
CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

1This work is licensed under a Creative Commons Attribution 2.5 License

Welcome to the
Common Component Architecture

Tutorial

ACTS Workshop
26 August 2005

CCA
Common Component Architecture

2

Licensing Information
• This tutorial is distributed under the Creative Commons

Attribution 2.5 License
– http://creativecommons.org/licenses/by/2.5/

• In summary, you are free:
– to copy, distribute, display, and perform the work
– to make derivative works
– to make commercial use of the work

• Under the following conditions:
– Attribution. You must attribute the work in the manner specified by

the author or licensor.
• For any reuse or distribution, you must make clear to others the

license terms of this work.
• Any of these conditions can be waived if you get permission

from the copyright holder.
• Your fair use and other rights are in no way affected by the

above.
• Requested reference:

– CCA Forum Tutorial Working Group, Common Component
Architecture Tutorial, 2005, http://www.cca-forum.org/tutorials/

CCA
Common Component Architecture

3

Agenda & Table of Contents

Jaideep Ray, SNL169Closing2:55-3:00pm

AllHands-On
Guide

Hands-On3:30-6:30pm
Break (relocate to Wheeler Hall, UCB)3:00-3:30pm

Lunch12:30-1:30pm

Jim Kohl, ORNL64CCA Tools12:00-12:30pm

David Bernholdt, ORNL5What can Component Technology do
for Scientific Computing

11:05am-12:00n

Jaideep Ray, SNL123CCA Applications2:10-2:55pm

Jim Leek, LLNL105Language Interoperable CCA
Components with Babel

1:30-2:10pm

David Bernholdt, ORNL16An Introduction to Components & the
CCA

David Bernholdt, ORNL1Welcome11:00-11:05am
PresenterSlide No.TitleTime

CCA
Common Component Architecture

4

The Common Component Architecture
(CCA) Forum

• Combination of standards body and user group for the CCA
• Define Specifications for High-Performance Scientific

Components & Frameworks
• Promote and Facilitate Development of Domain-Specific

Common Interfaces
• Goal: Interoperability between components developed by

different expert teams across different institutions
• Quarterly Meetings, Open membership…

http://www.cca-forum.org/
Mailing List: cca-forum@cca-forum.org

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

5This work is licensed under a Creative Commons Attribution 2.5 License

What Can Component Technology
do for Scientific Computing?

CCA
Common Component Architecture

6

Managing Code Complexity

Some Common Situations:
• Your code is so large and complex it has become fragile and

hard to keep running
• You have a simple code, and you want to extend its capabilities

– rationally
• You want to develop a computational “toolkit”

– Many modules that can be assembled in different ways to perform
different scientific calculations

– Gives users w/o programming experience access to a flexible tool
for simulation

– Gives users w/o HPC experience access to HPC-ready software

How CCA Can Help:
• Components help you think about software in manageable

chunks that interact only in well-defined ways
• Components provide a “plug-and-play” environment that allows

easy, flexible application assembly

CCA
Common Component Architecture

7

Example: Computational Facility for
Reacting Flow Science (CFRFS)

• A toolkit to perform
simulations of unsteady
flames

• Solve the Navier-Stokes
with detailed chemistry
– Various mechanisms

up to ~50 species, 300
reactions

– Structured adaptive
mesh refinement

• CFRFS today:
– 61 components
– 7 external libraries
– 9 contributors

“Wiring diagram” for a typical CFRFS
simulation, utilizing 12 components.

CCA tools used: Ccaffeine, and
ccafe-gui
Languages: C, C++, F77

CCA
Common Component Architecture

8

Helping Groups Work with Software
Some Common Situations:
• Many (geographically distributed) developers creating

a large software system
– Hard to coordinate, different parts of the software don’t work

together as required
• Groups of developers with different specialties
• Forming communities to standardize interfaces or

share code
How CCA Can Help:
• Components are natural units for

– Expressing software architecture
– Individuals or small groups to develop
– Encapsulating particular expertise

• Some component models (including CCA) provide
tools to help you think about the interface separately
from the implementation

CCA
Common Component Architecture

9

Schematic of CCA-based molecular
structure determination quantum
chemistry application.

