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TSTT  is a SciDAC
Integrated Scientific Infrastructure Center

• SciDAC is a 5-year program in the Office of Science 
at the Department of Energy (started August 2001)

• Develop Scientific Computing Software and 
Hardware Infrastructure needed to use terascale
computers to advance DOE research programs 
– basic energy sciences
– biological and environmental research 
– fusion energy sciences
– high-energy and nuclear physics

“ISIC”“ISIC”
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Vision: Revolutionize the simulation 
cycle with plug-and-play software tools
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Vision: Revolutionize the simulation 
cycle with plug-and-play software tools
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Vision: Revolutionize the simulation 
cycle with plug-and-play software tools
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Vision: Revolutionize the simulation 
cycle with plug-and-play software tools
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Vision: Revolutionize the simulation 
cycle with plug-and-play software tools
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Vision: Revolutionize the simulation 
cycle with plug-and-play software tools
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Vision: Revolutionize the simulation 
cycle with plug-and-play software tools
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The TSTT Center

• Goal: To enable high-fidelity calculations based on 
multiple coupled physical processes and multiple physical 
scales 
– Adaptive methods
– Composite or hybrid solution strategies
– High-order discretization strategies

• Participants: TSTT brings together many meshing and 
discretization tools
– Structured Grids:  Overture, ORNL variational techniques
– Unstructured Meshes: AOMD, MOAB, NWGrid, FronTier
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• TSTT tools all meet particular needs, but
– They do not interoperate to form hybrid, composite meshes
– They cannot be easily interchanged in an application

• In general the technology requires too much software 
expertise from application scientists
– Difficult to improve existing codes
– Difficult to design and implement new codes

The TSTT center recognizes this gap and is addressing the 
technical and human barriers preventing use of adaptive, 

composite, hybrid methods

The Challenge
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We are addressing SciDAC applications 
needs through a two-pronged approach

• Near term: deployment of current TSTT mesh and 
discretization capabilities by partnering with SciDAC 
applications

• Longer term: development of interoperable software 
tools enabling
– Rapid prototyping of new applications
– Plug-and-play insertion of mesh and discretization 

technology through uniform software interfaces

Near term collaborations helps usNear term collaborations helps us
understand application requirements …understand application requirements …

… feeding into interface design of … feeding into interface design of 
future software componentsfuture software components
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TSTT collaborations with SLAC have 
enhanced accelerator design capabilities

• Tau3P is a successful time-dependent 
electromagnetic design code for SLAC
– The basic numerical method in Tau3P (DSI scheme) is 

unstable on general meshes
– Time-series filter is often successful, but unreliable

• In collaboration with SLAC scientists, TSTT has
– Custom-built meshes with attention to quality 

requirements
• Resulted in recent decision to use Tau3P as vehicle for 

further PEP-II IR design studies
– Carefully studied dependence of instability on mesh 

quality metrics
– Consulted on the next generation, FEM-based code 
– Investigated alternative discretization approaches

• Stable, hybrid mesh DSI schemes
• Maxwell solvers on overset grids using Overture
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High-order discretizations approaches are 
being explored for fusion MHD applications

• Fusion PIs:  Jardin/Strauss (PPPL)
• TSTT PIs: Fischer(ANL), Shephard/Flaherty (RPI)
• Goal: To test high-order and adaptive techniques; 

compare to existing linear FEM
• Progress: Investigating a variety of high order 

techniques
– Spectral elements successfully used in highly 

anisotropic diffusion regimes 
– Showed for fixed resolution that higher-order techniques 

yield more accurate results, more efficiently than lower-
order methods

– Potential and primitive variable mixed formulations for 
the 2D adipole vortex flow pattern using FEM

– Developed a posteriori temporal and spatial error 
estimates for magnetic field

– Successfully solved the tilt instability test case showing 
the utility of adaptive methods

Diffusion of an initially isolated 
Gaussian pulse following the 
magnetic field lines in the Tokamak
using spectral element 
discretizations.

