program

e What do PETSc
e What do PETSc

e How to compile,
programs?

orograms look like?
parallel programs look like?

Ink, and run PETSc

Hello World

#i ncl ude "petsc. h"

int main(int argc, char *argv[])

{

Petsclnitialize(&rgc, &argv, 0, 0);

PetscPrintf(PETSC COW WORLD, "Hello World\n");
Pet scFi nalize();
return O;

Understanding the Code

Petsclnitialize Initialize PETSc. The arguments
allow PETSc to initialize MPI if necessary

PetscFinalize Finalize PETSc. Causes PETSc to
call MPl _Fi nal 1 ze If necessary and also to
generate summary reports.

PetscPrintf Ensures that only one process prints
the data (Try it!)

Hello World 1n Fortran

i nteger ierr, rank
#i nclude "include/finclude/petsc.h”
call Petsclnitialize(PETSC NULL CHARACTER, ierr)
call MPI _Comm rank(PETSC COW WORLD, rank, ierr)
i f (rank .eq. 0) then
print *, "Hello Worl d’
endi f
call PetscFinalize(ierr)
end

Understanding the Code

e Like the C code, except

— Petscinitialize has fewer arguments
because Fortran has no ar gc or ar gv

— Must use MPI _Comm r ank and pri nt
because Fortran I/O uses a Iinterface
unavailable to libraries

e PETSc 2.1.6 adds a routine that can be used
with a single character string (Fortran can’t
Implement its own |/O operations, so PETSc
can’t provide parallel replacements)

How. To.Compile, Link, and Run

e PETSc make use of three environment variables. Two specify the location of
PETSc and the particular machine architecture:
PETSC.DI R The location of PETSc

PETSC_ARCH The name of the machine architecture. In some cases, the script
$PETSC DI R/ bi n/ pet scar ch can be used to get the value that should be
used for this environment variable

e The third specifies the level of optimization to use.

BOPT One of g, O, or Opg; these indicate the level of optimization and debugging
support within the PETSc library. Usually set on make line:

make BOPT=g hello
e Use PETSc makefiles to ensure that all of the necessary libraries and compiler

options are used. The makefiles in the various example directories are good
starting points

— Alternately, just include the PETSc variables and write your own Makefile

A Sample Makefile

SHELL = /bi n/ bash

PETSC DIR = c:/prograns/petsc-2.1.5
PETSC ARCH = w n32_gnu

BOPT ?= ¢

NP 7= 4

PGM ?= hello

I ncl ude $(PETSC DI R)/ bmake/ comon/ base
EXECS = hello

all-redirect: $(EXECS) $(0OBIS)

hell o: hello.o chkopts
$(CLINKER) -0 hello hello.o $(PETSC LI B)
$(MPIRUN) -np $(NP) $(PGEV $(ARGS)

cl ean-1 ocal :
-rm-f $(EXECS) *.o0

A Parallel Program

e PETSc uses the distributed memory, shared-nothing model

e Parallel PETSc programs consist of separate communicating
processes

e PETSc uses MPI for parallelism

You can always access MPI routines
You will rarely need to use MPI while using PETSc

Many PETSc routines are collective in the MPI sense (all
processes must call); others are local.

Common uses of MPI in PETSc are the routines for
communicator size and rank and for processor name.

This is illustrated in a revised (and obviously parallel) hello
world program.

Hello World Revisited

#i ncl ude "petsc. h"

int main(int argc, char *argv[])
{
I nt rank;
Petsclnitialize(&argc, &argv, 0, 0);

MPI _Comm rank(PETSC COVWM WORLD, &rank);
Pet scSynchroni zedPrintf(PETSC _COVM WORLD,
"Hello World fromrank %\ n", rank);
Pet scSynchr oni zedFl ush(PETSC COVWM WORLD) ;
Pet scFi nalize();
return O;

Understanding the Program

PetscSynchronizedPrintf Like Pet scPri nt f, except output comes
from all processes in rank order.

PetscSynchronizedFlush Indicates that the calling process is done
printing.
e Allows the use of multiple PetscSynchronizedPrintf calls

PETSC_.COMM_WORLD The PETSc version of
MPI_COMM_WORLD, they are usually the same set of
processes. PetscSetCommWorld, used before
Petsclnitialize, may be used to give PETSc a subset of
processes

PETScand PDEs

e PETSc Is designed around the mathematics of the
problem

— Specify the data in terms of vectors

— Specify the problem as linear (using matrices) or
nonlinear (using vector-valued functions) equations
to be solved

— Support parallel computing by automatically
distributing these objects across all processes

e We’'ll see a sequence of increasingly sophisticated
PDE examples...

Poisson.Problem

Lets solve a simple linear elliptic PDE

Vu = fin]0,1] x [0,1]

v = 0 onthe boundary

using a simple discretization (u; ; = u(z;,y;), z; = ih)

Uitl,j — 2Uij + Ui-1,
h2

Ui j+1 — 2Ui 5 + Ui j—1
h2

+

= f(zi,9;).

(We use finite differences for simplicity; finite elements can be used as
well.) For simplicity, consider f = sin(wx)sin(wy).
We will discretize the interior of the mesh only for this example.

Schematic for Example

In PETSc, your main program remains in control:

main program
Petsclnitialize()
A = create the matrix
b = create a vector
any other application code
Use SLES tosolve Ax=D
print solution
PetscFinalize()

SLES is the “simplified linear equation solver”
component of PETSc

Creating the Matrix

1 #include "petscsles.h”

2

3 [/* Formthe matrix for the 5-point finite difference 2d Lapl aci an
4 on the unit square. n is the nunber of interior points along a side */
5 Mt FornLapl acian2d(int n)

6 {

7 Vat A

8 I nt r, rowStart, rowend, i, j;

9 doubl e h, oneByh2;

10

11 h =210/ (n + 1); oneByh2 = 1.0/ (h * h);

12 Mat Creat e(PETSC_COW WORLD, PETSC DECI DE, PETSC_DECI DE,

13 n*n, n*n, &A);

14 Mat Set FronOptions(A);

15 Mat Get Owner shi pRange(A, & owStart, & owend);

Creating the Matrix 1|

/[* This is a sinple but inefficient way to set the matrix */

for (r=rowStart; r<rowknd; r++) {
I =r %n;, | =r [n;
if (j - 1>0) {
Mat Set Value(A, r, r - n, oneByh2,
if (i - 1>0) {
Mat Set Value(A, r, r - 1, oneByh2,

| NSERT_VALUES) ;

| NSERT_VALUES) ;

MVat Set Val ue(A, r, r, -4*oneByh2, | NSERT VALUES);

if (i +1<n-1) {
Mat Set Value(A, r, r + 1, oneByh2,
if (j +1<n-1) {
Mat Set Value(A, r, r + n, oneByh2,
}
Mat Assenbl yBegi n(A, MAT_FI NAL_ASSEMBLY) ;
Mat Assenbl yEnd(A, MAT_FI NAL_ASSEMBLY) ;
return A

| NSERT_VALUES) ;

| NSERT_VALUES) ;

}

}

}

}

Understanding the Code |

MatCreate Create a matrix object.
e n? equations, so matrix is of size n*nxn*n

e PETSC_ DECIDE tells PETSc to choose the distribution of the matrix across
the processes

MatSetFromOptions Set basic matrix properties (such as data structure)
from command line

MatGetOwnershipRange Get the rows of the matrix that PETSc assigned
to this process

e PETSc uses a simple assignment of consecutive rows to a process. This

simplifies much of the internal structure of PETSc, and, as we shall see, does
not reduce the generality

e |tis not necessary to set values on the “owning” process

e Returns first row to one + last row on process.
— Matches common Cidiom (for (i=start; i<end; i++))
— Number of rows is end- st art

Understanding the Code 1

MatSetvalue Insert (or optionally add with ADD VALUES) a value to a
matrix (Warning: This is a macro and needs braces)

MatAssemblyBegin and MatAssemblyEnd Complete the creation of matrix.
The matrix may not be used for any operation (other than
MatSetValue) until after MatAssemblyEnd.

The approach of separating setting values from assembly has several
benefits

e Any process may set a value to any element of the matrix, even
ones not “owned” by the calling process.

e PETSc manages all data communication between processes,
automatically moving data if necessary

e PETSc can optimize the insertion of matrix elements

Data Structure Neutral Design

e PETSc matrices are objects for storing linear operators

e They allow many types of data structures:

Default sparse format MATMPIAIJ and MATSEQAIJ

Block sparse MATMPIBAIJ and MATSEQBAIJ

Symmetric block sparse MATMPISBAIJ and MATSEQSBAIJ
Block diagonal MATMPIBDIAG and MATSEQBDIAG

Dense MATMPIDENSE and MATSEQDENSE

Many others (see $PETSC_DIR/include/petscmat.h)

e Choice of format is made from command line (with
MatSetFromOptions) or program (with MatSetType)

e The same routines are used for all choices of data structure

e User-defined data-structures supported with “Shell” objects

Data Decomposition in PETSc

e How are objects distributed among processes in PETSc?