Components based on: MPQC,
NWChem (quantum chem.), TAO
(optimization), Global Arrays, PETSc
(parallel linear algebra)
CCA tools used: Babel, Ccaffeine,
and ccafe-gui
Languages: C, C++, F77, Python

Example: Quantum Chemistry
• Integrated state-of-the-art

optimization technology
into two quantum
chemistry packages to
explore effectiveness in
chemistry applications

• Geographically distributed
expertise:
– California - chemistry
– Illinois - optimization
– Washington – chemistry,

parallel data management
• Effective collaboration

with minimal face-to-face
interaction

CCA
Common Component Architecture

10

Example: TSTT Unstructured Mesh
Tool Interoperability

• Common interface for
unstructured mesh
geometry and topology
– 7 libraries: FMDB,

Frontier, GRUMMP,
Mesquite, MOAB,
NWGrid, Overture

– 6 institutions: ANL,
BNL/SUNY-Stony Brook,
LLNL, PNNL, RPI, SNL

• Reduces need for N2

pairwise interfaces to
just N

Geometry
Information
(Level A)

Full
Geometry
Meshes
(Level B)

Mesh
Components
(Level C)

Illustration of geometry domain
hierarchy used in TSTT mesh
interface.

CCA tools used: Babel (SIDL),
Chasm
Library languages: C, C++, F77, F90

CCA
Common Component Architecture

11

Language Interoperability

Some Common Situations:
• Need to use existing code or libraries written in

multiple languages in the same application?
• Want to allow others to access your library from

multiple languages?
• Technical or sociological reasons for wanting to use

multiple languages in your application?

How CCA Can Help:
• Some component models (including CCA) allow

transparent mixing of languages
• Babel (CCA’s language interop. tool) can be used

separately from other component concepts

CCA
Common Component Architecture

12

Examples

hypre
• High performance

preconditioners and linear
solvers

• Library written in C
• Babel-generated object-

oriented interfaces
provided in C, C++, Fortran

LAPACK07
• Update to LAPACK linear

algebra library
– To be released 2007
– Library written in F77, F95

• Will use Babel-generated
interfaces for: C, C++,
F77, F95, Java, Python

• Possibly also ScaLAPACK
(distributed version)

CCA tools used: Babel, Chasm

“I implemented a Babel-based interface for the hypre library of linear
equation solvers. The Babel interface was straightforward to write and
gave us interfaces to several languages for less effort than it would take
to interface to a single language.”

-- Jeff Painter, LLNL. 2 June 2003

CCA
Common Component Architecture

13

Coupling Codes
Some Common Situations:
• Your application makes use of numerous third-party libraries

– Some of which interact (version dependencies)
• You want to develop a simulation in which your code is coupled

with others
– They weren’t designed with this coupling in mind
– They must remain usable separately too
– They are all under continual development, individually
– They’re all parallel and need to exchange data frequently

How CCA Can Help:
• Components are isolated from one another

– Interactions via well-defined interfaces
– An application can include multiple versions of a component

• Components can be composed flexibly, hierarchically
– Standalone application as one assembly, coupled simulation as

another
• CCA can be used in SPMD, MPMD, and distributed styles of

parallel computing
• CCA is developing technology to facilitate data and functional

coupling of parallel applications

CCA
Common Component Architecture

14

Example: Global Climate Modeling and
the Model Coupling Toolkit (MCT)

• MCT is the basis for
Community Climate
System Model (CCSM3.0)
coupler (cpl6)

• Computes interfacial fluxes
and manages redistribution
of data among parallel
processes

• Written in F90, Babel-
generated bindings for
C++, Python

• CCA tools used: Babel,
Chasm

Schematic of CCSM showing
coupler managing data
exchanges between atmosphere,
sea ice, ocean, and land models.
(From http://www.ccsm.ucar.edu/models/ccsm3.0/cpl6/)

CCA
Common Component Architecture

15

Example: Integrated Fusion Simulation
• Proof-of-principle of using

CCA for integrated whole-
device modeling needed
for the ITER fusion reactor

• Couples radio frequency
(RF) heating of plasma
with transport modeling

• Coarse-grain
encapsulation of pre-
existing programs

• Follow-on plans for RF,
transport, and magneto-
hydrodynamics

“Wiring diagram” for integrated fusion
simulation.

Components based on: AORSA,
Houlberg’s transport library
New components: Driver, State
CCA tools used: Babel, Chasm,
Ccaffeine, ccafe-gui
Languages: C++, F90, Python

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

16This work is licensed under a Creative Commons Attribution 2.5 License

An Introduction to Components
and the

Common Component Architecture

CCA
Common Component Architecture

17

Goals of This Module

• Introduce basic concepts and vocabulary of
component-based software engineering and
the CCA

• Highlight the special demands of high-
performance scientific computing on
component environments

• Give you sufficient understanding of the CCA
to begin evaluating whether it would be useful
to you

CCA
Common Component Architecture

18

What are Components?

