
Terascale Terascale
Simulation Simulation
Tools and Tools and

TechnologiesTechnologies

Creating Interoperable Meshing and Discretization
Components in the Terascale Simulation Tools and

Technologies (TSTT) Center

Lori Freitag Diachin
August 2004

2

TSTT is a SciDAC
Integrated Scientific Infrastructure Center

• SciDAC is a 5-year program in the Office of Science
at the Department of Energy (started August 2001)

• Develop Scientific Computing Software and
Hardware Infrastructure needed to use terascale
computers to advance DOE research programs
– basic energy sciences
– biological and environmental research
– fusion energy sciences
– high-energy and nuclear physics

“ISIC”“ISIC”

3

Vision: Revolutionize the simulation
cycle with plug-and-play software tools

PDE
Discretization

Mesh

Simulation
Software

Simulation
Software

Science

Model: Geometry
and math/physics

description

Model: Geometry
and math/physics

description

Choose simulation
approaches:

Meshing
Discretization

Choose simulation
approaches:

Meshing
Discretization

Build software
package (years

of effort)

Build software
package (years

of effort)

Do Great Science!Do Great Science!Do Great Science?Do Great Science?

Did we choose the
best approach for

doing this science?

Did we choose the
best approach for

doing this science?

What is the current software
simulation cycle?

What is the current software
simulation cycle?

4

Vision: Revolutionize the simulation
cycle with plug-and-play software tools

PDE
Discretization

Mesh

Simulation
Software

Simulation
Software

Science

Try another meshing
and discretization approach

Try another meshing
and discretization approach

5

Vision: Revolutionize the simulation
cycle with plug-and-play software tools

PDE
Discretization

Mesh

Simulation
Software

Science

Mesh Type 2

Discretization
Type 2

Simulation
Software

Package 2

Simulation
Software

Package 2

Changing the meshing and
discretization technology means

building an entirely new simulation
software pacakge!

Changing the meshing and
discretization technology means

building an entirely new simulation
software pacakge!

6

Vision: Revolutionize the simulation
cycle with plug-and-play software tools

Science

Mesh Type 2

Discretization
Type 2

Mesh Type 3

Discretization
Type 3

Simulation
Software

Package 2

Simulation
Software

Package 3

Simulation
Software

Package 3

PDE
Discretization

Mesh

Simulation
Software

7

Vision: Revolutionize the simulation
cycle with plug-and-play software tools

PDE
Discretization

Mesh

Simulation
Software

Simulation
Software

Science

Mesh Type 2

Discretization
Type 2

Mesh Type 3

Discretization
Type 3

Simulation
Software

Package 2

Simulation
Software

Package 2

Simulation
Software

Package 3

Simulation
Software

Package 3

Eliminate the development of
multiple simulation packages!

Eliminate the development of
multiple simulation packages!

8

Vision: Revolutionize the simulation
cycle with plug-and-play software tools

PDE
Discretization

Mesh

Simulation
Software

Simulation
Software

Science

Mesh Type 2

Discretization
Type 2

Mesh Type 3

Discretization
Type 3

TSTT
Interchangeable

Meshing and
Discretization

Software
Components

TSTT
Interchangeable

Meshing and
Discretization

Software
Components

9

Vision: Revolutionize the simulation
cycle with plug-and-play software tools

PDE
Discretization

Mesh

Simulation
Software

Simulation
Software

ScienceDiscretization
Type 2

Mesh Type 3

Discretization
Type 3

TSTT
Interchangeable

Meshing and
Discretization

Software
Components

Additional technology (e.g.
front tracking) added through

interoperable SW components

Additional technology (e.g.
front tracking) added through

interoperable SW components

10

The TSTT Center

• Goal: To enable high-fidelity calculations based on
multiple coupled physical processes and multiple physical
scales
– Adaptive methods
– Composite or hybrid solution strategies
– High-order discretization strategies

• Participants: TSTT brings together many meshing and
discretization tools
– Structured Grids: Overture, ORNL variational techniques
– Unstructured Meshes: AOMD, MOAB, NWGrid, FronTier