The current sheets and 
adaptive computational 
mesh for the tilt 
instability problem.
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Optimal mesh generation and adaptive 
methods reduce error in climate applications

• Application PI: Drake (ORNL)
• TSTT PI: Khamayseh (ORNL)
• Goal: Given an initial isotropic or anisotropic 

planar or surface mesh and a solution field with 
large gradient mountain heights, use solution 
based r-adaptation to minimize solution error

• Progress:
– Several different meshing strategies developed 

for structured and unstructured surfaces
– Proof of principle of meshing technologies 

demonstrated, integrated in next generation 
climate codes

– Improving the prediction of rainfall, snowfall and 
cloud cover in regional weather models

Orography field showing high 
altitude over the Himalayas and 
alps; Structured adapted spherical 
mesh, hybrid geodesic mesh, and 
unstructured mesh based on 
orographic field data
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TSTT technologies used to understand 
microbial cell floc behavior

• TSTT PI: Trease
• Goal: To understand the behavior of 

Shewanella microbe flocs in oxygen 
rich environments

• Progress:
– Floc geometry built using image 

reconstruction techniques from a stack of 
confocal images

– TSTT unstructured mesh generated using 
NWGrid

– Solve reaction-diffusion equations to find the 
concentration of oxygen in the floc
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Long Term Strategy

• Create interoperable meshing and discretization
components
– Common interfaces for mesh/geometry query and modification
– Initial design will account for interoperability at all levels
– Encapsulate existing TSTT software tools into CCA-compliant 

components for plug and play

• Develop new technologies as needed to enable 
interoperability
– Mesh quality improvement for hybrid meshes
– AMR/Front tracking schemes
– High-level discretization library
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Creating interoperable tools requires a 
common abstraction framework

• Level 1: Geometric description 
of the domain
– provides a common frame of 

reference for all tools
– facilitates multilevel solvers
– facilitates transfer of information in 

discretizations
• Level 2: Full geometry hybrid 

meshes
– mesh components
– communication mechanisms that 

link them (key new research area)
–– allows structured and unstructured allows structured and unstructured 

meshes to be combined in a single meshes to be combined in a single 
computationcomputation

• Level 3: Mesh Components

Geometry
Information
(Level A)

Full 
Geometry
Meshes
(Level B)

Mesh
Components
(Level C)

Access through both low and high level interfaces
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TSTT data model abstracts 
PDE-simulation data hierarchy

• Core Data Types
– Geometric Data: provides a high level description of the 

boundaries of the computational domain; e.g., CAD, image, or 
mesh data

– Mesh Data: provides the geometric and topological information 
associated with the discrete representation of the 
computational domain

– Field Data: provides access to the time dependent physics 
variables associated with application solution.  These can be 
scalars, vectors, tensors, and associated with any mesh entity.

• Data Relation Manager
– Provides control of the relationships among two or more the 

core data types.  It resolves cross references between entities 
in different groups and provides additional functionality that 
depends on multiple core data types.
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• Use TSTT interfaces directly in 
applications

Discretization
Library

Mesquite

Frontier-Lite
• Create new services that use these 

interfaces to work with the 
underlying infrastructures 
interchangeably

– Mesquite mesh quality improvement
– Discretization Library
– Frontier-Lite

Interoperability Development Plan

• Use TSTT tools interoperably

Mesh Data
API

Geometry Data
API

Field Data
API

Mesh/Geometry
Model

Manager

Mesh/Field
Model

Manager

• Define interfaces for
• Mesh Data
• Geometry Data
• Field Data
• Data Model Managers

SciDAC
Applications

• Use services to impact applications

CGM Trellis

NWGrid Overture

• Wrap existing TSTT tools to comply 
with these interfaces
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The TSTT mesh interface working group 
uniquely engages a large number of people

Internal
– ANL: Fischer, Buschelman
– LLNL: Freitag, Chand, 

Henshaw, Dahlgren
– PNNL: Trease
– RPI: Shephard, Seole
– SNL: Tautges, Jung
– SUNY SB: Li, Fix

Internal
– ANL: Fischer, Buschelman
– LLNL: Freitag, Chand, 

Henshaw, Dahlgren
– PNNL: Trease
– RPI: Shephard, Seole
– SNL: Tautges, Jung
– SUNY SB: Li, Fix

External (active)
– UofC: Loy
– UBC: Ollivier-Gooch

External (active)
– UofC: Loy
– UBC: Ollivier-Gooch

External (monitoring)
– UIUC: Guoy
– Boeing: Michal (UGC)
– LLNL: Keasler
– SNL: Pebay, Haynes, 