• No universally accepted definition in computer
science research, but key features include…

• A unit of software development/deployment/reuse
– i.e. has interesting functionality
– Ideally, functionality someone else might be able to (re)use
– Can be developed independently of other components

• Interacts with the outside world only through well-
defined interfaces
– Implementation is opaque to the outside world

• Can be composed with other components
– “Plug and play” model to build applications
– Composition based on interfaces

CCA
Common Component Architecture

19

What is a Component Architecture?

• A set of standards that allows:
– Multiple groups to write units of software (components)…
– And have confidence that their components will work with

other components written in the same architecture

• These standards define…
– The rights and responsibilities of a component
– How components express their interfaces
– The environment in which components are composed to

form an application and executed (framework)
– The rights and responsibilities of the framework

CCA
Common Component Architecture

20

A Simple Example:
Numerical Integration Components

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Interoperable components
(provide same interfaces)

•

CCA
Common Component Architecture

21

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

An Application
Built from the Provided Components

Hides compexity: Driver
doesn’t care that
MonteCarloIntegrator
needs a random
number generator

CCA
Common Component Architecture

22

Another Application…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

CCA
Common Component Architecture

23

Application 3…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

CCA
Common Component Architecture

24

And Many More…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Dashed lines
indicate alternate

connections

Create different applications
in "plug-and-play" fashion

CCA
Common Component Architecture

25

Be Aware: “Framework” Describes
Many Things

• Currently in scientific computing, this term often means different
things to different people

• Basic software composition environment
– Examples: CCA, CORBA Component Model, …

• An environment facilitating development of applications in a particular
scientific domain (i.e. fusion, computational chemistry, …)
– Example: Earth System Modeling Framework, http://www.esmf.ucar.edu
– Example: Computational Facility for Reacting Flow Science,

http://cfrfs.ca.sandia.gov
• An environment for managing complex workflows needed to carry out

calculations
– Example: Kepler: http://kepler-project.org

• Integrated data analysis and visualization environments (IDAVEs)

• Lines are often fuzzy
– Example: Cactus, http://www.cactuscode.org

• Others types of frameworks could be built based on a basic software
composition environment

CCA
Common Component Architecture

26

Relationships:
Components, Objects, and Libraries

• Components are typically discussed as objects or
collections of objects
– Interfaces generally designed in OO terms, but…
– Component internals need not be OO
– OO languages are not required

• Component environments can enforce the use of
published interfaces (prevent access to internals)
– Libraries can not

• It is possible to load several instances (versions) of a
component in a single application
– Impossible with libraries

• Components must include some code to interface
with the framework/component environment
– Libraries and objects do not

CCA
Common Component Architecture

27

What is the CCA?

• Component-based software engineering has been
developed in other areas of computing
– Especially business and internet
– Examples: CORBA Component Model, COM, Enterprise

JavaBeans

• Many of the needs are similar to those in HPC scientific
computing

• But scientific computing imposes special requirements
not common elsewhere

• CCA is a component environment specially designed to
meet the needs of HPC scientific computing

CCA
Common Component Architecture

28

Special Needs of Scientific HPC

• Support for legacy software
– How much change required for component environment?

• Performance is important
– What overheads are imposed by the component

environment?
• Both parallel and distributed computing are important

– What approaches does the component model support?
– What constraints are imposed?
– What are the performance costs?

• Support for languages, data types, and platforms
– Fortran?
– Complex numbers? Arrays? (as first-class objects)
– Is it available on my parallel computer?