11

• TSTT tools all meet particular needs, but
– They do not interoperate to form hybrid, composite meshes
– They cannot be easily interchanged in an application

• In general the technology requires too much software
expertise from application scientists
– Difficult to improve existing codes
– Difficult to design and implement new codes

The TSTT center recognizes this gap and is addressing the
technical and human barriers preventing use of adaptive,

composite, hybrid methods

The Challenge

12

We are addressing SciDAC applications
needs through a two-pronged approach

• Near term: deployment of current TSTT mesh and
discretization capabilities by partnering with SciDAC
applications

• Longer term: development of interoperable software
tools enabling
– Rapid prototyping of new applications
– Plug-and-play insertion of mesh and discretization

technology through uniform software interfaces

Near term collaborations helps usNear term collaborations helps us
understand application requirements …understand application requirements …

… feeding into interface design of … feeding into interface design of
future software componentsfuture software components

13

TSTT collaborations with SLAC have
enhanced accelerator design capabilities

• Tau3P is a successful time-dependent
electromagnetic design code for SLAC
– The basic numerical method in Tau3P (DSI scheme) is

unstable on general meshes
– Time-series filter is often successful, but unreliable

• In collaboration with SLAC scientists, TSTT has
– Custom-built meshes with attention to quality

requirements
• Resulted in recent decision to use Tau3P as vehicle for

further PEP-II IR design studies
– Carefully studied dependence of instability on mesh

quality metrics
– Consulted on the next generation, FEM-based code
– Investigated alternative discretization approaches

• Stable, hybrid mesh DSI schemes
• Maxwell solvers on overset grids using Overture

14

High-order discretizations approaches are
being explored for fusion MHD applications

• Fusion PIs: Jardin/Strauss (PPPL)
• TSTT PIs: Fischer(ANL), Shephard/Flaherty (RPI)
• Goal: To test high-order and adaptive techniques;

compare to existing linear FEM
• Progress: Investigating a variety of high order

techniques
– Spectral elements successfully used in highly

anisotropic diffusion regimes
– Showed for fixed resolution that higher-order techniques

yield more accurate results, more efficiently than lower-
order methods

– Potential and primitive variable mixed formulations for
the 2D adipole vortex flow pattern using FEM

– Developed a posteriori temporal and spatial error
estimates for magnetic field

– Successfully solved the tilt instability test case showing
the utility of adaptive methods

Diffusion of an initially isolated
Gaussian pulse following the
magnetic field lines in the Tokamak
using spectral element
discretizations.

The current sheets and
adaptive computational
mesh for the tilt
instability problem.

15

Optimal mesh generation and adaptive
methods reduce error in climate applications

• Application PI: Drake (ORNL)
• TSTT PI: Khamayseh (ORNL)
• Goal: Given an initial isotropic or anisotropic

planar or surface mesh and a solution field with
large gradient mountain heights, use solution
based r-adaptation to minimize solution error

• Progress:
– Several different meshing strategies developed

for structured and unstructured surfaces
– Proof of principle of meshing technologies

demonstrated, integrated in next generation
climate codes

– Improving the prediction of rainfall, snowfall and
cloud cover in regional weather models

Orography field showing high
altitude over the Himalayas and
alps; Structured adapted spherical
mesh, hybrid geodesic mesh, and
unstructured mesh based on
orographic field data

16

TSTT technologies used to understand
microbial cell floc behavior

• TSTT PI: Trease
• Goal: To understand the behavior of

Shewanella microbe flocs in oxygen
rich environments

• Progress:
– Floc geometry built using image

reconstruction techniques from a stack of
confocal images

– TSTT unstructured mesh generated using
NWGrid

– Solve reaction-diffusion equations to find the
concentration of oxygen in the floc

17

Long Term Strategy

• Create interoperable meshing and discretization
components
– Common interfaces for mesh/geometry query and modification
– Initial design will account for interoperability at all levels
– Encapsulate existing TSTT software tools into CCA-compliant

components for plug and play

• Develop new technologies as needed to enable
interoperability
– Mesh quality improvement for hybrid meshes
– AMR/Front tracking schemes
– High-level discretization library