— Continguous rows of a vector or matrix are assigned to processes, starting
from the process with rank zero

e The matrix and vector for a 3 x 3 mesh, with two processes, has the following
decomposition

(L |

T1 4 -1 —1
o —1 4 —1
PO T3 —1 4 -1 —1
s | = —1 —1 4 -1 —1
x5 —1 —1 4 —1

P1 |. TR
\xg;) \ —1 —1 4)

Vviny Are rFe | oC iviatriCes 1 Nne vvay

Mm?;

e No one data structure is appropriate for all problems

— Blocked and diagonal formats provide significant performance benefits
— PETSc provides a large selection of formats and makes it (relatively) easy to
extend PETSc by adding new data structures
e Maitrix assembly is difficult enough without being forced to worry about data
partitioning
— PETSc provide parallel assembly routines
— Achieving high performance still requires making most operations local to a
process, but this approach allows incremental development of programs
e Matrix decomposition by consecutive rows across processes is simple and makes
it easier to work with other codes

— For applications with other ordering needs, PETSc provides “Application
Orderings” (AO)

\ectors.Iln. PETSc

e |n order to support the distributed memory “shared nothing”
model, as well as single processors and shared memory systems,
a PETSc vector is a “handle” to the real vector

— Allows the vector to be distributed across many processes
— To access the elements of the vector, we cannot simply do
for (1=0; i<n; i++) Vv[i] =1;
— We do not want to require that the programmer work only with
the “local” part of the vector; we want to permit operations,

such as setting an element of a vector, to be performed by any
process.

e The solution is to make vectors an object, just like a parallel matrix

Creating. the Vectors |

1 #include "petscvec. h"

2

3 [/* Forma vector based on a function for a 2-d regular
4 unit square */

5 Vec FornmVecFrontunction2d(int n, double (*f)(doubl e,
6 {

7 Vec V,

8 I nt r, rowStart, rowend, i, j;

9 doubl e h;

10

11 h =210/ (n + 1);

12 VecCreat e(PETSC COMM WORLD, &V);

13 VecSet Si zes(V, PETSC DECI DE, n*n);

14 VecSet FronOptions(V);

mesh on the

double))

Creating the Vectors I

15 VecCGet Omner shi pRange(V, & owStart, & owend);

16 [* This is a sinple but inefficient way to set the vector */
17 for (r=rowStart; r<rowknd; r++) {

18 I = (r %n) + 1;

19 j =(r [/ n) + 1;

20 VecSetValue(V, r, (*f)(1 * h, j * h), I NSERT_VALUES);
21 }

22 VecAssenbl yBegi n(V);

23 VecAssenbl yEnd(V) ;

24

25 return V,

26 }

Understanding the Code

VecCreate Creates the vector. Unlike MatCreate, the size must be set
separately

VecSetSizes Sets the global and local size of the vector. Use
PETSC_DECIDE to have PETSc choose the distribution across
processes

VecSetFromOptions Like the matrix counterpart. VecSetType may be
used instead.

VecGetOwnershipRange Like the matrix counterpart

VecSetValue Sets the value for a vector element. Use ADD VALUES to
add to a vector element. Like the matrix routines, elements can be
Inserted or added by any process.

VecAssemblyBegin and VecAssemblyEnd Like the Matrix counterparts

Solving.a Poisson Problem |

1 #include <math. h>

2 #include "petscsles.h”

3 extern Mat Forniapl aci an2d(int);

4 extern Vec FornWecFronfunction2d(int, double (*)(double, double));
5 [* This function is used to define the right-hand side of the
6 Poi sson equation to be solved */

7 double func(double x, double y) {

8 return sin(x*MPlI)*sin(y*MPI); }

9

10 int main(int argc, char *argv[])

11 {

12 SLES sl es;

13 Vat A

14 Vec b, X;

15 i nt its, n;

16

17 Petsclnitialize(&rgc, &argv, 0, 0);

Solving.a Poisson Problem 11

18 n = 10; /* Get the nesh size. Use 10 by default */

19 PetscOptionsGetint(PETSC NULL, "-n", &1, 0);

20

21 A = FornLapl aci an2d(n);

22 b = FornVecFronfunction2d(n, func);

23 VecDuplicate(b, &);

24 SLESCr eat e(PETSC COVWM WORLD, &sles);

25 SLESSet Operators(sles, A A, D FFERENT NONZERO PATTERN) ;
26 SLESSet FronOpti ons(sles);

27 SLESSol ve(sles, b, x, &ts);

28

29 PetscPrintf(PETSC COW WORLD, "Solution in %l iterations is:\n",
30 VecVi ewm(x, PETSC VI EVER STDOUT _WORLD) ;

31

32 Mat Destroy(A); VecDestroy(b); VecDestroy(x);

33 SLESDestroy(sles);

34 Pet scFi nalize();

35 return O;

iIts

Understanding the Code

SLESCr eat e Create a context used to to solve a linear system. This routine is used for
all solvers, independent of the choice of algorithm or data structure

SLESSet Oper at or s Define the problem.

e The third argument allows the use of a different matrix for preconditioning

e DI FFERENT NONZERO PATTERN indicates whether the preconditioner has
the same nonzero pattern each time a system is solved. This default works
with all preconditioners. Other values (e.g., SAVE_NONZERO PATTERN) can
be used for particular preconditioners. Ignored when solving only one system

SLESSet Fr onOpt i ons Set the algorithm, preconditioner, and the associated
parameters, using the command-line

SLESSol ve Actually solve the system of linear equations. The number of iterations is
returned (a reflection of the bias towards iterative methods). If a direct method is
used, oneisreturnedinits

SLESDest roy Free the SLES context and all storage associated with it

Objects.in PETSc

e How should a matrix be described in a program?
— OlId way:
— Dense matrix

doubl e precision A(10, 10)
— Sparse matrix

i nteger ia(1l), ja(max_nz)
doubl e precision a(nmax_nz)
— New way:
Mat M

e Hides the choice of data structure

— Of course, the library still needs to represent the matrix with some choice of
data structure, but this is an implementation detail

e Benefit

— Programs become independent of any particular choice of data structure,
making it easier to modify and adapt programs.

Operations In PETSc

e How should operations like “solve linear system” be described in a program?
— Old way

npiaijgnres(ia, ja, a, comm X, b, nlocal, nglobal,
ndir, orthonethod, convtol, &ts)

— New way
SLESSol ve(sles, b, x, &ts)

e Hides the choice of algorithm
— Algorithms are to operations as data structures are to objects

e Benefit

— Programs become independent of a particular choice of algorithm, making it
easier to explore algorithmic choices and to adapt to new methods

e In PETSc, operations have their own “handle”, called a “context variable”

Context Variables in PETSc

e Context variables are the key to solver
organization

e They contain the complete state of an
algorithm, including
— parameters (e.g., convergence tolerance)

— functions run by the algorithm (e.g.,
convergence monitoring routine)

— Information about the current state (e.g.,
iteration number)

SLES Structure

e Each SLES object contains two other objects:

KSP Krylov Space Method
— The Iterative method
— The KSP context contains information on

the method parameters, e.g. GMRES

restart and search directions)

PC Preconditioners
— Knows how to apply the preconditioner
— The context contains information on the
preconditioner, such as ILU fill level

Availlable Methods

KSP PC
Name PETSc Name PETSc
option option
Conjugate Gradient cg Block Jacobi bjacobi
GMRES gmres Overlapping asm
Additive
Schwarz
Bi-CG-stab bicg ILU lu
Transpose-free QMR tfgmr SOR sor
Richardson richardson | LU (direct solve) |u
CG-Squared cgs Multigrid mg
SYMMLQ symmiqg Arbitrary matrix ~ mat
others others

Using the Command Line Interface

e PETSc makes it each to try different algorithms

npi exec -n 4 poisson -ksp type cg

npi exec -n 4 poisson -ksp type gnres

npi exec -n 4 poisson -pc_type bjacobi -sub pc type ilu\
-ksp_type bcgs

e PETSc make experimentation with different algorithms easy

— Many are already built-in

— You can add new algorithms and data structures to PETSc;
these are then used just like the built-in ones (e.g., a new
preconditioner can be used with an existing source code
without any changes. (However, this is not a one-day project.)