Edwards
– ElemTech: Meyers
– UU: Parker
– ORNL: Bernholdt

External (monitoring)
– UIUC: Guoy
– Boeing: Michal (UGC)
– LLNL: Keasler
– SNL: Pebay, Haynes, 

Edwards
– ElemTech: Meyers
– UU: Parker
– ORNL: Bernholdt

Managing the interactions across institutions
• Face to face meetings (all-hands and opportunistic)
• Telecons (approximately every three weeks)
• Email discussion group (39 participants from 13 institutions)
• Working documents and SIDL files
• CVS repository
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An overarching philosophy defines the 
boundaries of our interface definition efforts

• Create a small set of interfaces that existing 
packages can support
– Small set of ‘core’ functions that must be implemented
– Larger set of functions supported by reference 

implementations

• Balance performance and flexibility
• Work with a large tool provider and application 

community to ensure applicability
• Use CCA technologies as appropriate

– SIDL/Babel for language interoperability
– Some use of Ccaffiene and Decaf frameworks for 

developing prototype TSTT components

Lowers the burden 
for adoption of the 
interface

Performance is 
critical for kernel 
computations 
involving mesh 
access; flexibility 
is critical for 
covering a broad 
usage spectrum

CCA provides 
infrastructure and 
guidance for 
domain-specific 
interface definition 
efforts
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Mesh entities are the core building block 
of the interface

• Definition
– Unique type and topology

• Type: Vertex, Edge, Face, Region
• Topology: Point, Line_Segment, Polygon, Triangle, Quadrilateral,

Polyhedron, Tetrahedron, Hexahedron, Prism, Pyramid, Septahedron
– Faces and regions have no interior holes
– Higher-dimensional entities are defined by lower-dimensional entities 

through canonical ordering relationships
– Examples

• Vertex (0D), edge (1D) , triangular face (2D), tetrahedral region (3D)
• Capabilities

– Return upward and downward first order adjacencies in the canonical 
ordering

– Support both individual and agglomerated request mechanisms
– Vertices return coordinate information in arrays of doubles
– Add, retrieve, set, and remove user-defined tag data
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TSTT meshes cover a broad spectrum of 
types and functionalities

• TSTT Mesh Definition
– A collection of TSTT entities that have uniquely defined entity handles
– Entities are related through topological adjacency information in which 

higher-dimensional entities are defined by lower dimensional entities
– Examples

• a non-overlapping connected set of TSTT entities (Type 1)
• a collection of Type 1 meshes used to represent the computational 

domain.  These may or may not be overlapping meshes (Type 2)

• Capabilities for static Type 1 meshes
– Populate the interface by string name
– Basic query capabilities

• Entity Traversal
• Connectivity Information 
• Array or iterator-based

– Add, retrieve, set and remove user-defined tags
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Entity Sets provide subsetting and relations 
capabilities within a TSTT mesh

• Entity Set Definition
– Arbitrary groupings of TSTT mesh entities
– Multiple entity sets can be associated with a given mesh
– Relationships between entity sets

• Contained-in
• Parent/Child 

– Examples:  A set of vertices, the set of all faces on a geometric face, 
the set of regions in a domain decomposition for parallel computing

• Capabilities
– Static mesh capabilities as before
– Set Operations

• Add and remove existing TSTT entities to the mesh set
• Union, subtract, and intersect entity sets
• Contained-in and Parent/Child relationships
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Simple mesh modification operations are 
also supported

• Definition
– A dynamic mesh whose geometry and topology can be changed

• Capabilities
– Mesh Geometry Modification

• Set vertex coordinates
– Mesh Topology Modification

• Add entities
• Delete entities

– No validity checks
– Requires simple classification mechanisms against the geometric 

model
• Intended to support higher-level functionality

– Mesh quality improvement
– Adaptive schemes with validity checking
– Front tracking procedures
– Basic mesh generation algorithms
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Terascale computing support is a near 
term consideration

• Builds on existing, supported functionality
– In the data model (e.g., entity sets)
– In the underlying TSTT tools (e.g., PAOMD)

