HPC Middleware (HPC-MW)
Infrastructure for Scientific Applications on HPC Environments

Overview and Recent Progress

Kengo Nakajima
RIST, FSIS/University of Tokyo and CREST/JST

4th ACTS Workshop, August 5-8, 2003.
Lawrence Berkeley National Laboratory
Berkeley, CA, USA.
Frontier Simulation Software for Industrial Science (FSIS)

http://www.fsis.iis.u-tokyo.ac.jp

- Part of "IT Project" in MEXT (Ministry of Education, Culture, Sports, Science & Technology)
- HQ at Institute of Industrial Science, University of Tokyo
 - 5 years
 - 12M USD/yr.
 - 7 internal projects
 - > 100 people involved.

- Focused on Industry Use, Public Use.
Background

- Various Types of HPC Platforms
 - Parallel Computers
 - PC Clusters
 - MPP with Distributed Memory
 - SMP Cluster (8-way, 16-way, 256-way)
 - Power, HP-RISC, Alpha/Itanium, Pentium, Vector PE
 - GRID Environment -> Various Resources
- Parallel/Single PE Optimization is important !!
 - Portability under GRID environment
 - Machine-dependent optimization/tuning.
 - Everyone knows that ... but it's a big task especially for application experts, scientists.
Reordering for SMP Cluster with Vector PEs: ILU Factorization

PDJDS/CM-RCM

PDCRS/CM-RCM
short innermost loop

CRS no re-ordering
3D Elastic Simulation

Problem Size vs GFLOPS

Earth Simulator/SMP node (8 PEs)

- ★: PDJDS/CM-RCM
- ▲: PCSR/CM-RCM
- ▲: Natural Ordering

DOF vs GFLOPS
3D Elastic Simulation
Problem Size ~ GFLOPS
Intel Xeon 2.8 GHz, 8 PEs

●: PDJDS/CM-RCM, ■: PCRS/CM-RCM, ▲: Natural Ordering
Volume Rendering Module using Voxels

On PC Cluster
- Hierarchical Background Voxels
- Linked-List

On Earth Simulator
- Globally Fine Voxels
- Static-Array
Background (cont.)

- Simulation methods such as FEM, FDM etc. have several typical processes for computation.
- How about "hiding" these process from users by Middleware between applications and compilers?
 - Development: efficient, reliable, portable, easy-to-maintain
 - accelerates advancement of the applications (= physics)
 - **HPC-MW = Middleware close to "Application Layer"**

![Diagram of software layers]

- Applications
- Middleware
- Compilers, MPI etc.
Example of HPC Middleware
Individual Process could be optimized for Various Types of MPP Architectures

FEM
- I/O
- Matrix Assemble
- Linear Solver
- Visualization

MPP-A
MPP-B
MPP-C
Example of HPC Middleware

Parallel FEM Code Optimized for ES

FEM code developed on PC

I/F for I/O I/F for Mat. Ass. I/F for Solvers I/F for Vis.

Matrix Assemble Linear Solver Vis.

HPC-MW for Earth Simulator

I/O Matrix Assemble Linear Solver Vis.

HPC-MW for Xeon Cluster

I/O Matrix Assemble Linear Solver Vis.

HPC-MW for Hitachi SR8000
HPC Middleware (HPC-MW)?

- Based on idea of "Plug-in" in GeoFEM.

http://geofem.tokyo.rist.or.jp/
What can we do by HPC-MW?

- We can develop optimized/parallel code easily on HPC-MW from user's code developed on PC.