e Many other options available. Use
poi sson -help | nore

to get a list of available options

Monitoring Convergence

e PETSc provides routines to check for and monitor
convergence

e The choice of monitor and the output from that monitor
can be controlled from the command line
-ksp_monitor Print the preconditioned residual norm
-ksp_xmonitor Plot the preconditioned residual norm
-ksp_truemonitor Print the true residual norm ||Az — b||»
-ksp_truexmonitor Plot the true residual norm

e Custom monitors can be defined by the user

Accessing the Solution

e Viewers are used in PETSc to access and display the
contents of an object

e A simple viewer prints data out standard output:
VecVi ewm(V, PETSC VI EVER STDOUT WORLD);

e PETSc provides a wide range of viewers for all major
objects

— Viewers make it easy to send vectors and matrices
to Matlab

— Graphical viewers make it easy to display data
— Binary viewers make it easy to save and load data

PE T Sc Viewers

e PETSc has many viewers
PETSC_VIEWER_STDOUT_SELF Sequential, prints to stdout
PETSC_VIEWER_STDOUT_WORLD Parallel, prints to stdout
PETSC_VIEWER_DRAW_WORLD Parallel, draws using
X-Windows
e Viewers exist for matrices, vectors, and other objects

— Matrix viewers provide information and graphical display
of matrix sparsity structure and assembly (try
-mat _view draw,-nat _view i nfo,or-mat_view
— Viewers on other objects can print out information about
the object

Working With Vectors

e |t is sometimes helpful to have direct access to the storage for the
local elements of a vector

e The routines VecGetArray and VecRestoreArray may be used to
get and return the local elements

e The routine VecGetLocalSize returns the number of elements in
the local part of the vector

e VecGetArray returns a pointer to an array that contains the
locally-owned values in the vector. Normally, this is just a pointer
Into the storage that PETSc uses, but for special vector
Implementations, it may be different storage used just for
VecGetArray

e \ecRestoreArray gives the array back to PETSc. Normally, this
has no work to do, but if PETSc had to allocate storage for
VecGetArray, this routine will free that storage

Example: Computing ||z — y/]

e Often need to compute ||z — y||, for example, for
convergence tests. Also useful in checking a solution

e PETSc does provide routines to compute = + ay and ||z||,
but no single routine to compute the norm of the difference
of two vectors

e As an example of accessing local elements of a vector, we
will implement “mVecNormXPAY” which computes ||z + ay||

— Accepts all PETSc norm types: NORM_1, NORM_2,
and NORM _INFINITY.

e A single routine avoids creating an unneeded temporary
vector and avoids extra memory motion needed when using
multiple routines

Computing [z — y|| |

© 00 N O O b~ W DN B

#i ncl ude "petscvec. h"

/* This is a new vector routine for PETSc, illustating the use
of several PETSc functions for accessing vector elenents */

i nt necNor mMXPAY(Vec x, Vec y, const PetscScal ar a, Normlype ntype,
Pet scReal *norm)

const double * restrict xvals, * restrict yvals;
| nt nlocal, i, ierr = 0O;

MPI _Op nor nop;

doubl e sum = 0.0, totsum

/* Get the local arrays and the size */
VecCGet Array(x, (PetscScalar **)&xvals);
VecGet Array(y, (PetscScal ar **)&yvals);
VecCet Local Si ze(x, &nlocal);

Computing [z — y|| 11

if (a ==-1) {

/| * Special case for difference of two vectors */
swtch (ntype) {

case NORM 1:
for (i=0; i<nlocal; i++) {
sum += fabs(xvals[i] - yvals[i]);
}
nor mop = MPI _SUM
br eak:
case NORM 2:
for (i=0; i<nlocal; i++) {
regi ster PetscScal ar tnp;
tnp = xvals[i] - yvals[i];
sum += t np*t np;
}
nor mop = MPI _SUM
br eak;

Computing [z — y|| 111

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

}

case NORM I NFI NI TY:

for (i=0; i<nlocal;

regi ster

}

nor nmop = MPI _MAX;

br eak:
def aul t:

lerr = 1;

br eak;

el se {

}
i f

/* Uni npl enent ed
lerr = 1;

(tierr) {

| ++) {

Pet scScal ar t np;
tnp = fabs(xvals[i] - yvals[i]);
if (tnp > sum sum = tnp;

Computing [z — y|| IV

54 MPI _Conmm comm

55 Pet schj ect Get Comm((PetscObj ect) x, &omm);
56 MPI _All reduce(&sum & otsum 1, MPI _DOUBLE, conm nornop);
57 I f (ntype == NORM 2) {

58 totsum = sqgrt(totsum);

59 }

60 *norm = totsum

61 }

62

63 VecRestoreArray(x, (PetscScalar **)&xvals);

64 VecRestoreArray(y, (PetscScalar **)é&xvals);

65

66 return ierr;

67 }

68

PetscScalar is just a name for doubl e; using this name allows the
PETSc to be rebuilt for f | oat or Conpl ex scalars.

Distributed Arrays in PETSc

How should a vector be distributed across processes? PETSc’s
default is a “one-dimensional decomposition”

How can you make use of different data decompositions in
PETSc? PETSc provides “Distributed Arrays” (DAS) for this
purpose.

For example, consider the layout of a mesh onto this processor
mesh:

P2 | P3
PO | P1

Layout Of Distributed Arrays

On this 2 x 2 process grid, the vector elements are
numbered like this:

20 21 22 23 24 18 19 20 23 24
15 16 17 18 19 15 16 17 21 22
10 11 12 13 14 N 6 7 8 13 14
5 6 7 8 9 3 4 5 11 12
o 1 2 3 4 0 1 2 9 10
Natural numbering PETSc’s internal numbering

DAs provide a “logically Cartesian” decomposition. There
are no physical coordinates associated with a DA.

Distributed Arrays

e PETSc's distributed array (DA) provides a way to describe a multidimensional
array, distributed across a parallel computer

e DAs provide a way to use more complex data decompositions

DACr eat e2d(PETSC_COVM WORLD, DA_NONPERI ODI C,
DA STENCI L_STAR,
nx, ny, px, py, 1, 1, 0, 0, &grid);
creates a global nx x ny grid, with a pz x py process
decomposition

e The DA _STENCIL_ STAR and the arguments after py have to do
with the difference stencil that may be used with this array and will
be discussed later.

e MPI _Dims_create may be used to determine good values for px
and py.

Setting. the Vector Values |

1 #include "petsc.h"

2 #include "petscvec. h"

3 #include "petscda. h"

4

5 [/* Forma vector based on a function for a 2-d regular nesh on the
6 unit square */

7 Vec FornmVecFrontuncti onDA2d(DA grid, int n,

8 double (*f)(double, double))
9

10 Vec V,

11 | nt is, ie, s, je, in, jn, i, j;

12 doubl e h;

13 doubl e **vval ;

14

15 h =210/ (n + 1);

16 DACr eat ed obal Vector(grid, &V);

Setting. the Vector Values Il

18 DAVecCGet Array(grid, V, (void **)&val);

19 /* Get gl obal coordinates of this patch in the DA grid */
20 DAGet Corners(grid, &s, &s, 0, &n, &n, 0);

21 ie =is +in - 1;

22 je =]Js +jn - 1;

23 for (i=is ; i<=ie ; i++) {

24 for (j=js ; j<sje ; j++){

25 wvwal [j][i] = (f)C (i +1) * h (j +1) * h);
26 }

27 }

28 DAVecRestoreArray(grid, V, (void **)&vval);

29

30 return V;

31 }

Understanding the Code

DACreateGlobalVector Creates a PETSc vector that may be used with
DAs

DAVecGetArray Get a multidimensional array that gives the illusion of a
global array (PETSc uses tricks with the array indexing to provide
access to the local elements of the vector). Otherwise, like
VecGetArray.

DAVecRestoreArray Like VecRestoreArray, used to allow PETSc to free
any storage allocated by DAVecGetArray

DAGetCorners Returns the indices of the lower-left corner of the local
part of the distributed array relative to the global coordinates,
along with the number of points in each direction.