• Supports distributed mesh representation
• Available services

– Invariant entity handles (unique and unchanged even with mesh 
migration and mesh modification in parallel)

– Mesh migration: global or local

– In existing external tools (e.g., Zoltan)

• Requires additional interface work
– Local/Global map conventions and behavior
– Convenience functions for ghost node support, etc.
– Mechanisms for mesh and user-data transfer 
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Preliminary interface implementations 
are well underway

• Working documents describing the mesh and geometry 
data models as well as the overall vision

• TSTT Mesh 0.5 Interface complete (tweaking 5.3 now)
• Preliminary interfaces for geometry and mesh/geometry 

data model manager designed
• Implementations

– AOMD, Overture, NWGrid, MOAB, FronTier, GRUMMP
– CGM for geometry

• C, C++, and Fortran language interoperability through 
SIDL/Babel (CCA)
– Analyzing performance ramifications of SIDL/Babel language 

interoperability tools (joint with the CCA)
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Performance studies will provide ‘best 
practices’ guidelines

• Working with CCA’s SIDL Babel team to characterize 
the interface performance

• Focus on entity-based access
– Single entity iterators
– Workset iterators

• Compare
– Native data structures
– Native language interfaces
– SIDL/Babel interfaces

Workset Iterators

Initialize Workset(entity_type, num_entities, &wrk_iter)

While (!done){

GetNextWorkset(&entity_handles[ ], &num, wrk_iter);

GetInfo(entity_handles);

for i=0:num-1 {

do_something(entity_handle[i]);

}

}

Destroy Workset(wrk_iter);
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Preliminary Performance Results

Relative Wall Clock Time for Each Variant
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Lessons Learned

• Interface definition is harder than we anticipated
• Cannot achieve the 100 percent solution, so...

– What level of functionality should be supported?
• Minimal interfaces only?
• Interfaces for convenience and performance?

– How to best support of existing (different) packages? 
• Are there atomic operations that all support?
• What additional functionalities from existing packages should be required?

• The devil is in the details
– Initial interface completed a year ago
– Lots of interesting issues

• Invariant handles
• Consistent error handling across packages
• Memory management issues
• Core interface functions
• Performance, performance, performance
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The TSTT interface and philosophy 
already used in a variety of ways

• Immediate
– Prototype CCA components (PNL/LLNL)
– Mesquite mesh quality Improvement (ANL, SNL)
– Frontier/AMR/mesh generation (SUNY SB/LLNL/PNL)
– Adaptivity in SLAC Omega3P code (RPI/SLAC)

• Long Term
– Deployed as CCA components for rapid application 

development
– Basis of the TSTT Discretization Library
– Design optimization for accelerators (w/ TOPS, SLAC)
– Read TSTT meshes directly into CEMM NIMROD code

Three component CCA Framework
- C++ biology application (NWPhys)
- F77/F90 mesh generator (NWGrid)
- C mesh optimization (Opt-MS)

Uses SIDL/Babel interface definitions

CCA components for time dependent PDE 
solution

• Unstructured TSTT  MESH
• FEM Discretization

Demonstrated at SC01
Used and released as part of CCA Tutorials 

(including SC02)
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TSTT/SLAC collaboration provides 
adaptive mesh capabilities for Omega3P

• Omega3P is SLAC’s quadratic FEM eigensolver for computing 
normal modes in RF cavities

• Extremely accurate solutions (0.01% error) are required for 
requirements of accelerator design

• Using new TSTT technology developed at RPI, adaptive mesh 
capability has been provided for Omega3P

• Simulations achieve same accuracy with 1/3 the number of 
unknowns

3 levels of 
refinement 

First Refinement Final Adaptive MeshInitial Mesh
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Omega3P adaptivity provided through 
interoperation of multiple tools 
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Creating tools using the interface that 
operate at a higher level

• Operate on the mesh components as though they were 
a single mesh object
– Discretization operators 
– Mesh modifications

• Mesh quality improvement
• Refinement/coarsening

– Error estimation
– Multilevel data transfer

• Prototypes provided by Overture and Trellis 
frameworks

• Enables rapid development of new mesh-based 
applications
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Discretization Library