CCA
Common Component Architecture

29

CCA as Actual Code
• We have developed an environment which

implements the CCA design pattern

• The CCA specification defines standard interfaces to
be used by components and frameworks, and the
protocol by which components and frameworks
interact

• A suite of tools that allow you to write and use
components
– Language interoperability tools: Chasm, Babel
– Frameworks: Ccaffeine, SCIRun2, XCAT-C++

• You do not have to use our tools
– You can create your own
– You can adapt ours for special needs

CCA
Common Component Architecture

30

A Word About the CCA Specification

• The CCA spec is currently defined using the
Scientific Interface Definition Language (SIDL)
– SIDL is also used by the Babel language interoperability tool

• The CCA spec could be translated into other
languages if desired
– It was defined in C++ before SIDL was mature

• We use the term “CCA compliant” to designate things
that conform to any reasonable translation of the
CCA spec
– The CCA Forum is considering refining the terminology to

express different categories or levels of interoperability

CCA
Common Component Architecture

31

CCA Concepts:
Language Interoperability

• Most language
interoperability
approaches are “point-
to-point” solutions

• Babel provides a common
solution for all supported
languages

• Scientific Definition
Interface Language
(SIDL) used to express
interfacesC

C++

f77

f90

Python

Java

More on
Babel later!

Few other component models support all languages
and data types important for scientific computing

C

C++

f77

f90/95

Python

Java

CCA
Common Component Architecture

32

CCA Concepts: Components

• A component encapsulates some computational
functionality

• Components provide/use one or more interfaces
– A component with no interfaces is formally okay, but isn’t

very interesting or useful

• In SIDL, a component is a class that implements
(inherits from) gov.cca.Component
– This means it must implement the setServices method to tell

framework what ports this component will provide and use
– gov.cca.Component is defined in the CCA specification

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

CCA
Common Component Architecture

33

CCA Concepts: Ports

• Components interact through well-defined interfaces, or ports
– A port expresses some computational functionality
– In Fortran, a port is a bunch of subroutines or a module
– In OO languages, a port is a abstract class or interface

• Ports and connections between them are a procedural
(caller/callee) relationship, not dataflow!
– e.g., FunctionPort could contain: evaluate(in Arg, out Result)

• A single component can implement multiple ports
– Different “views” of the same functionality
– Related pieces of functionality

• Multiple components can implement the same port
– Different implementations of the same functionality
– Basis for interoperability of component software

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

CCA
Common Component Architecture

34

CCA Concepts: Provides Ports

• Components may provide ports – implement the
class or subroutines of the port ()

• In SIDL, ports are interfaces that extend (inherit from)
gov.cca.Port
– gov.cca.Port is defined in the CCA spec and has no

methods – simply allows manipulation as a port,
enables plug-and-play

• In SIDL, a component that provides a port must
implement (inherit from) the port’s interface
– These are usually defined by software developers,

not in the CCA specification.
– gov.cca.ports.GoPort and gov.cca.ComponentRelease

are two special cases – they are defined by the
CCA specification, and thus have special meaning

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

“Provides” Port

CCA
Common Component Architecture

35

Components and Ports in UML

= Inheritance

<<interface>>
gov.cca.Port

<<interface>>
gov.cca.Component

setServices(services: gov.cca.Services)

Midpoint

<<interface>>
integrator.IntegratorPort

integrate(lowBound: double,
upBound: double, count: int): double

� Our class for the Midpoint
Integrator component…

� …must implement the
CCA spec’s com-
ponent interface to be
a component…

� … and must implement
the port(s) it wants to
provide…

� … which in turn, must extend
the CCA spec’s port interface

•••

SIDL keywords

CCA
Common Component Architecture

36

CCA Concepts: Uses Ports

• Components may use ports – call methods or
subroutines in the port ()

• Calling methods on a port you use requires that you first
obtain a “handle” for the port
– Done by invoking getPort() on the user’s gov.cca.Services object
– Free up handle by invoking releasePort() when done with port

• Best practice is to bracket actual port usage as closely
as possible without using getPort()/releasePort() too
frequently
– Can be expensive operations, especially in distributed computing

contexts
– Performance is in tension with dynamism

• can’t “re-wire” components while one of their ports is “in use”

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

“Uses” Port

CCA
Common Component Architecture

37

Components Must Keep Frameworks Informed

• Components must tell the framework about the ports
they are providing and using
– Framework will not allow connections to ports it isn’t aware of

• Register them using methods on the component’s
gov.cca.Services object
– addProvidesPort() and removeProvidesPort()
– registerUsesPort() and unregisterUsesPort()
– All are defined in the CCA specification

• Ports are usually registered in the component’s
setServices() method
– Can also be added/removed dynamically during execution

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

CCA
Common Component Architecture

38

Interfaces, Interoperability, and Reuse

• Interfaces define how
components interact…

• Therefore interfaces are key
to interoperability and reuse
of components

• In many cases, “any old
interface” will do, but…

• Achieving reuse across
multiple applications requires
agreement on the same
interface for all of them