Setting the Matrix Elements |

© 00 N O O M W DN B

#i ncl ude "petscsles.h"
#i ncl ude "petscda. h"

[* Formthe matrix for the 5-point finite difference 2d Lapl aci an
on the unit square. n is the nunber of interior points along a

side */
Mat For mLapl aci anDA2d(DA grid, int n)
{
Vat A
| nt r, i, j, is, ie, js, je, in, jn, nelm
Mat St enci |l col s[5], row
doubl e h, oneByh2, val s[5];

h=1.0/ (n + 1); oneByh2 = 1.0/ (h*h);

DAGet Matri x(grid, MATMPIAIJ, &A);
/* Get global coordinates of this patch in the DA grid */

Setting the Matrix Elements I

DAGet Corners(grid, &s, &s, 0, &n, &n, 0);

| e

Is +in - 1;

je = s +jn - 1

/* This is a sinple but

f or

(i=is; i<=ie: i++) {
for (J=js; j<=1e; J++){

row.j =j; row.i =1i; nelm= 0;
if (j - 1>0) {
val s[nel nj = oneByh2;
cols[nelm.j =) - 1; cols[nel m+].
if (i - 1>0) {
val s[nel nj = oneByh2;

cols[nelnl.j =j; col s[nel m+] .
val s[nel nj = - 4 * oneByh2;
cols[nelnl.j =j; col s[nel m++] .
if (i +1<n-1) {
val s[nel nj = oneByh2;
cols[nelm.j =j; col s[nel m++] .

inefficient way to set the

matri x */

I+ 1;}

Setting the Matrix Elements 111

36
37
38
39
40
41
42
43
44
45
46
47
48
49

if (j +1<n-1) {
val s[nel nj = oneByh2;
cols[nelm.j =) + 1; cols[nelmt+].i =1;}
Mat Set Val uesStencil (A, 1, &ow, nelm cols, vals,
| NSERT_VALUES) ;

Mat Assenbl yBegi n(A, MAT_FI NAL_ASSEMBLY) :
Mat Assenbl yEnd(A, MAT_FI NAL_ASSEMBLY) ;

return A

Understanding the Code

DAGetMatrix Returns a matrix whose elements
can be accessed with the coordinates of the
distributed array. The type of the matrix must
be specified; this choses a parallel matrix
using AlJ format (MATMPIAILJ).

MatSetValuesStencil Sets elements of a matrix
using grid coordinates

MatStencil Data structure that contains the
Indices of a point in the DA, using the i, , k
members of the structure

Poisson - Solver Revisited

1 #include <math. h>

2 #include "petscsles.h”

3 #include "petscda. h"

4 extern Mat Fornlapl aci anDA2d(DA, int);

5 extern Vec FornmVecFrontuncti onDA2d(DA, int, double (*)(double, double));
6 /* This function is used to define the right-hand side of the
7 Poi sson equation to be solved */

8 double func(double x, double y) {

9 return sin(x*MPl)*sin(y*MPl); }

10

11 int main(int argc, char *argv[])

12 {

13 SLES sl es;

14 Vat A

15 Vec b, X;

16 DA grid;

17 | nt Its, n, px, py, worldSize;

Poisson - Solver Revisited |1

Petsclnitialize(&argc, &argv, 0, 0);

/[* Get the nmesh size. Use 10 by default */

n = 10;

Pet scOptionsGetlnt(PETSC NULL, "-n", &n, 0);

/* Get the process deconposition. Default it the sanme as w t hout
DAs */

px = 1;

Pet scOptionsGetlnt(PETSC NULL, "-px", &ox, 0);

MPI _Comm si ze(PETSC COVWM WORLD, &worl dSi ze);

py = worl dSi ze / px;

/* Create a distributed array */
DACr eat e2d(PETSC COVMM WORLD, DA NONPERI ODI C, DA STENCI L_STAR,
n, n, px, py, 1, 1, 0, 0, &grid);

/* Formthe matrix and the vector corresponding to the DA */

Poisson - Solver Revisited 111

36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53

A = FornlLapl aci anDA2d(grid, n);
b = FornVecFronfuncti onDA2d(grid, n, func);

VecDuplicate(b, &

)

SLESCr eat e(PETSC COVWM WORLD, &sles);

SLESSet Oper at or s(sl
SLESSet Fr onOpt i ons(
SLESSol ve(sles, b,

es, A A D FFERENT_NONZERO PATTERN);
sles);
X, &ts);

PetscPrintf(PETSC COMWM WORLD, "Solution is:\n");

VecView(x, PETSC VI

EWER STDOUT WORLD)

PetscPrintf(PETSC COW WORLD, "Required % iterations\n",

Mat Destroy(A); VecDestroy(b); VecDestroy(x);

SLESDest roy(sles);
Pet scFinalize();
return O;

DADestroy(grid);

its);

DASs of other sizes

PETSc provides support for 1, 2, and
3-dimensional DAs. Each point may bave a
number of degrees of freedom, allowing the use
of DAs for 3-dimensions in space along with
multiple values at each mesh point.

Scaling Studies

e Lab: Explore the scaling of the in terms of the
iteration counts for solving Poisson problem
using the default 1-d and the DA-based 2-d
decomposition, as a function of the number of
processes.

1Ncremental Appitication

AOLOVEen L

e Get the application “up and walking”

e EXxperiment with options. Determine opportunities for
Improvement

e Extend algorithms and/or data structures as needed

e Consider interface and efficiency issues for integration
and interoperability of multiple toolkits

e Full tutorials available at
http://ww. nts. anl . gov/ petsc/docs/tutorials

http://www.mcs.anl.gov/petsc/docs/tutorials

Examples of Linear Solves

exl.c: Solves a tridiagonal linear system with SLES
ex2,3.c. Solves a linear system in parallel with SLES
ex4.c: Uses a different preconditioner matrix and linear system matrix in the SLES

solvers

ex5.c: Solves two linear systems in parallel with SLES

ex7.c: Block Jacobi preconditioner for solving a linear system in parallel with SLES
ex8.c: lllustrates use of the preconditioner ASM

ex9.c: The solution of 2 different linear systems with different linear solvers

ex10.c:
exll.c:
exl2.c:
ex13.c:
ex15.c:
ex16.c:
ex22.c.
ex23.c:
ex25.c:
ex26.c:
ex27/.c.

Reads a PETSc matrix and vector from a file and solves a linear system
Solves a linear system in parallel with SLES

Solves a linear system in parallel with SLES

Solves a variable Poisson problem with SLES

Solves a linear system in parallel with SLES

Solves a sequence of linear systems with different right-hand-side vectors
Solves 3D Laplacian using multigrid

Solves a tridiagonal linear system

Solves 1D variable coefficient Laplacian using multigrid

Solves a linear system in parallel with ESI

Reads a PETSc matrix and vector from a file and solves the normal equations

More Preconditioners

e PETSc provides a large collection of preconditioners, including
domain decomposition preconditioners
— Additive Schwarz
mpi exec -n 4 poisson -pc_type asm
— Control the subdomain solver with - sub_pc_t ype:
npi exec -n 4 poisson -pc_type asm-sub_pc type ilu
(In general, - sub_pc_<pcpar mane> may be used to change the PC
parameter pcpar marme in the subdomain, and - sub_ksp_<ksppar mane>
for KSP in the subdomain.)
— Control the subdomain overlap
npi exec -n 4 poisson -pc_type asm-pc_asmoverlap 2

e The tutorial example Makefile lets you run these with the “run”
target:

make run PGQVEpoi sson NP=4 ARGS="-pc _type asm -pc_asmoverlap 2"

Aside: Error Handling in PETSc

e All PETSc routines return an error value. This can be tested with
CHKERRQ, as in

lerr = SLESCreate(PETSC COWM WORLD, &sles); CHKERRQ(ierr);

Using CHKERRQ allows PETSc to provide clear and specific
error messages

e An alternative is to set the error handler that PETSc calls when an
error Is first detected:

Pet scPushErr or Handl er (Pet scAbort ErrorHandler, 0);

(only available in C in PETSc 2.1.5). Other handlers exist,
Including PetscAttachDebuggerErrorHandler .

e Command line options - on_error _abort and
-start _i n_debugger may also be used to change the default
error handler

Solving Nonlinear Equations

We would like to solve
F(u) =0
for u. A powerful method for this is Newton’s method:
utt = — (F'W) TP, k=0,1,...

where v is the approximation to u at the kth step. The term
F'(u*) is a matrix, and this algorithm can be rewritten as

F'(uMAu® = —Fu")

uWFHU = uF - AR

Newton-based Methods

In practice, various modifications are made to
Newton’s method. PETSc supports many of the
most common:

e Line search strategies

e Trust region strategies

e Pseudo-transient continuation
o Matrix-free varients

PETSc provides a “Simplified Nonlinear Equation
Solver” (SNES) for nonlinear problems. SNES is
the nonlinear analogue of SLES.

PDE Jacobilan

The matrix F'(u) is called the Jacobian.
For PDE problems, computing the Jacobian can
be tricky. Three choices are:

1. Compute F’ analytically, then discretize

2. Discretize F, then compute F' by finite
difference approximation

3. Discretize F', then compute £’ by analytically
differentiating the discretization of F’

PETSc provides additional support for 2, and by
interfacing to ADIFOR and ADIC, support for 3

A Simple Nonlinear PDE

The Bratu problem is defined by

—V?u —Xe* = 0in]0,1] x [0, 1]
v = 0 on the boundary

We will use the same simple discretization for
this problem as for the Poisson problem.

