
SuperLUSuperLU: Sparse Direct Solver: Sparse Direct Solver

X. Sherry Li
xsli@lbl.gov

http://crd.lbl.gov/~xiaoye

ACTS Collection Workshop
August 6, 2003

X. Li 2

OutlineOutline

�Status of the software
�Some background of the algorithms
�Sparse matrix distribution and user interface
�Dissection of two applications

� Quantum mechanics (linear system)
[with M. Baertschy, C. W. McCurdy, T. N. Rescigno, W. A. Isaacs]

� Accelerator design (eigenvalue problem)
[with P. Husbands, C. Yang]

X. Li 3

What is What is SuperLUSuperLU

�Solve general sparse linear system A x = b.
� Example: A of dimension 105, only 10 ~ 100 nonzeros per row

�Algorithm: Gaussian elimination (LU factorization: A = LU),
followed by lower/upper triangular solutions.
� Store only nonzeros and perform operations only on nonzeros.

�Efficient and portable implementation for high-performance
architectures; flexible interface.

X. Li 4

Software StatusSoftware Status

�Friendly interface for Fortran users

�Continuing fundings from DOE TOPS SciDAC and NSF NPACI
programs

Real/complex,
Double

Real, doubleReal/complex,
Single/double

Data type

C + MPIC + Pthread
(or pragmas)

CLanguage

DistributedSMPSerialPlatform

SuperLU_DISTSuperLU_MTSuperLU

X. Li 5

Content of Content of SuperLUSuperLU LibraryLibrary

�LAPACK-style interface
� Simple and expert driver routines
� Computational routines
� Comprehensive testing routines and example programs

�Functionalities
� Minimum degree ordering [MMD, Liu `85] applied to ATA or AT+A
� User-controllable pivoting

� Pre-assigned row and/or column permutations
� Partial pivoting with threshold

� Solving transposed system
� Equilibration
� Condition number estimation
� Iterative refinement
� Componentwise error bounds [Skeel `79, Arioli/Demmel/Duff `89]

X. Li 6

FillFill--in in Sparse GEin in Sparse GE

�Original zero entry Aij becomes nonzero in L or U.

Natural order: nonzeros = 233 Min. Degree order: nonzeros = 207

X. Li 7

SupernodeSupernode

�Exploit dense submatrices in the L & U factors

�Why are they good?
� Permit use of Level 3 BLAS
� Reduce inefficient indirect addressing (scatter/gather)
� Reduce graph algorithms time by traversing a coarser graph

X. Li 8

Overview of the AlgorithmsOverview of the Algorithms

� Sparse LU factorization: Pr A Pc
T = L U

� Choose permutations Pr and Pc for numerical stability, minimizing fill-in,
and maximizing parallelism.

� Phases for sparse direct solvers.
1. Order equations & variables to minimize fill-in.

� NP-hard, so use heuristics based on combinatorics.
2. Symbolic factorization.

� Identify supernodes, set up data structures and allocate memory for L & U.
3. Numerical factorization – usually dominates total time.

� How to pivot?
4. Triangular solutions – usually less than 5% total time.

� In SuperLU_DIST, only numeric phases are parallel so far.

X. Li 9

Numerical PivotingNumerical Pivoting

�Goal of pivoting is to control element growth in L & U for stability
� For sparse factorizations, often relax the pivoting rule to trade with better

sparsity and parallelism (e.g., threshold pivoting, static pivoting , . . .)

�Partial pivoting used in sequential SuperLU (GEPP)
� Can force diagonal pivoting (controlled by diagonal threshold)
� Hard to implement scalably for sparse factorization

�Static pivoting used in SuperLU_DIST (GESP)
� Before factorization, scale and permute A to maximize diagonal: Pr Dr A Dc

= A’
� During factorization of A’ = LU, replace tiny pivots by √ε ||A||, without

changing data structures for L & U
� If needed, use a few steps of iterative refinement after the first solution
� Quite stable in practice

X. Li 10

Ordering for Sparse Ordering for Sparse CholeskyCholesky (symmetric)(symmetric)

�Local greedy heuristics
� Minimum degree (upper bound on fill-in)

� [Tinney/Walker `67, George/Liu `79, Liu `85, Amestoy/Davis/Duff `94, Ashcraft
`95, Duff/Reid `95, et al.]

� Minimum deficiency (actual fill-in)
� [Tinney/Walker `67, Ng/Raghavan `97, et al.]