• “Common” or “community”
interfaces facilitate reuse and
interoperability

– Typically domain specific
– Formality of “standards” process

varies
– Significant initial investment for

long-term payback

• Biggerstaff’s Rule of Threes
– Must look at at least three systems

to understand what is common
(reusable)

– Reusable software requires three
times the effort of usable software

– Payback only after third release
More about community interface development efforts in “Applications” module

CCA
Common Component Architecture

39

CCA Concepts: Frameworks

• The framework provides the means to “hold”
components and compose them into applications

• Frameworks allow connection of ports without
exposing component implementation details

• Frameworks provide a small set of standard services
to components

• Currently: specific frameworks are specialized for
specific computing models (parallel, distributed, etc.)

• Future: better integration and interoperability of
frameworks

CCA
Common Component Architecture

40

See the Hands-On for Examples

See the Hands-On portion of the tutorial for examples of…

• CCA components

• Provides and uses ports

• Using a CCA framework to assemble and run
applications

• and more…

If there is no hands-on session in this tutorial, you can
download the Hands-On Guide and code from our
website to study at home

CCA
Common Component Architecture

41

Adapting Existing Code into
Components

Suitably structured code (programs, libraries) should be
relatively easy to adapt to the CCA. Here’s how:

1. Decide level of componentization
– Can evolve with time (start with coarse components, later

refine into smaller ones)

2. Define interfaces and write wrappers between them
and existing code

3. Add framework interaction code for each component
– setServices()

4. Modify component internals to use other
components as appropriate
– getPort(), releasePort() and method invocations

Example in
the hands-on!

CCA
Common Component Architecture

42

CCA Supports Local, Parallel and
Distributed Computing

• “Direct connection” preserves high
performance of local (“in-process”)
and parallel components

• Framework makes connection
• But is not involved in invocation

• Distributed computing has same
uses/provides pattern, but
framework intervenes between user
and provider

• Framework provides a proxy
provides port local to the uses
port

• Framework conveys invocation
from proxy to actual provides port

Integrator Linear Fun
Provides/Uses

Port

Direct Connection

Integrator

Linear Fun

Provides
Port

Network
Connection

Proxy Provides/
UsesPort

CCA
Common Component Architecture

43

CCA Concepts: “Direct Connection”
Maintains Local Performance

• Calls between components equivalent to a C++
virtual function call: lookup function location, invoke it
– Overhead is on the invocation only, not the total execution

time
– Cost equivalent of ~2.8 F77 or C function calls
– ~48 ns vs 17 ns on 500 MHz Pentium III Linux box

• Language interoperability can impose additional
overheads
– Some arguments require conversion
– Costs vary, but small for typical scientific computing needs

• Calls within components have no CCA-imposed
overhead More about performance in

the “Applications” module

CCA
Common Component Architecture

44

Maintaining HPC Performance
• The performance of your application is as important

to us as it is to you
• The CCA is designed to provide maximum

performance
– But the best we can do is to make your code perform no

worse
– Are the additional benefits worth the small CCA overhead?

• Facts:
– Measured overheads per function call are low
– Most overheads easily amortized by doing enough work per

call
– Converting from shared data structures to using abstract

interfaces (CCA or not) can impose a larger overhead than
adding CCA on top of an existing interface

– Awareness of costs of abstraction and language
interoperability facilitates design for high performance

CCA
Common Component Architecture

45

CCA Concepts: Framework Stays “Out
of the Way” of Component Parallelism

• Single component multiple data
(SCMD) model is component
analog of widely used SPMD
model

P0 P1 P2 P3

Components: Blue, Green, Red

Framework: Gray

MCMD/MPMD also supported

•Different components in same
process “talk to each” other via
ports and the framework

•Same component in different
processes talk to each other
through their favorite
communications layer (i.e.
MPI, PVM, GA)

• Each process loaded with the
same set of components wired
the same way

Other component models
ignore parallelism entirely

••••

CCA
Common Component Architecture

46

• Simulation composed of multiple SCMD sub-tasks

• Usage Scenarios:
– Model coupling (e.g. Atmosphere/Ocean)
– General multi-physics applications
– Software licensing issues

• Approaches
– Run single parallel framework

• Driver component that partitions processes and builds rest of
application as appropriate (through BuilderService)

– Run multiple parallel frameworks
• Link through specialized communications components
• Link as components (through AbstractFramework service)