18

Creating interoperable tools requires a
common abstraction framework

• Level 1: Geometric description
of the domain
– provides a common frame of

reference for all tools
– facilitates multilevel solvers
– facilitates transfer of information in

discretizations
• Level 2: Full geometry hybrid

meshes
– mesh components
– communication mechanisms that

link them (key new research area)
–– allows structured and unstructured allows structured and unstructured

meshes to be combined in a single meshes to be combined in a single
computationcomputation

• Level 3: Mesh Components

Geometry
Information
(Level A)

Full
Geometry
Meshes
(Level B)

Mesh
Components
(Level C)

Access through both low and high level interfaces

19

TSTT data model abstracts
PDE-simulation data hierarchy

• Core Data Types
– Geometric Data: provides a high level description of the

boundaries of the computational domain; e.g., CAD, image, or
mesh data

– Mesh Data: provides the geometric and topological information
associated with the discrete representation of the
computational domain

– Field Data: provides access to the time dependent physics
variables associated with application solution. These can be
scalars, vectors, tensors, and associated with any mesh entity.

• Data Relation Manager
– Provides control of the relationships among two or more the

core data types. It resolves cross references between entities
in different groups and provides additional functionality that
depends on multiple core data types.

20

• Use TSTT interfaces directly in
applications

Discretization
Library

Mesquite

Frontier-Lite
• Create new services that use these

interfaces to work with the
underlying infrastructures
interchangeably

– Mesquite mesh quality improvement
– Discretization Library
– Frontier-Lite

Interoperability Development Plan

• Use TSTT tools interoperably

Mesh Data
API

Geometry Data
API

Field Data
API

Mesh/Geometry
Model

Manager

Mesh/Field
Model

Manager

• Define interfaces for
• Mesh Data
• Geometry Data
• Field Data
• Data Model Managers

SciDAC
Applications

• Use services to impact applications

CGM Trellis

NWGrid Overture

• Wrap existing TSTT tools to comply
with these interfaces

21

The TSTT mesh interface working group
uniquely engages a large number of people

Internal
– ANL: Fischer, Buschelman
– LLNL: Freitag, Chand,

Henshaw, Dahlgren
– PNNL: Trease
– RPI: Shephard, Seole
– SNL: Tautges, Jung
– SUNY SB: Li, Fix

Internal
– ANL: Fischer, Buschelman
– LLNL: Freitag, Chand,

Henshaw, Dahlgren
– PNNL: Trease
– RPI: Shephard, Seole
– SNL: Tautges, Jung
– SUNY SB: Li, Fix

External (active)
– UofC: Loy
– UBC: Ollivier-Gooch

External (active)
– UofC: Loy
– UBC: Ollivier-Gooch

External (monitoring)
– UIUC: Guoy
– Boeing: Michal (UGC)
– LLNL: Keasler
– SNL: Pebay, Haynes,

Edwards
– ElemTech: Meyers
– UU: Parker
– ORNL: Bernholdt

External (monitoring)
– UIUC: Guoy
– Boeing: Michal (UGC)
– LLNL: Keasler
– SNL: Pebay, Haynes,

Edwards
– ElemTech: Meyers
– UU: Parker
– ORNL: Bernholdt

Managing the interactions across institutions
• Face to face meetings (all-hands and opportunistic)
• Telecons (approximately every three weeks)
• Email discussion group (39 participants from 13 institutions)
• Working documents and SIDL files
• CVS repository

22

An overarching philosophy defines the
boundaries of our interface definition efforts

• Create a small set of interfaces that existing
packages can support
– Small set of ‘core’ functions that must be implemented
– Larger set of functions supported by reference

implementations

• Balance performance and flexibility
• Work with a large tool provider and application

community to ensure applicability
• Use CCA technologies as appropriate

– SIDL/Babel for language interoperability
– Some use of Ccaffiene and Decaf frameworks for

developing prototype TSTT components

Lowers the burden
for adoption of the
interface

Performance is
critical for kernel
computations
involving mesh
access; flexibility
is critical for
covering a broad
usage spectrum