�Global graph partitioning heuristics
� Nested dissection [George `73]
� Multilevel schemes [Hendrickson/Leland `94, Karypis/Kumar `95, et al.]
� Spectral bisection [Simon et al. `90-`95, et al.]
� Geometric and spectral bisection [Chan/Gilbert/Teng `94]

�Hybrid of two [Ashcraft/Liu `96, Hendrickson/Rothberg `97]

X. Li 11

Ordering for LU (Ordering for LU (unsymmetricunsymmetric))

� Can use a symmetric ordering on a symmetrized matrix . . .
� Case of partial pivoting (sequential SuperLU):

Use ordering based on ATA
� If RTR = ATA and PA = LU, then for any row permutation P,

struct(L+U) ⊆ struct(RT+R) [George/Ng `87]
� Making R sparse tends to make L & U sparse . . .

� Case of static pivoting (SuperLU_DIST):
Use ordering based on AT+A
� If RTR = AT+A and A = LU, then struct(L+U) ⊆ struct(RT+R)
� Making R sparse tends to make L & U sparse . . .

� Can find better ordering based solely on A, without symmetrization
[Amestoy/Li/Ng `03]

X. Li 12

Ordering Interface in Ordering Interface in SuperLUSuperLU

�SuperLU library contains the following routines:
� Form ATA
� Form AT+A
� MMD (Multiple Minimum Degree, courtesy of Joseph Liu)
� COLAMD: www.netlib.org/linalg/colamd/

�You may use any other – just input a permutation vector to
SuperLU
Example:
� (Par)Metis: www-users.cs.umn.edu/~karypis/metis/
� Chaco: www.cs.sandia.gov/~bahendr/chaco.html
� …

X. Li 13

Ordering ComparisonOrdering Comparison

9.110.735.327.726068WANG4

8.011.98.822.6120750TWOTONE

0.0020.155.54.417758MEMPLUS

68.442.7120.473.551993ECL32

34.040.244.649.838744BBMAT

N Flops (109)Flops (109) Fill (106)Fill (106)Matrix

GESP, AMD(AT+A)
(SuperLU_DIST)

GEPP, COLAMD
(SuperLU)

X. Li 14

Symbolic FactorizationSymbolic Factorization

�Cholesky [George/Liu `81 book]
� Use elimination graph of L and its transitive reduction (elimination tree)
� Complexity linear in output: O(nnz(L))

�LU
� Use elimination graphs of L & U and their transitive reductions (elimination

DAGs) [Tarjan/Rose `78, Gilbert/Liu `93, Gilbert `94]
� Improved by symmetric structure pruning [Eisenstat/Liu `92]
� Improved by supernodes
� Complexity greater than nnz(L+U), but much smaller than flops(LU)

X. Li 15

Numerical FactorizationNumerical Factorization

�Sequential SuperLU
� Enhance data reuse in memory hierarchy by calling Level 3 BLAS on the

supernodes

�SuperLU_MT
� Exploit both coarse and fine grain parallelism
� Employ dynamic scheduling to minimize parallel runtime

�SuperLU_DIST
� Enhance scalability by static pivoting and 2D matrix distribution

X. Li 16

2D Block Cyclic Layout for L and U2D Block Cyclic Layout for L and U

X. Li 17

Create 2D Process Grid from MPI CommunicatorCreate 2D Process Grid from MPI Communicator

�The 2D process grid/communicator must be created from an
existing base MPI communicator (e.g., MPI_COMM_WORLD).

�SuperLU uses the newly created communicator for all the internal
communications.

�Example:
Solving a preconditioned linear system

M-1A x = M-1 b
M = diag(A11, A22, A33, …)

X. Li 18

Two Ways to Create a Two Ways to Create a SuperLUSuperLU Process GridProcess Grid

�Superlu_gridinit(MPI_Comm Bcomm, int nprow, int npcol,
gridinfo_t *grid);

� This maps the first nprow*npcol processes in the MPI communicator
Bcomm to SuperLU 2D grid.

�Superlu_gridmap(MPI_Comm Bcomm, int nprow, int npcol,
int usermap[], int ldumap, gridinfo_t *grid);

� This maps an arbitrary set of nprow*npcol processes in the MPI
communicator
Bcomm to SuperLU 2D grid. The ranks of the selected MPI processes are
given in usermap[] array. For example:

0 1 2
0
1 161514

131211

X. Li 19

Distributed Input Interface in Distributed Input Interface in SuperLUSuperLU_DIST_DIST

� Inputs A (sparse) and B (dense) are distributed by block rows

�Each process has a structure to store local part of A:
Number of local rows
Number of local nonzeros
First row number of the block
(nzval, colind, rowptr) – Compressed Row Storage

�The library has a “distribution” phase to re-distribute the initial
values of A to the 2D block-cyclic data structure of L & U.
� All-to-all communication, entirely parallel
� < 10% of total time for most matrices

X. Li 20

ScalabilityScalability
� 3D KxKxK cubic grids, scale N2 = K6 with P for constant work per processor
� Achieved 12.5 and 21.2 Gflops on 128 processors
� Performance sensitive to communication latency

� Cray T3E latency: 3 microseconds (~ 2702 flops)
� IBM SP latency: 8 microseconds (~ 11940 flops)

X. Li 21

Debugging PerformanceDebugging Performance

�Check ordering
�Diagonal pivoting is preferable

� E.g., matrix is diagonal dominant, or SPD, . . .