Evaluating the Function

e Evaluating the function F(u) = —V?u — \e* is somewhat
difficult because it involves a differential operator. This
requires information from the neighboring processes. We
will use distributed arrays (DAS) to help with this, taking
advantage of their support for different stencils.

e An alternate approach for this example is to use a
matrix-vector multiply, using

MatMult (A X, Y);

to compute y = Ax. This routine handles all data motion
required. However, it is suitable only for relatively simple
F(u). Thus, we will explore more general techniques

Stencils

ooooooooooooooo

oooooooooooooooo

Star Stencil Box Stencill
(DA _STENCIL_STAR) (DA _STENCIL _BOX)

T K

Stencils

ooooooooooooooo

Star Stencil Box Stencill
(DA _STENCIL_STAR) (DA _STENCIL _BOX)

T K

Global and Local Representations

e A vector associated with a DA has two representations: the global and the local

e The global representation is nothing more than the natural mesh, distributed
across all processes

e The local representation is the local part of the global mesh, plus the ghost points

Global: each process stores a Local: each process stores a
unique local set of vertices, and unique local set of vertices as well
each vertex is owned by exactly one as ghost points from neighboring
process processes

Using Ghost Points with DAS

A ghost region is defined by the coordinates in the global
representation:

__Upper right ghost corner

= ====-r0

—Lower left ghost corner

The routine DAGetGhostCorners returns this information,
similar to DAGetCorners

M oving Data Between the Global and L ocal Representations

DACreateLocalVector Creates a PETSc vector that
can hold the local representation of a DA (the
local mesh plus ghost points)

DAGlobalToLocalBegin and DAGlobalToLocalEnd
Update the ghostpoint values. This involves
communication with the neighboring
processes. The update may use
INSERT VALUES or ADD VALUES.

DALocalToGlobal Transfers values in the local
representation back to the global
representation. The ghost points are
discarded.

Parallel Evaluation of the Function

In the Bratu example,
F(u) = —V?u — \e"

SO
F'(u)a = —V?a — lae",

where ae" is just {a; x e*}. Thus the Jacobian F'(u) is
almost the same as the matrix for the Poisson problem,
with a diagonal element that depends on «. Now that we
know what these are, how do we provide them to PETSc?

Prowdlng the Function anad
Sacoblan

We now have functions that evaluate F' and F’. How can these be
used by the SNESSolve routine?

e The algorithm needs to evaluate both, under control of the
algorithm

e The solution used in PETSc is to pass the functions themselves to
the routine that defines the problem, much as the matrix defining
a linear problem to solve is passed to SLESSetOperators.

e This is a “callback” method, because the user provides functions
to the solver that are called back by the algorithm when their
results are needed

e The calling sequence for the routine is specified by PETSc.

Specifying Callbacks

e User provides the routines to perform actions that the library
requires. For example

SNESSet Functi on(snes, f, userfunc, userctx)

snes SNES context

f Vector that will be used to store the function value

userfunc Name of (really, pointer to) the function

userctx Pointer to data passed that will be passed to the function

e The library can call this function whenever it needs to evaluate the
function

e The userctx pointer allows the user to provide an “application
context” object. By using this approach, the library need never
know the details of data needed only by the application.

Forming.the Function |

#i ncl ude "petscsnes. h"
#i ncl ude "petscda. h"
#i ncl ude "bratu. h"

#i ncl ude <mat h. h>

/* Evaluate the function for the Bratu nonlinear problemon the Iocal
mesh points */
I nt FornBrat uFuncti on(SNES snes, Vec v, Vec f, void *ctx)

{
User Brat uCt x *bratu

(UserBratuCtx *)ctx;

DA da = br at u- >da;

doubl e | anbda = brat u->| anbda;

doubl e h = br at u- >h;

Vec | v;

i nt i, s

I nt [1i, Ilj, ni, nj; /* lower left i,] and size for | ocal

part of nmesh */

Forming the Function I

const double **varr:;
doubl e **fvarr:

/* CGet the coordinates of our part of the gl obal nesh */
DACet Corners(da, &li, &lj, 0, &ni, &j, 0);

DAGet Local Vector(da, &v);

/* Scatter the ghost points to the other processes, using
the values in the input vector v */

DAd obal ToLocal Begi n(da, v, |INSERT_VALUES, |v);

DAd obal ToLocal End(da, v, |NSERT VALUES, |v);

DAVecGet Array(da, lv, (void **)&arr);
DAVecCGet Array(da, f, (void **)&f varr);

for (j=I1j ; j<llj+nj ; j++)
for (i=lli ; i<lli+ni ; i++) {

Forming the Function 111

it (=01] =0][]|
| == bratu->n + 1 || j] == bratu->n + 1) {
fvarr[j][i] = 0.0;
}
el se {
fvarr[j][i] = -(varr[j-1][i] + varr[j][i-1] +
varr[j+1][i] + varr[]][i+1] -
4 * varr[j][i]) / (h*h) -
| anbda * exp(varr[j][i]);
}

}
DAVecRest oreArray(da, f, (void **)& varr);

DAVecRestoreArray(da, lv, (void **)&varr);
DARest or eLocal Vector(da, &v);

return O;

Understanding the Code

e One key feature of this routine is the use of the fourth argument,
“ct x”, to pass additional information to the Function. In this case,

we use a user-defined structure define in bratu.h:
/* This typedef defines a struct that contains the
data that we need to have when eval uating the
function or the Jacobian for the Bratu problem */
t ypedef struct {

DA da; [* DA for grid */

doubl e h; /* Mesh spacing */

doubl e | anbda; /* paranmeter in problem*/

| nt n; /[* interior gridis n x n */

} UserBratuCx;

e The rest of the code uses the DA to provide ghost values for the
the evaluation of the finite difference scheme

— Boundary conditions, as always, add complexity

Forming the Jacobian |

#i ncl ude "petscsnes. h"
#i ncl ude "petscda. h"
#i ncl ude "bratu. h"

#i ncl ude <mat h. h>

/[* Formthe matrix for the Jacobian of the Bratu problem where the
function uses a 5-point finite difference 2d Lapl aci an on the
unit square. n is the nunber of interior points along a side */

Mat For nBr at uJacobi an(SNES snes, Vec u, NMat *A, Nat *B,

Mat St ructure *flag, void *ctx)

{
Vat jac = *A
UserBratuCtx *bratu = (UserBratuCtx *)ctx;
DA da = bratu->da;
I nt r, i, j, n = bratu->n;

doubl e h = bratu->h, | anbda = bratu->| anbda;
doubl e oneByh2 = 1.0/ (h*h), **uvals, v[5];

Forming the Jacobian I

I nt [1i, Ilj, ni, nj; /* lower left i,] and size for | ocal
part of nmesh */
Mat Stencil row, col[5];

DAGet Corners(da, &li, &1y, 0, &ni, &nj, 0);
DAVecGet Array(da, u, (void **)&uvals);

[* This is a sinple but inefficient way to set the matrix */
for (j=I1j; j<tlj+nj; j++) {

for (i=lli; i<lli+ni; i++) {
row.i =1i; row.j =j;

if (i =01]] =01]|
I =n+1]]] =n+1){
v[0] = 1.0;
Mat Set Val uesStencil (jac, 1, & ow, 1, & ow, v, |NSERT VALUES)

}

el se {

col[O].i =1; col[0].) =] - 1; v[O] = - oneByh2;

Forming the Jacobian |11

col[1l].i =1; col[1l].) =] + 1; v[1l] = - oneByh2;
col[2].i =1 - 1; col[2].] =1]; Vv[2] = - oneByh2;
col[3].i =1 +1; col[3].] =7]; Vv[3] = - oneByh2;
col[4].i =1i; col[4].)] =];

v[4] = 4.0 * oneByh2 - lanbda * exp(uvals[j][i]);

Mat Set Val uesStencil (jac, 1, & ow, 5, col, v, | NSERT VALUES);

}
Mat Assenbl yBegi n(j ac, MAT_FI NAL ASSEMBLY) ;

DAVecRest oreArray(da, u, (void **)&uvals);

flag = SAME_NONZERO PATTERN; / preconditioner has sanme structure */
Mat Assenbl yEnd(j ac, MAT_FI NAL_ASSEMBLY) ;

return O;

Bratu Example |

#i ncl ude "petscsnes. h"
#i ncl ude "petscda. h"
#i ncl ude "bratu. h"

extern int FornBratuJdacobi an(SNES, Vec, Mat *, Mat *, Mat Structure *,void *);
extern int FornBratuFunction(SNES, Vec, Vec, void *);

int main(int argc, char *argv[])

{
User Brat uCt x brat u;
SNES snes;
Vec X, I,
Mat J;
I nt I ts;

Petsclnitialize(&argc, &argv, 0, 0);