CCA provides
infrastructure and
guidance for
domain-specific
interface definition
efforts

23

Mesh entities are the core building block
of the interface

• Definition
– Unique type and topology

• Type: Vertex, Edge, Face, Region
• Topology: Point, Line_Segment, Polygon, Triangle, Quadrilateral,

Polyhedron, Tetrahedron, Hexahedron, Prism, Pyramid, Septahedron
– Faces and regions have no interior holes
– Higher-dimensional entities are defined by lower-dimensional entities

through canonical ordering relationships
– Examples

• Vertex (0D), edge (1D) , triangular face (2D), tetrahedral region (3D)
• Capabilities

– Return upward and downward first order adjacencies in the canonical
ordering

– Support both individual and agglomerated request mechanisms
– Vertices return coordinate information in arrays of doubles
– Add, retrieve, set, and remove user-defined tag data

24

TSTT meshes cover a broad spectrum of
types and functionalities

• TSTT Mesh Definition
– A collection of TSTT entities that have uniquely defined entity handles
– Entities are related through topological adjacency information in which

higher-dimensional entities are defined by lower dimensional entities
– Examples

• a non-overlapping connected set of TSTT entities (Type 1)
• a collection of Type 1 meshes used to represent the computational

domain. These may or may not be overlapping meshes (Type 2)

• Capabilities for static Type 1 meshes
– Populate the interface by string name
– Basic query capabilities

• Entity Traversal
• Connectivity Information
• Array or iterator-based

– Add, retrieve, set and remove user-defined tags

25

Entity Sets provide subsetting and relations
capabilities within a TSTT mesh

• Entity Set Definition
– Arbitrary groupings of TSTT mesh entities
– Multiple entity sets can be associated with a given mesh
– Relationships between entity sets

• Contained-in
• Parent/Child

– Examples: A set of vertices, the set of all faces on a geometric face,
the set of regions in a domain decomposition for parallel computing

• Capabilities
– Static mesh capabilities as before
– Set Operations

• Add and remove existing TSTT entities to the mesh set
• Union, subtract, and intersect entity sets
• Contained-in and Parent/Child relationships

26

Simple mesh modification operations are
also supported

• Definition
– A dynamic mesh whose geometry and topology can be changed

• Capabilities
– Mesh Geometry Modification

• Set vertex coordinates
– Mesh Topology Modification

• Add entities
• Delete entities

– No validity checks
– Requires simple classification mechanisms against the geometric

model
• Intended to support higher-level functionality

– Mesh quality improvement
– Adaptive schemes with validity checking
– Front tracking procedures
– Basic mesh generation algorithms

27

Terascale computing support is a near
term consideration

• Builds on existing, supported functionality
– In the data model (e.g., entity sets)
– In the underlying TSTT tools (e.g., PAOMD)

• Supports distributed mesh representation
• Available services

– Invariant entity handles (unique and unchanged even with mesh
migration and mesh modification in parallel)

– Mesh migration: global or local

– In existing external tools (e.g., Zoltan)

• Requires additional interface work
– Local/Global map conventions and behavior
– Convenience functions for ghost node support, etc.
– Mechanisms for mesh and user-data transfer

28

Preliminary interface implementations
are well underway

• Working documents describing the mesh and geometry
data models as well as the overall vision

• TSTT Mesh 0.5 Interface complete (tweaking 5.3 now)
• Preliminary interfaces for geometry and mesh/geometry

data model manager designed
• Implementations

– AOMD, Overture, NWGrid, MOAB, FronTier, GRUMMP
– CGM for geometry

• C, C++, and Fortran language interoperability through
SIDL/Babel (CCA)
– Analyzing performance ramifications of SIDL/Babel language

interoperability tools (joint with the CCA)

29

Performance studies will provide ‘best
practices’ guidelines

• Working with CCA’s SIDL Babel team to characterize
the interface performance

• Focus on entity-based access
– Single entity iterators
– Workset iterators

• Compare
– Native data structures
– Native language interfaces
– SIDL/Babel interfaces

Workset Iterators

Initialize Workset(entity_type, num_entities, &wrk_iter)