“Multiple-Component Multiple-Data”
Applications in CCA

OceanAtmosphere Land
Driver

Coupler

Processors

CCA
Common Component Architecture

47

Components only on
process group B Group B

MCMD Within A Single Framework

Components on all
processes

Application driver & MCMD
support component

P0 P1 P2 P3

Framework

Components only on
process group A

Group A

Working examples available
using Ccaffeine framework,
with driver coded in Python

••••

CCA
Common Component Architecture

48

Advanced CCA Concepts

• The Proxy Component pattern (Hands-On Ch. 6, papers)
• Component lifecycle (tutorial notes, Hands-On)
• Components can be dynamic (papers)
• AbstractFramework (papers)

– Frameworks may present themselves as components to other
frameworks

– A “traditional” application can treat a CCA framework as a library
• Coupling codes: parallel data redistribution and parallel

remote method invocation (papers)
• Frameworks can provide a specialized programming

environment (tutorial notes, papers)

Brief introductions only, but more
info is available – just ask us!

CCA
Common Component Architecture

49

The Proxy Component Pattern
• Component interfaces offer an

obvious place to collect
information about method
invocations for performance,
debugging, or other purposes

– No intrusion on component
internals

• A “proxy” component can be
inserted between the user and
provider of a port without either
being aware of it

• Proxies can often be generated
automatically from SIDL definition
of the port

Sample uses for proxy components:
• Performance: instrumentation of

method calls
• Debugging: execution tracing,

watching data values
• Testing: Capture/replay

Performance Monitoring with TAU

Component1

Component2Component1

Component2Proxy for
Component2

MasterMind
(database)

TAU
(measure-

ment)

Before:

After:

CCA
Common Component Architecture

50

Component Lifecycle

• Composition Phase (assembling application)
– Component is instantiated in framework
– Component interfaces are connected appropriately

• Execution Phase (running application)
– Code in components uses functions provided by another

component

• Decomposition Phase (termination of application)
– Connections between component interfaces may be broken
– Component may be destroyed

In an application, individual components may be in
different phases at different times

Steps may be under human or software control

Additional
material
in notes

CCA
Common Component Architecture

51

User Viewpoint:
Loading and Instantiating Components

create Driver Driver
create LinearFunction LinearFunction
create MonteCarloIntegrator MonteCarloIntegrator

•Details are framework-specific!

•Ccaffeine currently provides both
command line and GUI approaches

• Components are code +
metadata

• Using metadata, a Palette
of available components is
constructed

• Components are
instantiated by user action
(i.e. by dragging from
Palette into Arena)

• Framework calls
component’s constructor,
then setServices

Supplementary material for handouts

CCA
Common Component Architecture

52

connect Driver IntegratorPort MonteCarloIntegrator IntegratorPort
connect MonteCarloIntegrator FunctionPort LinearFunction FunctionPort
…

User Connects Ports
• Can only connect uses &

provides
– Not uses/uses or

provides/provides
• Ports connected by type, not

name
– Port names must be unique

within component
– Types must match across

components
• Framework puts info about

provider of port into using
component’s Services object

Supplementary material for handouts

CCA
Common Component Architecture

53

Component’s View of Instantiation
• Framework calls component’s

constructor
• Component initializes internal

data, etc.
– Knows nothing outside itself

• Framework calls component’s
setServices
– Passes setServices an object

representing everything “outside”
– setServices declares ports

component uses and provides
• Component still knows nothing

outside itself
– But Services object provides the

means of communication w/
framework

• Framework now knows how to
“decorate” component and how it
might connect with others

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

MonteCarloIntegrator

Integrator code

Framework interaction code
constructor setServices destructor

CCA.Services
provides IntegratorPort

uses FunctionPort,
RandomGeneratorPort

Supplementary material for handouts

CCA
Common Component Architecture

54

Component’s View
of Connection

• Framework puts info
about provider into user
component’s Services
object
– MonteCarloIntegrator’s

Services object is aware
of connection

– NonlinearFunction is not!