Bratu Example |1

/* Get the problem paraneters */
bratu. | anbda = 6. 0;
PetscOptionsCGetReal (0, "-lanbda", &bratu.lanbda, 0);
i f (bratu.lanbda >= 6.81 || bratu.lanbda < 0) {
SETERRQ(1, "Lanbda nust be between 0 and 6.81");
}
bratu.n = 10; /* Get the nesh size. Use 10 by default */
Pet scOptionsGetlInt(PETSC NULL, "-n", &bratu.n, 0);
bratu.h = 1.0/ (bratu.n + 1);

SNESCr eat e(PETSC_COWM WORLD, é&snes);

/* Create the nesh and deconposition */

DACr eat e2d(PETSC _COVM WORLD, DA NONPERI ODI C, DA STENCI L_STAR,
bratu.n + 2, bratu.n + 2, PETSC DECI DE, PETSC DECI DE,
1, 1, 0, 0, &bratu.da);

DACr eat e obal Vector(bratu.da, &x);

Bratu Example 111

VecDuplicate(x, &); [* Use this as the vector to give SetFunction */
SNESSet Functi on(snes, r, FornBratuFunction, &bratu);

DAGet Matri x(bratu.da, MATMPIAIJ, &J);
SNESSet Jacobi an(snes, J, J, FornBratuJacobi an, &bratu);

SNESSet Fr onOpt i ons(snes);

FormBratul niti al Guess(&bratu, x);
SNESSol ve(snes, x, &ts);

Pet scPrintf(PETSC_COVWM WORLD,
"Nunber of Newton iterations = %\n", its);

VecDestroy(r); DADestroy(bratu.da);
SNESDest r oy(snes) ;

Pet scFi nalize();

return O;

Understanding the Code

SNESCreate Creates the SNES context

SNESSetFunction Specify the function to be called to evaluate the
function F'(u)

SNESSetJacobian Specify the function to be called to create the
Jacobian matrix.

SNESSetFromOptions Set SNES parameters from the commandline
VecSet Set all elements of a vector to the same value

SNESSolve Solve the system of nonlinear equations. Return the
number of iterations ini ts

SNESDestroy Free the SNES context and recover space

SETERRQ The counterpart to CHKERRQ), it sets the error and returns
a message

Using the Command Line Interface

e Easy to control Newton features
— -snes_type Is
— -snes_type tr
— -snes_rtol num (relative convergence
tolerance)

e Complete control over solution of Jacobian
problem—just use the same commandline
parmeters

— -ksp_type cgs
— -pc_type asm

Convenience Functions

e PETSCc's design makes it relatively easy to layer functionality

e One example is the support for function and Jacobian evaluation on DAs
DASetLocalFunction Attach a function to a DA
DASetLocalJacobian Attach a Jacobian to a DA

SNESDAFormFunction Tell SNES that the function evaluation should use the
function on a DA. to provide the function values

SNESDAComputeJacobian Tell SNES that the Jacobian evaluation should use the
Jacobian function on a DA

e The functions provide just the computation applied to the local vector (from the DA,
which includes the ghost points)

e Wrapper functions provided by DASetLocalFunction and Jacobian handle all of the
details of setting up the local vectors and arrays.

e The function passed to DASetLocalFunction has the calling sequence:

For nFuncti onLocal (DALocal I nfo *i nfo, PetscScal ar **x,
Pet scScal ar **f, AppCt x *user)

Example Local Function |

I nt For nFuncti onLocal (DALocal I nfo *info, PetscScal ar **Xx,
Pet scScal ar **f, AppCt x *user)

I nt lerr,i,j;
Pet scReal two = 2.0, anbda, hx, hy, hxdhy, hydhx, sc;

Pet scScal ar u, uxx, uyy;

Pet scFuncti onBegi n;

| anbda = user - >par am

hx = 1.0/ (PetscReal) (i nfo->nx-1);
hy = 1.0/ (PetscReal) (i nfo->ny-1);
Sc = hx*hy*| anbda;

hxdhy = hx/ hy;
hydhx = hy/ hx;

Example L ocal Function ||

/*
Conmpute function over the locally owed part of the grid
*/
for (j=info->ys; j<info->ys+info->ym j++) {
for (i=info->xs; i<info->xs+info->xm i++) {
if (i == 0 || j =0]| i == info->mx-1 || j == info->ny-1) {
FLIT0VT = x[pI0v]s
} else {
u = x[J1lr;
UX X (two*u - Xx[j][i-1] - x[j][1+1]) *hydhx;
uyy (two*u - x[j-1][1] - x[j+1][i])*hxdhy;
f[jJ][1] = uxx + uyy - sc*PetscExpScal ar(u);

i err = PetscLogFl ops(11*i nfo->yntinfo->xn); CHKERRQ i err);
Pet scFuncti onRet urn(0);

Nonlinear Solvers Examples

exl.c: Newton’s method to solve a two-variable system, sequentially
ex2.c: Newton method to solve u., + u? = f, sequentially

ex3.c: Newton methods to solve u,, + u? = f in parallel

ex5.c: Bratu nonlinear PDE in 2d

ex5s.c: 2d Bratu problem in shared memory parallel with SNES
ex6.C: Upy + u2 = f

ex14.c: Bratu nonlinear PDE in 3d

ex18.c: Nonlinear Radiative Transport PDE with multigrid in 2d
ex19.c: Nonlinear driven cavity with multigrid in 2d

ex20.c: Nonlinear Radiative Transport PDE with multigrid in 3d
ex21.c: Solves PDE optimization problem

ex22.c. Solves PDE optimization problem

ex23.c: Solves PDE problem from ex22

ex24.c. Solves PDE optimization problem of ex22

ex25.c: Minimum surface problem

ex26.c. Grad-Shafranov solver for one dimensional CHI equilibrium

PEISc Programming Aids

e Correctness Debugging
— Automatic generation of tracebacks
— Detecting memory corruption and leaks
— Optional user-defined error handlers
— Differential debugging

e Performance Debugging
— Integrated profiling using - | og_sunmary
— Profiling by stages of an application
— User-defined events

Debugging Tools

e Error handlers

e Many useful commandline options:

-start_in_debugger

-on_error_attach_debugger name

-on_error_abort

You may also need - di spl ay $DI SPLAY or

-di spl ay ‘ host nanme’ : 0. O to get the separate
debugger windows to appear. Also, placing a
breakpoint in PetscError will often give you control
when PETSc first detects an error.

Performance Tuning

e Limits of performance

e Finding problems
— Built-in timing information
— Adding user-specified states
— Pitfalls

e Using PETSc features
— Better data structures
— Aggregate operations

e Making best use of C or Fortran

L imits of Performance

e Real systems have many levels of memory
— Programming models try to hide memory hierarchy

e Simplest model: Two levels of memory
— Divide at the largest (relative) gap

— Processes have their own memory
— Managing a processes memory is known (if
unsolved) problem

— Exactly matches the distributed memory model

e But even the single process job is often bound by
memory performance

Sparse Matrix-Vector Product

e Common operation for optimal (in floating-point
operations) solution of linear systems

e Sample code

for row=0, n-1

m=i1[rowl] - i[row;
sum = O;
for k=O,m1

sum += *a++ * x[*j ++4];
y[row = sum

e Data structures are a[nnz], j[nnz], i[n], X[n], y[n]

Simple Performance Analysis

e Memory motion:
— nnz (sizeof(double) + sizeof(int)) +
n (2*sizeof(double) + sizeof(int))
— Perfect cache (never load same data twice)
e Computation:
— nnz multiply-add (MA)
e Roughly 12 bytes per MA

e Typical workstation node can move 1—4 bytes/MA
— Maximum performance is 4—33% of peak

More Performance Analysis

e Instruction counts:
— nnz (2 * load-double + load-int + mult-add) + n (load-int +
store-double)
e Roughly 4 instructions per multiply-add

e Maximum performance is 25% of peak (33% if MA overlaps
one load or store)

e Changing the matrix data structure (e.g., exploit small block
structure) allows some reuse of data in register, eliminating
some loads (of x and)

e Implementation improvements (tricks) cannot improve on
these limits

Why use BAIJ?

The BAIJ format can provide added performance:

Format Mflops

Ideal | Achieved
AlJ 49 45
BAIJ 64 25

These results, from a 250 MHz R10000, are for matrices with a natural
blocksize of four.

Multiple right-hand sides show much greater improvement, if you can
take advantage of them.