While (!done){

GetNextWorkset(&entity_handles[], &num, wrk_iter);

GetInfo(entity_handles);

for i=0:num-1 {

do_something(entity_handle[i]);

}

}

Destroy Workset(wrk_iter);

30

Preliminary Performance Results

Relative Wall Clock Time for Each Variant

0.000

100.000

200.000

300.000

400.000

500.000

1 100
Work Set Size

P
e

rc
e

n
ta

g
e

 o
f

N
a

ti
v

e
 L

in
k

e
d

 L
is

t

Native Array

Native Linked List

Native Interface

SIDL Direct

SIDL Memcpy

SIDL For-loop

1 100

• As workset size increases,
interface overhead amortized

– 15-40% compared to native data
structures

– SIDL a few percent more than
native language

• Single entity access via workset
iterators is expensive

– 2X-4X for native and SIDL
interfaces

• Direct, single entity access (no
worksets)

– Similar performance to a
workset size of 5-10

Relative Wall Clock Time for Interfaces

0

50

100

150

200

250

0 50 100 150

Work Set Size

P
e
rc

e
n

ta
g

e
 o

f
N

a
ti

v
e
 I
n

te
rf

a
c
e

Native Interface

SIDL Direct

SIDL Memcpy

SIDL For-loop

31

Lessons Learned

• Interface definition is harder than we anticipated
• Cannot achieve the 100 percent solution, so...

– What level of functionality should be supported?
• Minimal interfaces only?
• Interfaces for convenience and performance?

– How to best support of existing (different) packages?
• Are there atomic operations that all support?
• What additional functionalities from existing packages should be required?

• The devil is in the details
– Initial interface completed a year ago
– Lots of interesting issues

• Invariant handles
• Consistent error handling across packages
• Memory management issues
• Core interface functions
• Performance, performance, performance

32

The TSTT interface and philosophy
already used in a variety of ways

• Immediate
– Prototype CCA components (PNL/LLNL)
– Mesquite mesh quality Improvement (ANL, SNL)
– Frontier/AMR/mesh generation (SUNY SB/LLNL/PNL)
– Adaptivity in SLAC Omega3P code (RPI/SLAC)

• Long Term
– Deployed as CCA components for rapid application

development
– Basis of the TSTT Discretization Library
– Design optimization for accelerators (w/ TOPS, SLAC)
– Read TSTT meshes directly into CEMM NIMROD code

Three component CCA Framework
- C++ biology application (NWPhys)
- F77/F90 mesh generator (NWGrid)
- C mesh optimization (Opt-MS)

Uses SIDL/Babel interface definitions

CCA components for time dependent PDE
solution

• Unstructured TSTT MESH
• FEM Discretization

Demonstrated at SC01
Used and released as part of CCA Tutorials

(including SC02)

33

TSTT/SLAC collaboration provides
adaptive mesh capabilities for Omega3P

• Omega3P is SLAC’s quadratic FEM eigensolver for computing
normal modes in RF cavities

• Extremely accurate solutions (0.01% error) are required for
requirements of accelerator design

• Using new TSTT technology developed at RPI, adaptive mesh
capability has been provided for Omega3P

• Simulations achieve same accuracy with 1/3 the number of
unknowns

3 levels of
refinement

First Refinement Final Adaptive MeshInitial Mesh

34

Omega3P adaptivity provided through
interoperation of multiple tools

35

Creating tools using the interface that
operate at a higher level

• Operate on the mesh components as though they were
a single mesh object
– Discretization operators
– Mesh modifications

• Mesh quality improvement
• Refinement/coarsening

– Error estimation
– Multilevel data transfer

• Prototypes provided by Overture and Trellis
frameworks

• Enables rapid development of new mesh-based
applications

36

Discretization Library

• Observation: Complexities of using high-order
methods on adaptively evolving grids has hampered
their widespread use
– Tedious low level dependence on grid infrastructure
– A source of subtle bugs during development
– Bottleneck to interoperability of applications with different

discretization strategies
– Difficult to implement in general way while maintaining

optimal performance
• Result has been a use of sub-optimal strategies or

lengthy implementation periods
• TSTT Goal: to eliminate these barriers by developing

a Discretization Library

37

Functionalities

• Mathematical operators will be implemented
– Start with +, -, *, /, interpolation, prologation
– Move to div, grad, curl, etc.
– Both strong and weak (variational) forms of operators when

applicable
• Many discretization strategies will be available

– Finite Difference, Finite Volume, Finite Element, Discontinuous
Galerkin, Spectral Element, Partition of Unity