Library-Type
- most fundamental approach
- optimized library for individual architecture

Compiler-Type
- Next Generation Architecture
- Irregular Data

Network-Type
- GRID Environment,
- Large-Scale Computing (Virtual Petaflops), Coupling.
HPC-MW Procedure

- Initial Entire Mesh Data
- Utility Software for Parallel Mesh Generation & Partitioning
- Distributed Local Mesh Data
- FEM Source Code by Users
- FEM Codes
- Library-type HPC-MW
- Compiler-Type HPC-MW Source Code
- Network-Type HPC-MW Source Code
- MPICH, MPICH-G
- HW Data
- Compiler-Type HPC-MW Generator
- Network-Type HPC-MW Generator
- Distributed Local Mesh Data
- HPC-MW Prototype Source File
- Network HW Data
- MPICH, MPICH-G
- Exec. File Parallel FEM
- CNTL Data FEM
- Distributed Local Results
- Patch File for Visualization
- Image File for Visualization

What is new, What is nice?

- Application Oriented (limited to FEM at this stage)
 - Various types of capabilities for parallel FEM are supported.
 - **NOT** just a library

- Optimized for Individual Hardware
 - Single Performance
 - Parallel Performance
Schedule

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prototype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Library-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPC-MW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compiler-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPC-MW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEM Codes on HPC-MW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ▲ Public Release

- Scalar
- Vector
- Compiler
- Network
System for Development

HPC-MW

Library-Type
Compiler-Type
Network-Type
I/O
Vis.
Solvers
Coupler
AMR
DLB
Mat.Ass.

FEM Code on HPC-MW

Solid
Fluid
Thermal

HW Vendors

Public Users

Infrastructure

Feed-back, Comments

Public Release

HW Info.

Feed-back, Appl. Info.
FY. 2003

- Library-Type HPC-MW
 - FORTRAN90, C, PC-Cluster Version
 - Public Release
 - Sept. 2003: Prototype Released
 - March 2004: Full version for PC Cluster

- Evaluation by FEM Code
Library-Type HPC-MW
Mesh Generation is not considered

- Parallel I/O: I/F for commercial code (NASTRAN etc.)
- Adaptive Mesh Refinement (AMR)
- Dynamic Load-Balancing using \texttt{pMETIS} (DLB)
- Parallel Visualization
- Linear Solvers (GeoFEM + AMG, SAI)
- FEM Operations (Connectivity, Matrix Assembling)
- Coupling I/F
- Utility for Mesh Partitioning
- On-line Tutorial
AMR+DLB
Parallel Visualization

Scalar Field
- Surface rendering
- Interval volume-fitting
- Volume rendering

Vector Field
- Streamlines
- Particle tracking
- Topological map
- LIC
- Volume rendering

Tensor Field
- Hyperstreamlines

Extension of functions
Extension of dimensions
Extension of Data Types
Parallel Linear Solvers

On the Earth Simulator: 176 node, 3.8 TFLOPS
Coupler

Fluid = MAIN
Structure is called from Fluid as a subroutine through Couper.

```
module hpcmw_mesh
  type hpcmw_local_mesh
    ...
  end type hpcmw_local_mesh
end module hpcmw_mesh
```

```
FLUID
program fluid
  use hpcmw_mesh
  type (hpcmw_local_mesh) :: local_mesh_b
  ...
  call hpcmw_couple_PtoS_put
  call structure_main
  call hpcmw_couple_StoP_get
  ...
end program fluid
```

```
STRUCTURE
subroutine structure_main
  use hpcmw_mesh
  type (hpcmw_local_mesh) :: local_mesh_b
  ...
  call hpcmw_couple_PtoS_get
  ...
  call hpcmw_couple_StoP_put
end subroutine structure_main
```
FEM Codes on HPC-MW

- **Primary Target:** Evaluation of HPC-MW itself!
- **Solid Mechanics**
 - Elastic, Inelastic
 - Static, Dynamic
 - Various types of elements, boundary conditions.
- **Eigenvalue Analysis**
- **Compressible/Incompressible CFD**
- **Heat Transfer with Radiation & Phase Change**
Release in Late September 2003