See “Toward Realistic Performance Bounds for Implicit CFD Codes,” in
the proceedings of Parallel CFD’99 (preprint also available at

www. nts. anl . gov/ ~gr opp/ bi b/ paper s/ 1999/ pcf d99/ gkks. ps)

www.mcs.anl.gov/~gropp/bib/papers/1999/pcfd99/gkks.ps

Finding.Performance Problems

e PETSc provides built-in tools to measure and report on
performance
-log_summary Provides a breakdown by routine of each PETSc
routine
-log_info Provides information on object use

-log_trace Trace the execution of each PETSc routine

e Make sure that you use an optimized version of PETSc
(BOPT=0) and that you have avoided “cold start” problems.

— PETSc provides PreLoadBegin, PreLoadStage, and
PreLoadEnd to help. This make it easy to ensure that a test is
run once to get memory “warmed up” and that timings are
taking from a second test.

Example log summary Output |

/ home/ gr opp/ proj ect s/ software/ petsc-tut/src/sles/poisson2
Usi ng Petsc Version 2.1.5, Patch O, Released Jan 27, 2002

Tinme (sec):
(bj ect s:

Fl ops:

Fl ops/ sec:
Menory:

MPI Messages:

MPI Message Lengt hs:

MPI Reducti ons:

Max

. 709e-02
. 000e+00

735e+04

. 694e+05
. 410e+04
. 000e+01
. 442e+03
. 450e+01

S e e

Max/ M n
1.
0. 00000

19728

56176

. 99360
. 06257
. 87500
. 90484
. 00000

N R OO

N

Avg

. 854e-02
. 000e+00

422e+04

. 073e+05

. 350e+01
. 183e+01

on a W n32_gnu nam

Tot al

5.687e+04
8. 293e+05
3. 264e+05
9. 400e+01
7.692e+03

Example log summary Output I

Max Ratio Max Rati o Max Ratio Mess Avg | en Reduct % % 9%V % %R % % %YM %A YR M op

--- Event Stage 0: Main Stage

Vec MDot 12 1.0 4.7554e-03 3.7 2.38e+06 3.7 0.0e+00 0.0e+00 1.2e+01 527 0 O 7 527 0 0 7 3
VecNor m 13 1.0 5.2183e-03 1.7 2.58e+05 2.6 0.0e+00 0.0e+00 1.3e+01 6 5 0 0 7 6 S5 0 0 7 0
VecScal e 13 1.0 4.4698e-05 1.3 1.13e+07 1.9 0. 0e+00 0.0e+00 0.0e+00 0 2 0 O O O 2 O O O 29
Vec Set 15 1.0 5.3079e-05 1.1 0.00e+00 0.0 0. 0e+00 0.0e+00 0.0e+00 O O O O O O O O O O 0
Vec AXPY 1 1.0 1.0895e-05 1.6 8.95e+06 2.4 0.0e+00 0.0e+00 0.0e+00 O O O O O O O O O O 18
Vec MAXPY 13 1.0 7.3752e-05 1.2 8.52e+07 1.7 0.0e+00 0.0e+00 0.0e+00 032 0O O O 032 0 O O 244
VecScat t er Begi n 13 1.0 1.4695e-04 1.3 0.00e+00 0.0 7.2e+01 8.0e+01 0.0e+00 O 077 75 0 0O 07775 O 0
VecScat t er End 13 1.0 4.4182e-03 2.2 0.00e+00 0.0 0. 0e+00 0.0e+00 0.0e+00 5 0 O O O 5 0 0 O O 0
Mat Mul t 12 1.0 4.7492e-03 2.0 1.23e+06 2.8 7.2e+01 8. 0e+01 0.0e+00 5 17 77 75 0 S5 17 77 75 O 2
Mat Sol ve 13 1.0 1.1091e-04 1.3 2.56e+07 1.5 0.0e+00 0.0e+00 0.0e+00 016 O O O 016 O O O 82
Mat LUFact or Num 1 1.0 3.5479e-05 1.3 5.46e+06 1.8 0.0e+00 0.0e+00 0.0e+00 0 1 O O O O 1 O O O 15
Mat | LUFact or Sym 1 1.0 1.9489e-03 1.9 0.00e+00 0.0 0.0e+00 0.0e+00 7.0e+00 2 O O O 4 2 0 O O 4 0
Mat Assenbl yBegi n 2 1.0 2.0382e-03 1.9 0.00e+00 0.0 0.0e+00 0.0e+00 4.0e+00 2 0 O O 2 2 0 0 0 2 0
Mat Assemnbl yEnd 2 1.0 4.9942e-03 1.3 0.00e+00 0.0 6.0e+00 4.0e+01 2.0e+01 6 0 6 311 6 0 6 311 0
Mat Get Or deri ng 1 1.0 6.5651e-04 1.3 0.00e+00 0.0 0.0e+00 0.0e+00 4.0e+00 1 O O O 2 1 0 O 0 2 0
PCSet Up 2 1.0 5.7393e-03 1.2 3.24e+04 1.7 0.0e+00 0.0e+00 2.2e+01 8 1 O 012 8 1 0 0 12 0
PCSet UpOnBI ocks 1 1.0 2.5428e-03 1.4 7.31e+04 1.6 0.0e+00 0.0e+00 1.1e+01 3 1 O O 6 3 1 0 0O 6 0
PCAppl vy 13 1.0 6.9981e-04 1.1 4.51e+06 1.7 0.0e+00 0.0e+00 0.0e+00 116 0 O O 116 0 O O 13
KSPGVRESOr t hog 12 1.0 4.9157e-03 3.4 4.21e+06 3.4 0.0e+00 0.0e+00 1.2e+01 554 0 O 7 554 0 0 7 6
SLESSet up 2 1.0 8.8296e-03 1.2 2.11e+04 1.7 0.0e+00 0.0e+00 3.2e+01 12 1 O 01812 1 O O 18 0
SLESSol ve 1 1.0 1.8024e-02 1.0 9.83e+05 1.6 7.2e+01 8.0e+01 4.5e+01 26 99 77 75 25 26 99 77 75 25 3

Adding User Events

It is easy to add user defined events to PETSc

i nt USER_EVENT;
Pet scLogEvent Regi st er (&USER_EVENT, "User event");
Pet scLogEvent Begi n(USER_EVENT, O, 0, 0, 0);
[code segnent to nonitor]
Pet scLogFl ops(user fl ops)
Pet scLogEvent End(USER_EVENT, 0, 0, 0O, 0) ;

“USER_EVENT” is returned by PETSc (instead of allowing
you to define it) so that many routines can define user
events without any possibility of two routines unintentionall
using the same event value.

Optaining Higher Performance with
el

e Often, the most important step is to make use of “aggregate operations” wherever
possible. That is, use one routine that performs multiple operations, instead of
multiple calls to a single routine.

— For setting the elements of a matrix or vector, use MatSetValues and
VecSetValues instead of MatSetValue and VecSetValue

— MatSetValuesBlocked inserts submatrices
— Same technique uses in parallel programming (both message-passing and
shared-memory)
e Consider other sparse data structures, particularly BAIJ and Bdiag
e Those mysterious parameters (like DI FFERENT _NONZERO PATTERN) can be very
Important. PETSc tries to provide a correct solution first
— As aresult, PETSc is more cautious that other environments

— Setting these parameters correctly can make a huge difference in
performance

Setting Multiple Matrix Values

Petsc provides several routines to add multiple entries at a time
to a matrix:
Mat Set Val ues(Mat mat, int nrows, int row dx[],
int ncols, int colidx[], PetscScal ar val s[],
| NSERT_VALUES or ADD VALUES)
Mat Set Val uesBl ocked(...) sane, but for blocked matrices

Matrix. Memory Preallocation

e PETSc sparse matrices are dynamic data
structures. Can add additional nonzeros
freely

e Dynamically adding many nonzeros
— requires additional memory allocations
— requires copies
— can kill performance

e Memory pre-allocation provides the freedom
of dynamic data structures plus good
performance

Indicating Expected Nonzeros

e For parallel sparse matrices

Mat CreateMPl Al J(..., int d nz,
const int d_nnz[], int o_nz,
const int o _nnz[], Mat *A)

where

d_nnz expected number of nonzeros per row in diagonal
portion of local submatrix. The “diagonal portion” is the
square diagonal block of the rows owned by this process.

o_nnz expected number of nonzeros per row in off-diagonal
portion of local submatrix

Verifying Predictions

Use runtime option: -log_info

[O] Mat Set UpPreal | ocati on: Warni ng not preallocating matri x storage

[O] Mat Assenbl yBegi n_MPI Al J: Stash has O entries, uses 0 mall ocs.

[O] Mat Assenbl yEnd _SegAl J: Matri x size: 50 X 50; storage space: 50 unneeded, 20
[O] Mat Assenbl yEnd _SegAl J: Nunber of mall ocs during Mat SetValues() is O

[O] Mat Assenbl yEnd _SegAl J: Mbst nonzeros in any rowis 5

[O] Mat _Al J_Checkl node: Found 50 nodes out of 50 rows. Not using |node routin
[1] Mat Assenbl yBegi n_MPI Al J: Stash has O entries, uses 0 mall ocs.