• Observation: Complexities of using high-order 
methods on adaptively evolving grids has hampered 
their widespread use
– Tedious low level dependence on grid infrastructure
– A source of subtle bugs during development
– Bottleneck to interoperability of applications with different 

discretization strategies
– Difficult to implement in general way while maintaining 

optimal performance
• Result has been a use of sub-optimal strategies or 

lengthy implementation periods
• TSTT Goal: to eliminate these barriers by developing 

a Discretization Library
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Functionalities

• Mathematical operators will be implemented
– Start with +, -, *, /, interpolation, prologation
– Move to div, grad, curl, etc.
– Both strong and weak (variational) forms of operators when 

applicable
• Many discretization strategies will be available

– Finite Difference, Finite Volume, Finite Element, Discontinuous 
Galerkin, Spectral Element, Partition of Unity

– Emphasize high-order and variable-order methods
– Extensive library of boundary condition operators

• The interface will be independent of the underlying mesh
– Utilizes the common low-level mesh interfaces
– All TSTT mesh tools will be available

• Interface will be extensible, allowing user-defined 
operators and boundary conditions
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Example provided by Overture prototype

CompositeGrid cg;

floatCompositeGridFunction u,v,w;

v = u.y();

w = u.laplacian();

Plotstuff ps;

ps.plot (cg);

ps.contour (w);

Differentiation Operators

Visualize gridVisualize grid
and dataand data

Trellis (RPI) provides similar capability for Trellis (RPI) provides similar capability for 
finitefinite--element methodelement method
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MESQUITE Mesh Quality Improvement

• Goal: To provide a stand-alone tool for 
mesh quality improvement
– hybrid, component based meshes
– development of quality metrics for high 

order methods
– a posteriori quality control using error 

estimators
• Team (Past and Present)

– Micheal Brewer (SNL)
– Lori Freitag Diachin (LLNL)
– Patrick Knupp (SNL)
– Thomas Leurent (ANL)
– Darryl Melander (SNL)
– Jason Kraftcheck (SNL)

ImprovedImproved
meshmesh
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Mesh Improvement Strategies

• Goals
– a priori shape, size, alignment improvement
– a posteriori solution improvement

• Methods
– Vertex repositioning

• Laplace smoothing
• PDE-based solvers
• Numerical optimization schemes

– Topology modifications
• Face and edge swapping

– h-refinement

There exists no stand alone software toolkit that 
addresses mesh quality improvement for a broad 
range of mesh element types and improvement 

strategies
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MESQUITE Vision

• Provide a comprehensive, stand-alone toolkit for 
mesh quality improvement with the following 
capabilities
– Shape Quality Improvement

– Mesh Untangling

– Alignment with Scalar or Vector Fields

– R-type adaptivity to solution features or error estimates
• Maintain Quality of Deforming Meshes

• Anisotropic Smoothing

• Control Skew on Mesh Boundaries
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Example of Mesh Improvement Impact

• Arteriovenous Graft Turbulent Flow Simulation

• Compute maximum shear stress with high order spectral methods
– Poorly-shaped Elements Increase CG Solver Iterations

• Mesh Optimized by Condition Number 
– reduced maximum number of solver iterations from 169 to 150 
– reduced the average from 18.06 to 15.46 (about a 17% 

savings).

Four hours of Applications Solver time was traded for 19 minutes
of mesh smoothing time.

Knupp and 
Fischer, 2000

• Compressible Flow

• Mesh Optimized w/ 
Active set solver

– Improved the 
convergence 
rate by 25%

• Mesh improvement 
cost less than one 
multigrid iteration Freitag and

Ollivier-Gooch, 1998
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ImprovedImproved
meshmesh

Impact of Mesh Untangling

• Few hex-meshing algorithms guarantee the quality of the mesh
• Inverted elements are produced

• Mesh untangling algorithms can remove inverted elements quickly 
• Eliminates need to remesh
• Eliminates the need to re-decompose the geometry

Knupp

Freitag
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Mesh Alignment

• Moving vertex positions to match a 
vector or scalar field

• Improving ALE mesh quality while 
preserving flow characteristics

• Deforming a mesh to match a 
perturbed geometrical domain

Knupp, 1996

Knupp, 
Shashkov, 
Garimella 2000
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Mesquite Capabilities