- Library-Type HPC-MW
 - Parallel I/O
 - Original Data Structure, GeoFEM, ABAQUS
 - Parallel Visualization
 - PVR, PSR
 - Parallel Linear Solvers
 - Preconditioned Iterative Solvers (ILU, SAI)
 - Utility for Mesh Partitioning
 - Serial Partitioner, Viewer
 - On-line Tutorial
- FEM Code for Linear-Elastic Simulation (prototype)
Technical Issues

- Common Data Structure
 - Flexibility vs. Efficiency
 - Our data structure is efficient ...
 - How to keep user's own data structure

- Interface to Other Toolkits
 - PETSc (ANL), Aztec/Trillinos (Sandia)
 - ACTS Toolkit (LBNL/DOE)
 - DRAMA (NEC Europe), Zoltan (Sandia)
Strategy for Public Use

- General Purpose Parallel FEM Code
- Environment for Development (1): for Legacy Code
 - "Parallelization"
 - F77->F90, COMMON -> Module
 - Parallel Data Structure, Linear Solvers, Visualization
- Environment for Development (2): from Scratch
 - Education
- Various type of collaboration
On-going Collaboration

- Parallelization of Legacy Codes
 - CFD Grp. in FSIS project
 - Mitsubishi Material: Groundwater Flow
 - JNC (Japan Nuclear Cycle Development Inst.): HLW
 - others: research, educations.

- Part of HPC-MW
 - Coupling Interface for Pump Simulation
 - Parallel Visualization: Takashi Furumura (ERI/U.Tokyo)
On-going Collaboration

- Environment for Development
 - ACCESS (Australian Computational Earth Systems Simulator) Group

- Research Collaboration
 - JAERI ITBL
 - DOE ACTS Toolkit (Lawrence Berkeley National Laboratory)
 - NEC Europe (Dynamic Load Balancing)
 - ACES GRID
 - APEC Cooperation for Earthquake Simulation
Further Study/Works

- Develop HPC-MW
 - Collaboration
 - Simplified I/F for Non-Experts
 - Interaction is important !!: Procedure for Collaboration

- Promotion for Public Use
 - Parallel FEM Applications
 - Parallelization of Legacy Codes
 - Environment for Development
Preliminary Study in FY.2002

- FEM Procedure for 3D Elastic Problem
 - Parallel I/O
 - Iterative Linear Solvers (ICCG, ILU-BiCGSTAB)
 - FEM Procedures (Matrix Connectivity/Assembling)

- Linear Solvers
 - SMP Cluster/Distributed Memory
 - Vector/Scalar Processors
 - CM-RCM/MC Reordering
Method of Matrix Storage

- Scalar/Distributed Memory
 - CRS with Natural Ordering
- Scalar/SMP Cluster
 - PDCRS/CM-RCM
 - PDCRS/MC
- Vector/Distributed & SMP Cluster
 - PDJDS/CM-RCM
 - PDJDS/MC
Main Program

```
program SOLVER33_TEST
  use solver33
  use hpcmw_all
  implicit REAL*8(A-H,O-Z)
  call HPCMW_INIT
  call INPUT_CNTL
  call INPUT_GRID
  call MAT_CON0
  call MAT_CON1
  call MAT_ASS_MAIN (valA,valB,valX)
  call MAT_ASS_BC
  call SOLVE33 (hpcmwIarray, hpcmwRarray)
  call HPCMW_FINALIZE
end program SOLVER33_TEST
```

FEM program developed by users

- call same subroutines
- interfaces are same
- NO MPI !!