– Emphasize high-order and variable-order methods
– Extensive library of boundary condition operators

• The interface will be independent of the underlying mesh
– Utilizes the common low-level mesh interfaces
– All TSTT mesh tools will be available

• Interface will be extensible, allowing user-defined
operators and boundary conditions

38

Example provided by Overture prototype

CompositeGrid cg;

floatCompositeGridFunction u,v,w;

v = u.y();

w = u.laplacian();

Plotstuff ps;

ps.plot (cg);

ps.contour (w);

Differentiation Operators

Visualize gridVisualize grid
and dataand data

Trellis (RPI) provides similar capability for Trellis (RPI) provides similar capability for
finitefinite--element methodelement method

39

MESQUITE Mesh Quality Improvement

• Goal: To provide a stand-alone tool for
mesh quality improvement
– hybrid, component based meshes
– development of quality metrics for high

order methods
– a posteriori quality control using error

estimators
• Team (Past and Present)

– Micheal Brewer (SNL)
– Lori Freitag Diachin (LLNL)
– Patrick Knupp (SNL)
– Thomas Leurent (ANL)
– Darryl Melander (SNL)
– Jason Kraftcheck (SNL)

ImprovedImproved
meshmesh

40

Mesh Improvement Strategies

• Goals
– a priori shape, size, alignment improvement
– a posteriori solution improvement

• Methods
– Vertex repositioning

• Laplace smoothing
• PDE-based solvers
• Numerical optimization schemes

– Topology modifications
• Face and edge swapping

– h-refinement

There exists no stand alone software toolkit that
addresses mesh quality improvement for a broad
range of mesh element types and improvement

strategies

41

MESQUITE Vision

• Provide a comprehensive, stand-alone toolkit for
mesh quality improvement with the following
capabilities
– Shape Quality Improvement

– Mesh Untangling

– Alignment with Scalar or Vector Fields

– R-type adaptivity to solution features or error estimates
• Maintain Quality of Deforming Meshes

• Anisotropic Smoothing

• Control Skew on Mesh Boundaries

42

Example of Mesh Improvement Impact

• Arteriovenous Graft Turbulent Flow Simulation

• Compute maximum shear stress with high order spectral methods
– Poorly-shaped Elements Increase CG Solver Iterations

• Mesh Optimized by Condition Number
– reduced maximum number of solver iterations from 169 to 150
– reduced the average from 18.06 to 15.46 (about a 17%

savings).

Four hours of Applications Solver time was traded for 19 minutes
of mesh smoothing time.

Knupp and
Fischer, 2000

• Compressible Flow

• Mesh Optimized w/
Active set solver

– Improved the
convergence
rate by 25%

• Mesh improvement
cost less than one
multigrid iteration Freitag and

Ollivier-Gooch, 1998

43

ImprovedImproved
meshmesh

Impact of Mesh Untangling

• Few hex-meshing algorithms guarantee the quality of the mesh
• Inverted elements are produced

• Mesh untangling algorithms can remove inverted elements quickly
• Eliminates need to remesh
• Eliminates the need to re-decompose the geometry

Knupp

Freitag

44

Mesh Alignment

• Moving vertex positions to match a
vector or scalar field

• Improving ALE mesh quality while
preserving flow characteristics

• Deforming a mesh to match a
perturbed geometrical domain

Knupp, 1996

Knupp,
Shashkov,
Garimella 2000

45

Mesquite Capabilities

• Problem Domain of Interest
– Structured, Unstructured, Hybrid, and NonConforming Meshes
– 1D, 2D, 3D, curve, surface, volume
– Hex, tet, pyramid, prismatic, polyhedral, high-order elements
– Adaptive & non-adaptive applications