• MCI’s integrator code
cannot yet call functions
on FunctionPort

NonlinearFunction

Function code

CCA.Services
provides FunctionPort

Framework interaction code
MonteCarloIntegrator

Integrator code

Framework interaction code

CCA.Services
…, uses FunctionPort

(connected to NonlinearFunction
FunctionPort), …

Supplementary material for handouts

CCA
Common Component Architecture

55

Component’s View of Using a Port

MonteCarloIntegrator

Integrator code

Framework interaction code

CCA.Services
…, uses FunctionPort

(connected to NonlinearFunction
FunctionPort), …

• User calls getPort to obtain
(handle for) port from Services
– Finally user code can “see”

provider
• Cast port to expected type

– OO programming concept
– Insures type safety
– Helps enforce declared

interface
• Call methods on port

– e.g.
sum = sum + function->evaluate(x)

• Call releasePort

Supplementary material for handouts

CCA
Common Component Architecture

56

Components can be Dynamic
• BuilderService allows programmatic composition of

components
– Components can be instantiated, destroyed, connected, and

disconnected under program control
– Framework service defined in CCA spec

Sample uses of BuilderService:
• Python “driver” script which can assemble and control

an application
– i.e. MCMD climate model

• Adaptation to changing conditions
– Swap components in and out to give better performance,

numerical accuracy, convergence rates, etc.
• Encapsulation of reusable complex component

assemblies
– Create a “container component” which exposes selected

ports from the enclosed components

CCA
Common Component Architecture

57

Coupling Codes

• Components provide a natural way to
think about coupling codes together
– i.e. multi-scale, multi-physics simulations

• Coupled codes may naturally run on
different numbers of processors, even
different machines

• Coupling may involve exchanging data
–Parallel data redistribution (aka “MxN”

problem)

• Coupling may involve parallel
procedure calls
–Parallel remote method invocation (PRMI)

• Research areas in which CCA is
developing tools

PRMI

OceanAtmosphere Land
Driver

Coupler

Processors

CCA
Common Component Architecture

58

Frameworks can Provide Specialized
Parallel Programming Environments

• Because all components run within a framework, a
CCA framework can also be used to provide a
specialized programming environment
– CCA does not dictate a particular approach to parallelism
– Environment could be implemented as extensions to a CCA-

compliant framework and/or special components

Example:
• Uintah Computational Framework, based on

SCIRun2 (Utah) provides a multi-threaded parallel
execution environment based on task graphs
– Graphs express interdependencies of each task’s inputs and

outputs
– Specialized to a class of problems using structured adaptive

mesh refinement

Supplementary material for handouts

CCA
Common Component Architecture

59

Is CCA for You?
• Much of what CCA does can be done without such tools if

you have sufficient discipline
– The larger a group, the harder it becomes to impose the necessary

discipline
• Projects may use different aspects of the CCA

– CCA is not monolithic – use what you need
– Few projects use all features of the CCA… initially

• Evaluate what your project needs against CCA’s
capabilities
– Other groups’ criteria probably differ from yours
– CCA continues to evolve, so earlier evaluations may be out of date

• Evaluate CCA against other ways of obtaining the desired
capabilities

• Suggested starting point:
– CCA tutorial “hands-on” exercises

CCA
Common Component Architecture

60

Take an Evolutionary Approach

• The CCA is designed to allow selective use and
incremental adoption

• “Babelize” interfaces incrementally
– Start with essential interfaces
– Remember, only externally exposed interfaces need to be

Babelized

• Componentize at successively finer granularities
– Start with whole application as one component

• Basic feel for components without “ripping apart” your app.
– Subdivide into finer-grain components as appropriate

• Code reuse opportunities
• Plans for code evolution

CCA
Common Component Architecture

61

View it as an Investment

• CCA is a long-term investment in your software
– Like most software engineering approaches

• There is a cost to adopt

• The payback is longer term

• Remember Biggerstaff’s Rule of Threes
– Look at three systems, requires three times the effort,

payback after third release

CCA
Common Component Architecture

62

CCA is Still Under Development

• We’ve got…
– A stable component model
– Working tools
– Active users

• But…
– We know its not perfect
– We’re not “done” by any stretch

• Talk to us…
– If you’re evaluating CCA and and need help or have

questions
– If you don’t think CCA meets your needs
– If you’ve got suggestions for things we might do better

CCA
Common Component Architecture

63

What Can CCA Do Today?