Procedure of each subroutine is different in the individual library
do ie = 1, 8
 ip = nodLOCAL(ie)
do je = 1, 8
 jp = nodLOCAL(je)

 kk= 0
 if (jp.gt.ip) then
 iiS= indexU(ip-1) + 1
 iiE= indexU(ip)
 do k= iiS, iiE
 if (itemU(k).eq.jp) then
 kk= k
 exit
 endif
 enddo
 endif
 if (jp.lt.ip) then
 iiS= indexL(ip-1) + 1
 iiE= indexL(ip)
 do k= iiS, iiE
 if (itemL(k).eq.jp) then
 kk= k
 exit
 endif
 enddo
 endif
 endif
enddo

PNXi= 0.d0
PNYi= 0.d0
PNZi= 0.d0
PNXj= 0.d0
PNYj= 0.d0
PNZj= 0.d0
VOL= 0.d0

do kpn= 1, 2
 do jpn= 1, 2
 do ipn= 1, 2
 coef= dabs(DETJ(ipn,jpn,kpn))*WEI(ipn)*WEI(jpn)*WEI(kpn)

 VOL= VOL + coef
 PNXi= PNX(ipn,jpn,kpn,ie)
PNYi= PNY(ipn,jpn,kpn,ie)
PNZi= PNZ(ipn,jpn,kpn,ie)
PNXj= PNX(ipn,jpn,kpn,je)
PNYj= PNY(ipn,jpn,kpn,je)
PNZj= PNZ(ipn,jpn,kpn,je)

 a11= valX*(PNXi*PNXj+valB*(PNYi*PNYj+PNZi*PNZj))*coef
 a22= valX*(PNYi*PNYj+valB*(PNZi*PNZj+PNXi*PNXj))*coef
 a33= valX*(PNZi*PNZj+valB*(PNXi*PNXj+PNYi*PNYj))*coef

 a12= (valA*PNXi*PNYj + valB*PNXj*PNYi)*coef
 a13= (valA*PNXi*PNZj + valB*PNXj*PNZi)*coef
 ...
 endif
 enddo
enddo
endif
endif
endif
do ie = 1, 8
 ip = nodLOCAL(ie)
 if (ip.le.N) then
 do je = 1, 8
 jp = nodLOCAL(je)
 kk = 0
 if (jp.gt.ip) then
 ipU = OLDtoNEW_U(ip)
 jpU = OLDtoNEW_U(jp)
 kp = PEon(ipU)
 iv = COLORon(ipU)
 nn = ipU - STACKmc((iv-1)*PEsmpTOT+kp-1)
 do k = 1, NUmaxHYP(iv)
 iS = indexU(npUX1*(iv-1)+PEsmpTOT*(k-1)+kp-1) + nn
 if (itemU(iS).eq.jpU) then
 kk = iS
 exit
 endif
 enddo
 endif
 if (jp.lt.ip) then
 ipL = OLDtoNEW_L(ip)
 jpL = OLDtoNEW_L(jp)
 kp = PEon(ipL)
 iv = COLORon(ipL)
 nn = ipL - STACKmc((iv-1)*PEsmpTOT+kp-1)
 do k = 1, NLmaxHYP(iv)
 iS = indexL(npLX1*(iv-1)+PEsmpTOT*(k-1)+kp-1) + nn
 if (itemL(iS).eq.jpL) then
 kk = iS
 exit
 endif
 enddo
 endif
 enddo
 endif
 PN Xi = 0.d0
 PNYi = 0.d0
 PNZi = 0.d0
 PN Xj = 0.d0
 PNYj = 0.d0
 PNZj = 0.d0
 VOL = 0.d0
enddo

Mat.Ass. for SMP Cluster/Vector
Hardware

- Hitachi SR8000/128
 - SMP Cluster
 - 8 PE/node
 - Pseudo-Vector

- Xeon 2.8 GHz Cluster
 - 2 PE/node, Myrinet
 - Flat MPI only

- Hitachi SR2201
 - Pseudo-Vector
 - Flat MPI
Hitachi SR8000/128
8 PEs/1-SMP node

●: PDJDS, ○: PDCRS, ▲: CRS-Natural
Xeon & SR2201

8 PEs

● : PDJDS, ○ : PDCRS, ▲ : CRS-Natural

Not so significant reduce due to pseudo-vector.