[1] Mat Assenbl yEnd_SegAl J: Matri x size: 50 X 50; storage space: 50 unneeded, 20
[1] Mat Assenbl yEnd_SegAl J: Nunber of nall ocs during Mat SetValues() is O

[1] Mat Assenbl yEnd_SegAl J: Mbost nonzeros in any rowis 5

[1] Mat _Al J_Checkl node: Found 50 nodes out of 50 rows. Not using |node routin
[1] Mat Assenbl yEnd_SegAl J: Matri x size: 50 X 10; storage space: 90 unneeded, 10
[1] Mat Assenbl yEnd_SegAl J: Nunber of mallocs during Mt SetVal ues() is O

[1] Mat Assenbl yEnd_SegAl J: Most nonzeros in any rowis 1

[1] Mat _Al J_Checkl node: Found 18 nodes of 50. Limt used: 5. Using |Inode rout|
[O] Mat Assenbl yEnd _SegAl J: Matri x size: 50 X 10; storage space: 90 unneeded, 10
[O] Mat Assenbl yEnd_SegAl J: Nunber of nall ocs during Mat Set Val'ues{)1s 0

Making.the Best Use of C

e C2000 has features to allow compilers to optimize memory
use

const Data is constant (cannot change because of a store
through another pointer)

restrict Datais accessed only through this pointer

e These allow Fortran-like argument semantics, allowing a
sophisticated compiler to produce code as good as Fortran
allows. Example: a routine to compute a «— a + b

I nt dadd(double * restrict a,
const double * restrict b, int n)

e Benefit depends on compiler and system. Small on most
PC’s; factor of ten (!) on one vector machine.

Making.the Best Use of Fortran

e Order array elements so that related
references are first

doubl e precision vars(2, 100, 100)
not
doubl e precision u(100, 100), v(100, 100)

This provides the best use of cache in typical
code

Benefit. of Reordering

For the Fun3d CFD code, changing the order of arrays provided

a factor of seven (!) improvement
Time on an IBM SP with different orderings, starting with original

(Basic) code.

Basic Interlaced Interlaced Blocking Interlaced Reordered

All

103.8 45.9 32 26.9

14.9

Topics.Not Covered

e PETSc contains many features, each
Intfroduced to provide a necessary feature for
an application or researcher

— Unstructured Meshes

— Matrix free methods

— Access to other packages

— Using different preconditioner matrices
— Others

Using PET Sc with Other Packages

e Linear solvers e Mesh and discretization tools

— AMG — Overture
www. ngnet . or g/ ngnet - codes- gnd. ht n www. | | nl . gov/ CASC/ Overture

— BlockSolve95 — SAMRAI
www. nts. anl . gov/ Bl ockSol ve95 www. | | nl . gov/ CASC/ SAMRAI

— Hypre — SUMAA3d
www. | I nl . gov/ casc/ hypre www. nts. anl . gov/ sumaa3d

— ILUTP ww. cs. umm. edu/ ~saad e Optimization software

— LUSOL — TAO ww. nts. anl . gov/t ao
wWww. sbsi - sol - opti m ze. com _ Veltisto

— SPAI | | B | 7 WWW. cS. nyu. edu/ ~bi ros/ vel tisto
www. sam mat h. et hz. ch/ ~gr ot e/ spai o Others

— SuperLU — Matlab www. nmat hwor ks. com

WWW. ner sc. gov/ ~xi aoye/ Super LU
— ParMETIS
e ODE solvers WWw. ¢s. umm. edu/ ~kar ypi s/ neti s/ parnetis
— PVODE

www. | | nl . gov/ CASC/ PVODE

www.mgnet.org/mgnet-codes-gmd.html
www.mcs.anl.gov/BlockSolve95
www.llnl.gov/casc/hypre
www.cs.umn.edu/~saad
www.sbsi-sol-optimize.com
www.sam.math.ethz.ch/~grote/spai
www.nersc.gov/~xiaoye/SuperLU
www.llnl.gov/CASC/PVODE
www.llnl.gov/CASC/Overture
www.llnl.gov/CASC/SAMRAI
www.mcs.anl.gov/sumaa3d
www.mcs.anl.gov/tao
www.cs.nyu.edu/~biros/veltisto
www.mathworks.com
www.cs.umn.edu/~karypis/metis/parmetis

Conclusion

e PETSc provides a powerful framework for
— Developing applications
— Experimenting with different algorithms
— Using abstractions to simplify parallel programming

e PETSc continues to grow and develop
— New routines added as needed and understood

— PETSc 3 will provide a more powerful framework for
combining tools written in different programming
languages

References

e Documentation ww. nts. anl . gov/ pet sc/ docs
— PETSc Users Manual
— Manual pages (the most up-to-date)
— Many hyperlinked examples
— FAQ, Troubleshooting info, installation info, etc.

e Publications ww. nts. anl . gov/ pet sc/ publ i cati ons
— Research and publications that make use of PETSc

e MPI information www. npi - f orum or g
e Using MPI (2"9 Edition), by Gropp, Lusk, and Skjellum

e Domain Decomposition, by Smith, Bjérstad, and Gropp

www.mcs.anl.gov/petsc/docs
www.mcs.anl.gov/petsc/publications
www.mpi-forum.org

	Introduction
	PETSc Team
	PETSc at Scale
	Performance of Fun3D/PETSc
	Tutorial Overview
	A Few Comments Before We Start
	
	Prerequisites
	A First PETSc Program
	Hello World
	Understanding the Code
	Hello World in Fortran
	Understanding the Code
	How To Compile, Link, and Run
	A Sample Makefile
	A Parallel Program
	Hello World Revisited
	Understanding the Program
	PETSc and PDEs
	Poisson Problem
	Schematic for Example
	Creating the Matrix
	Creating the Matrix II
	Understanding the Code I
	Understanding the Code II
	Data Structure Neutral Design
	Data Decomposition in PETSc
	Why Are PETSc Matrices The Way They Are?
	Vectors In PETSc
	Creating the Vectors I
	Creating the Vectors II
	Understanding the Code
	Solving a Poisson Problem I
	Solving a Poisson Problem II
	Understanding the Code
	Objects in PETSc
	Operations in PETSc
	Context Variables in PETSc
	SLES Structure
	Available Methods
	Using the Command Line Interface
	Monitoring Convergence
	Accessing the Solution
	PETSc Viewers
	Working With Vectors
	Example: Computing $|x-y|$
	Computing $|x-y|$ I
	Computing $|x-y|$ II
	Computing $|x-y|$ III
	Computing $|x-y|$ IV
	Distributed Arrays in PETSc
	Layout Of Distributed Arrays
	Distributed Arrays
	Setting the Vector Values I
	Setting the Vector Values II
	Understanding the Code
	Setting the Matrix Elements I
	Setting the Matrix Elements II
	Setting the Matrix Elements III
	Understanding the Code
	Poisson Solver Revisited
	Poisson Solver Revisited II
	Poisson Solver Revisited III
	DAs of other sizes
	Scaling Studies
	Incremental Application Improvement
	Examples of Linear Solves
	More Preconditioners
	Aside: Error Handling in PETSc
	Solving Nonlinear Equations
	Newton-based Methods
	PDE Jacobian
	A Simple Nonlinear PDE
	Evaluating the Function
	Stencils
	Global and Local Representations
	Using Ghost Points with DAs
	small Moving Data Between the Global and Local Representations
	Parallel Evaluation of the Function
	Providing the Function and Jacobian
	Specifying Callbacks
	Forming the Function I
	Forming the Function II
	Forming the Function III
	Understanding the Code
	Forming the Jacobian I
	Forming the Jacobian II
	Forming the Jacobian III
	Bratu Example I
	Bratu Example II
	Bratu Example III
	Understanding the Code
	Using the Command Line Interface
	Convenience Functions
	Example Local Function I
	Example Local Function II
	Nonlinear Solvers Examples
	PETSc Programming Aids
	Debugging Tools
	Performance Tuning
	Limits of Performance
	Sparse Matrix-Vector Product
	Simple Performance Analysis
	More Performance Analysis
	Why use BAIJ?
	Finding Performance Problems
	Example log_summary Output I
	Example log_summary Output II
	Adding User Events
	Obtaining Higher Performance with PETSc
	Setting Multiple Matrix Values
	Matrix Memory Preallocation
	Indicating Expected Nonzeros
	Verifying Predictions
	Making the Best Use of C
	Making the Best Use of Fortran
	Benefit of Reordering
	Topics Not Covered
	Using PETSc with Other Packages
	Conclusion
	References