• Technologies
– Node movement algorithms
– Local topology modifications
– Constrained/unconstrained optimizations
– Numerical optimization & PDE-based solvers

• Previous Experience
– CUBIT mesh improvement algorithms (P. Knupp PI)
– Opt-MS mesh improvement algorithms (L. Freitag PI)

*italics denotes existing capabilities

46

Smoothing Algorithms

Laplacian Smoothing
• Move the free vertex to the geometric center of the adjacent

vertices
• Quality improvement is not guaranteed

– Can result in invalid, or tangled, meshes
• Computationally inexpensive
• Easy to implement
• Best used as a preprocessing step to optimization-based

techniques

47

Optimization-based Smoothing Techniques

• Comprised of quality metrics, objective functions and
solution algorithms

• Quality metrics, qi
– A priori geometric criteria

• Ratio of volume to face areas (e.g., Shephard and Georges, 1991,
Bank 1994)

• Angle-based and other geometric measures (e.g., Freitag, et al. 1995)
• Distortion metrics (e.g, Canaan, 1998)
• Element condition number and other matrix norms (Knupp, 1999)

– A posteriori local error analysis (e.g., Bank and Smith, 1997,
Berzins, et. al., 2000)

• Objective functions
– Minimize the average qi (L2 norms)
– Minimize the maximum qi (L∞ norms)

48

Optimization-based Smoothing Techniques

• Optimization methods
– Steepest descent active set methods (Freitag, 1995,

Amenta, et. al. 1996, Canaan, 1998)
– Nonlinear conjugate gradients (Knupp, 1998)
– Feasible Newton methods (Munson, et. al. 2001)
– Combination approaches (Shephard and Georges 1991,

Freitag 1997, Freitag and Knupp 1999)

• Design space
– Local: relocate a single vertex and sweep through the mesh
– Global: relocate all vertices simultaneously

49

Mesquite Software Design Principles

• Object oriented software
– Objects correspond to mathematical abstractions
– Use well-defined interfaces for interactions with mesh and

geometry

• Provide automatic mesh improvement strategies and
simple interfaces for ease of use

• Allow customization
– Mix and match flexibility
– User-set stopping criterion parameters

50

MESQUITE ARCHITECTURE

51

Current Software Status

• Quality Metrics
– Condition Number
– Mean Ratio
– Aspect Ratio
– Untangling

• Objective Function Templates
– L2 and LP
– Minimum L∞

• Vertex Movers
– Steepest Descent
– Nonlinear Conjugate Gradients
– Feasible Newton
– Active Set Solvers
– Laplace smoothers

• Solution Domain
– Local
– Global

52

Accessing Information

• Mesh Information
– The TSTT mesh query interface

• Mesquite currently working with AOMD, MOAB, Overture, and
CUBIT, implementation

• Upgrading to the latest TSTT spec using SIDL/Babel
– Mesquite mesh query interface

• Stand-alone C++ abstract classes
• Less broad than the TSTT spec definition
• Data neutrality using handles a la the TSTT spec

• Geometric model
– MESQUITE will not have its own geometry engine
– Some simple call-back functions such as “move to owner”

and “surface normal” by the application or TSTT
– TSTT developing a common interface for this functionality

53

MESQUITE User Interface

• Multi-level API
– Simple to use wrapper interface

• Access Mesquite functionality in a minimal number of calls
• Uses default algorithms, settings, stopping criterial

– Low level interface for customization
• User chooses the combination of metric, objective function,

solver
• User determines the instruction queue

• Assessment Tools
– Diagnostics
– Statistics
– A priori and a posteriori quality assessment

• Users’ Manual and Documentation

54

Mesquite User Interface: Wrappers

#include Mesquite.h

void some_application_function{

TSTT_Mesh tri_mesh, quad_mesh;

Mesquite::initialize();

// create a Mesh Set to hold the TSTT meshes
Mesquite::MeshSet ms;
ms->add_mesh(tri_mesh);
ms->add_mesh(quad_mesh);

// state the improvement objective
ShapeQualityObjective shape_quality_objective;

// improve the quality
shape_quality_objective.improve_quality(ms);