• Problem Domain of Interest
– Structured, Unstructured, Hybrid, and NonConforming Meshes 
– 1D, 2D, 3D, curve, surface, volume
– Hex, tet, pyramid, prismatic, polyhedral, high-order elements
– Adaptive & non-adaptive applications

• Technologies
– Node movement algorithms
– Local topology modifications
– Constrained/unconstrained optimizations
– Numerical optimization & PDE-based solvers

• Previous Experience
– CUBIT mesh improvement algorithms (P. Knupp PI)
– Opt-MS mesh improvement algorithms (L. Freitag PI)

*italics denotes existing capabilities
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Smoothing Algorithms

Laplacian Smoothing
• Move the free vertex to the geometric center of the adjacent 

vertices
• Quality improvement is not guaranteed

– Can result in invalid, or tangled, meshes
• Computationally inexpensive
• Easy to implement
• Best used as a preprocessing step to optimization-based 

techniques
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Optimization-based Smoothing Techniques

• Comprised of quality metrics, objective functions and 
solution algorithms

• Quality metrics, qi
– A priori geometric criteria

• Ratio of volume to face areas (e.g., Shephard and Georges, 1991, 
Bank 1994) 

• Angle-based and other geometric measures (e.g., Freitag, et al. 1995)
• Distortion metrics (e.g, Canaan, 1998)
• Element condition number and other matrix norms (Knupp, 1999)

– A posteriori local error analysis (e.g., Bank and Smith, 1997, 
Berzins, et. al., 2000 )

• Objective functions
– Minimize the average qi (L2 norms)
– Minimize the maximum qi (L∞ norms)
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Optimization-based Smoothing Techniques

• Optimization methods
– Steepest descent active set methods (Freitag, 1995, 

Amenta, et. al. 1996, Canaan, 1998)
– Nonlinear conjugate gradients (Knupp, 1998)
– Feasible Newton methods (Munson, et. al. 2001)
– Combination approaches (Shephard and Georges 1991, 

Freitag 1997, Freitag and Knupp 1999)

• Design space
– Local:  relocate a single vertex and sweep through the mesh
– Global: relocate all vertices simultaneously
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Mesquite Software Design Principles

• Object oriented software
– Objects correspond to mathematical abstractions
– Use well-defined interfaces for interactions with mesh and 

geometry

• Provide automatic mesh improvement strategies and 
simple interfaces for ease of use

• Allow customization
– Mix and match flexibility
– User-set stopping criterion parameters
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MESQUITE ARCHITECTURE
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Current Software Status

• Quality Metrics
– Condition Number
– Mean Ratio
– Aspect Ratio
– Untangling

• Objective Function Templates
– L2 and LP
– Minimum L∞

• Vertex Movers
– Steepest Descent
– Nonlinear Conjugate Gradients
– Feasible Newton
– Active Set Solvers
– Laplace smoothers

• Solution Domain
– Local
– Global
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Accessing Information

• Mesh Information
– The TSTT mesh query interface

• Mesquite currently working with AOMD, MOAB, Overture, and 
CUBIT, implementation

• Upgrading to the latest TSTT spec using SIDL/Babel
– Mesquite mesh query interface

• Stand-alone C++ abstract classes
• Less broad than the TSTT spec definition
• Data neutrality using handles a la the TSTT spec

• Geometric model
– MESQUITE will not have its own geometry engine
– Some simple call-back functions such as “move to owner” 

and “surface normal” by the application or TSTT
– TSTT developing a common interface for this functionality
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MESQUITE User Interface

• Multi-level API
– Simple to use wrapper interface

• Access Mesquite functionality in a minimal number of calls
• Uses default algorithms, settings, stopping criterial

– Low level interface for customization
• User chooses the combination of metric, objective function, 

solver
• User determines the instruction queue

• Assessment Tools
– Diagnostics
– Statistics
– A priori and a posteriori quality assessment

• Users’ Manual and Documentation
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Mesquite User Interface: Wrappers

#include Mesquite.h

void some_application_function{

TSTT_Mesh tri_mesh, quad_mesh;

Mesquite::initialize();

// create a Mesh Set to hold the TSTT meshes
Mesquite::MeshSet ms;
ms->add_mesh(tri_mesh);
ms->add_mesh(quad_mesh);