�Need good BLAS library
� May need adjust block size for each architecture

(Parameters modifiable in routine sp_ienv())
� Larger blocks better for uniprocessor
� Smaller blocks better for parallellism and load balance

� Open problem: automatic tuning for block size?

X. Li 22

Example 1: Quantum MechanicsExample 1: Quantum Mechanics

�Scattering in a quantum system of three charged particles

�Simplest example is ionization of a hydrogen atom by
collision with an electron:

e- + H � H+ + 2e-

�Seek the particles’ wave functions represented by the
time-independent Schrodinger equation

�First solution to this long-standing unsolved problem
[Recigno, McCurdy, et. al. Science, 24 Dec 1999]

X. Li 23

Quantum Mechanics, cont.Quantum Mechanics, cont.

�Finite difference leads to complex, unsymmetric systems,
very ill-conditioned
� Diagonal blocks have the structure of 2D finite difference

Laplacian matrices
Very sparse: nonzeros per row <= 13

� Off-diagonal block is a diagonal matrix
� Between 6 to 24 blocks, each of order

between 200K and 350K
� Total dimension up to 8.4 M

�Too much fill if use direct method . . .

X. Li 24

SuperLUSuperLU_DIST as _DIST as PreconditionerPreconditioner

�SuperLU_DIST as block-diagonal preconditioner for CGS
iteration

M-1A x = M-1b
M = diag(A11, A22, A33, …)

�Run multiple SuperLU_DIST simultaneously for diagonal blocks
�No pivoting, nor iterative refinement

�96 to 280 iterations @ 1 ~ 2 minute/iteration using 64 IBM SP
processors
�Total time ~ 1 to 8 hours

X. Li 25

One Block Timings on IBM SPOne Block Timings on IBM SP

�Complex, unsymmetric

�N = 2 M, NNZ = 26 M
�Fill-ins using Metis: 1.3 G

(50x fill)
�Factorization speed

� 10x speedup (4 to 128 P)
� Up to 30 Gflops

X. Li 26

Example 2: Accelerator Cavity DesignExample 2: Accelerator Cavity Design

�Calculate cavity mode frequencies and field vectors
�Solve Maxwell equation in electromagnetic field
�Omega3P simulation code developed at SLAC

Omega3P model of a 47-cell section of the 206-cell
Next Linear Collider accelerator structure

Individual cells used in
accelerating structure

X. Li 27

Accelerator, cont.Accelerator, cont.

�Finite element methods lead to
large sparse generalized
eigensystem K x = λλλλ M x

�Real symmetric for lossless
cavities; Complex symmetric
when lossy in cavities

�Seek interior eigenvalues
(tightly clustered) that are
relatively small in magnitude

X. Li 28

Accelerator, cont.Accelerator, cont.

�Speed up Lanczos convergence by shift-invert
� Seek largest eigenvalues, well separated, of the transformed
system

M (K - σ M)-1 x = µ M x
µ = 1 / (λ - σ)

�The Filtering algorithm [Y. Sun]
� Inexact shift-invert Lanczos + JOCC

�We added exact shift-invert Lanczos (ESIL)
� PARPACK for Lanczos
� SuperLU_DIST for shifted linear system
� No pivoting, nor iterative refinement

X. Li 29

DDS47, Linear ElementsDDS47, Linear Elements

�Total eigensolver time: N = 1.3 M, NNZ = 20 M

dds47 Performace (16 eigenvalues)

0

2000

4000

6000

8000

10000

12000

14000

16 32 48 64

Processors

Ti
m

e
(s

)

Minimum Degree
METIS
Filtering
METIS+Shared
Minimum Degree Shared

X. Li 30

Largest Largest EigenEigen Problem Solved So FarProblem Solved So Far

�DDS47, quadratic elements
� N = 7.5 M, NNZ = 304 M
� 6 G fill-ins using Metis

�24 processors (8x3)
� Factor: 3,347 s
� 1 Solve: 61 s
� Eigensolver: 9,259 s (~2.5 hrs)

� 10 eigenvalues, 1 shift, 55 solves

X. Li 31

SummarySummary

�Efficient implementations of sparse LU on high-performance
machines

�More sensitive to latency than dense case
�Need more families of unsymmetric test matrices
�Continuing developments funded by TOPS and NPACI programs

� Improve triangular solution
� ILU preconditioner
� Parallel ordering and symbolic factorization
� Integrate into more applications

�Survey of other sparse direct solvers: “Eigentemplates” book
(www.netlib.org/etemplates)
� LLT, LDLT, LU