Mesquite::finalize();
}

55

Mesquite User Interface: Customized

void some_application_function{

TSTT_Mesh tri_mesh, quad_mesh;

Mesquite::initialize();

// create a Mesh Set to hold the TSTT meshes
MeshSet ms;
ms->add_mesh(tri_mesh);
ms->add_mesh(quad_mesh);

ShapeQualityMetric *condition_number_metric = ConditionNumberMetric::create_new();

ObjectiveFunction *shape_objective_function = new L2_Template(condition_number_metric);

QualityAssessor *shape_quality_assessor = new QualityAssessor(condition_number_metric);
shape_quality_assessor->compute_this(QualityAssessor::Minimum);

NodeMover *opt_L2 = new NodeMover(shape_objective_function);
opt_L2 = set_optimization_method(NodeMover::FeasibleNewton);
opt_L2 = set_stopping_criterion(MAX_NODE_MOVEMENT,0.001);

InitializeInitialize

Declare a shape quality metricDeclare a shape quality metric

Declare an objective functionDeclare an objective function

Create a quality assessorCreate a quality assessor

Create a L2 Node MoverCreate a L2 Node Mover

56

Mesquite User Interface: Customized

TopologyModifier *tet_swapper = new TopologyModifier(objective_function);
tet_swapper->set_optimization_method(TopologyModifier::TET2-3SWAP);
tet_swapper->set_stopping_criterion(MESH_PASSES,1);

UntangleQualityMetric *untangle_metric = FirstUntangleMetric::create_new();
ObjectiveFunction *untangle_objective_function = new LINF_TEMPLATE(untangle_metric);
NodeMover *opt_LINF = new NodeMover(untangle_objective_function);
opt_LINF->set_optimization_method(NoveMover::Simplex);
opt_LINF->set_stopping_criterion(OBJ_FCN_VAL,0);

InstructionQueue q;
q.add_quality_assessor(shape_quality_assessor);
q.add_preconditioner(opt_LINF);
q.add_preconditioner(tet_swapper);
q.add_master_quality_improver(opt_L2);
q.add_quality_assessor(shape_quality_assessor);
q->execute_instruction_queue(ms);

Mesquite::shutdown();
}

Create a Topology ModifierCreate a Topology Modifier

Create an untangler (metric,
Objective function, NodeMover)
Create an untangler (metric,
Objective function, NodeMover)

Create an instruction queueCreate an instruction queue

Execute the instruction queueExecute the instruction queue

Finalize and shutdownFinalize and shutdown

57

User Customization

• Users can insert their own algorithms, objective
functions, quality metrics without recompiling
Mesquite
– Inherit from VertexMover, ObjectiveFunction or QualityMetric

• User-defined metrics/objective functions can take
advantage of existing MESQUITE algorithms

• Provides a platform for new research in mesh
improvement algorithms

• Provides a platform for comparative studies

58

Achieving Efficiency

• Algorithmic
– State-of-the-art optimization algorithms
– Mesh preconditioners such as constrained Laplacian

smoothing
– Flexible stopping criterion
– Pruning techniques

• Coding Practices
– Outer layers coded in C++ for Maintainable Code
– Inner kernel will be C, arrays, in-lined functions for speed

• Parallel Computing (proposed)
– Partitioning strategies for large meshes
– Parallel algorithms for global techniques

59

Summary

The TSTT Center focuses on interoperable meshing
and discretization strategies on complex geometries
– Short term impact through technology insertion into existing

SciDAC applications
– Long term impact through the development of

• a common mesh interface and interoperable and
interchangeable mesh components

• new technologies that facilitate the use of hybrid meshes
– Discretization Library
– Mesquite mesh quality improvement

– Working with SciDAC ISICs to ensure applicability of tools
and interfaces

60

Contact Information

TSTT
• Web Site: www.tstt-scidac.org
• David Brown: dlb@llnl.gov
• Lori Freitag Diachin: ladiach@sandia.gov
• Jim Glimm: glimm@ams.sunysb.edu
Mesquite
• Patrick Knupp: pknupp@sandia.gov