// state the improvement objective
ShapeQualityObjective shape_quality_objective;

// improve the quality
shape_quality_objective.improve_quality(ms);

Mesquite::finalize();
}
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Mesquite User Interface: Customized

void some_application_function{

TSTT_Mesh tri_mesh, quad_mesh;

Mesquite::initialize();

// create a Mesh Set to hold the TSTT meshes
MeshSet ms;
ms->add_mesh(tri_mesh);
ms->add_mesh(quad_mesh);

ShapeQualityMetric *condition_number_metric = ConditionNumberMetric::create_new();

ObjectiveFunction *shape_objective_function = new L2_Template(condition_number_metric);

QualityAssessor *shape_quality_assessor = new QualityAssessor(condition_number_metric);
shape_quality_assessor->compute_this(QualityAssessor::Minimum);

NodeMover *opt_L2 = new NodeMover(shape_objective_function);
opt_L2 = set_optimization_method(NodeMover::FeasibleNewton);
opt_L2 = set_stopping_criterion(MAX_NODE_MOVEMENT,0.001);

InitializeInitialize

Declare a shape quality metricDeclare a shape quality metric

Declare an objective functionDeclare an objective function

Create a quality assessorCreate a quality assessor

Create a L2 Node MoverCreate a L2 Node Mover
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Mesquite User Interface: Customized

TopologyModifier *tet_swapper = new TopologyModifier(objective_function);
tet_swapper->set_optimization_method(TopologyModifier::TET2-3SWAP);
tet_swapper->set_stopping_criterion(MESH_PASSES,1);

UntangleQualityMetric *untangle_metric = FirstUntangleMetric::create_new();
ObjectiveFunction *untangle_objective_function = new LINF_TEMPLATE(untangle_metric);
NodeMover *opt_LINF = new NodeMover(untangle_objective_function);
opt_LINF->set_optimization_method(NoveMover::Simplex);
opt_LINF->set_stopping_criterion(OBJ_FCN_VAL,0);

InstructionQueue q;
q.add_quality_assessor(shape_quality_assessor);
q.add_preconditioner(opt_LINF);
q.add_preconditioner(tet_swapper);
q.add_master_quality_improver(opt_L2);
q.add_quality_assessor(shape_quality_assessor);
q->execute_instruction_queue(ms);

Mesquite::shutdown();
}

Create a Topology ModifierCreate a Topology Modifier

Create an untangler (metric,
Objective function, NodeMover)
Create an untangler (metric,
Objective function, NodeMover)

Create an instruction queueCreate an instruction queue

Execute the instruction queueExecute the instruction queue

Finalize and shutdownFinalize and shutdown



57

User Customization

• Users can insert their own algorithms, objective 
functions, quality metrics without recompiling 
Mesquite
– Inherit from VertexMover, ObjectiveFunction or QualityMetric

• User-defined metrics/objective functions can take 
advantage of existing MESQUITE algorithms

• Provides a platform for new research in mesh 
improvement algorithms

• Provides a platform for comparative studies
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Achieving Efficiency

• Algorithmic
– State-of-the-art optimization algorithms
– Mesh preconditioners such as constrained Laplacian

smoothing
– Flexible stopping criterion
– Pruning techniques

• Coding Practices
– Outer layers coded in C++ for Maintainable Code
– Inner kernel will be C, arrays, in-lined functions for speed

• Parallel Computing (proposed)
– Partitioning strategies for large meshes
– Parallel algorithms for global techniques
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Summary

The TSTT Center focuses on interoperable meshing 
and discretization strategies on complex geometries
– Short term impact through technology insertion into existing 

SciDAC applications
– Long term impact through the development of 

• a common mesh interface and interoperable and 
interchangeable mesh components

• new technologies that facilitate the use of hybrid meshes
– Discretization Library
– Mesquite mesh quality improvement

– Working with SciDAC ISICs to ensure applicability of tools 
and interfaces
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Contact Information

TSTT
• Web Site: www.tstt-scidac.org
• David Brown: dlb@llnl.gov
• Lori Freitag Diachin: ladiach@sandia.gov
• Jim Glimm: glimm@ams.sunysb.edu
Mesquite
• Patrick Knupp: pknupp@sandia.gov