• Ccaffeine framework for HPC/parallel
– XCAT and other options for distributed computing

• Language interoperability
– Fortran 77/90/95, C, C++, Java, Python
– Support for Fortran/C user-defined data structures under

development

• Primarily support Linux platforms so far
– IBM AIX, Sun Solaris, Mac OS X likely to work, but few users

so far
– Working on Cray X1, XT3
– Porting is demand-driven

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

64This work is licensed under a Creative Commons Attribution 2.5 License

CCA Tools – Language
Interoperability and Frameworks

CCA
Common Component Architecture

65

Goal of This Module

• Describe tools for multi-lingual, scientific
component ‘plug-and-play’

Component A

Babel Chasm

CCA/Frameworks

Component B

CCA IDE

IDE = Interactive Development Environment

CCA
Common Component Architecture

66

Tools Module Overview

Component A

Babel Chasm

CCA/Frameworks

Component B

CCA IDE

• Language interoperability tools

• Frameworks

• CCA Interactive Development Environment

CCA
Common Component Architecture

67

Babel Facilitates Scientific
Programming Language Interoperability
• Programming language-neutral interface descriptions
• Native support for basic scientific data types

– Complex numbers
– Multi-dimensional, multi-strided arrays

• Automatic object-oriented wrapper generation

C

C++

f77

f90

Python

Java

vs.

Babel

Supported on Linux, AIX, and Solaris 2.7, works on OSX;
C (ANSI C), C++ (GCC), F77 (g77, Sun f77), F90 (Intel, Lahey, GNU, Absoft), Java (1.4)

Supported on Linux, AIX, and Solaris 2.7, works on OSX;
C (ANSI C), C++ (GCC), F77 (g77, Sun f77), F90 (Intel, Lahey, GNU, Absoft), Java (1.4)

VersionedVersioned

C

C++

f77

f90

Python

Java

Babel

CCA
Common Component Architecture

68

Babel Generates Object-Oriented
Language Interoperability Middleware

IOR = Intermediate Object Representation

comp.sidl Babel
Compiler Skeletons

Implementations

IORs

Stubs

libcomp.so

SIDL = Scientific Interface Definition Language

1. Write your SIDL file to define public methods
2. Generate server side in your native language using Babel
3. Edit Implementations as appropriate
4. Compile and link into library/DLL

Babel

Babel
Runtimeuser creates

CCA
Common Component Architecture

69

Clients in any supported language can access
components in any other language

Babel
presentation
coming up!

Babel

IOR = Intermediate Object Representation

Skeletons

Implementations

IORs

Component
(any supported language)

C
Stubs

C++
Stubs

F77
Stubs

F90
Stubs

Java
Stubs

Python
Stubs

CCA
Common Component Architecture

70

Recent and Upcoming Features

• Remote Method Invocation (BabelRMI)
• Design-by-Contract
• Pre- and post-method invocation hooks

Babel Supplementary material for notes

AlphaAlpha
AlphaAlpha

AlphaAlpha

CCA
Common Component Architecture

71

Chasm Provides Language
Interoperability for Fortran, C, and C++

• Extracts interfaces from C/C++ and Fortran90 codes
• Uses library of XSLT stylesheets for language

transformations � easily extended
– Generates XML and SIDL representations
– Generates Fortran90 Babel implementation glue

• Provides Fortran array descriptor library used by Babel

Chasm

Supported on Linux, AIX, and Solaris 2.7, works on OSX;
C (ANSI C), C++ (GCC), F90 (Intel, Lahey, GNU, Absoft)

Supported on Linux, AIX, and Solaris 2.7, works on OSX;
C (ANSI C), C++ (GCC), F90 (Intel, Lahey, GNU, Absoft)

VersionedVersioned

CCA
Common Component Architecture

72

The Entire Chasm Process Involves
Three Basic Steps

1. Start with a Fortran (or C/C++) source file
2. Create an XML description of the component (or port)
3. Generate the SIDL specification and glue code files

.f90 .ptd

.impl.xml

comp.impl.xml

_Mod.F90

_Impl.F90

.sidl

gfortran

gfortran2xml

xalan

Chasm

XML = Extensible Markup Language PTD = Parse Tree Dump

user creates

CCA
Common Component Architecture

73

Chasm-Assisted Glue Code Generation

1. Create functions_LinearFunction.impl.xml
2. Create xml description of source procedures

% gfortran -fdump-parse-tree LinearFunction.f90 >
LinearFunction.ptd

% gfortran2xml < LinearFunction.ptd >
LinearFunction.xml

3. Create .sidl, _Impl.F90, and _Mod.F90
% xalan –o functions_LinearFunction.sidl

functions_LinearFunction.impl.xml
cca-f90-comp.sidl.xsl

% xalan –o functions_LinearFunction_Impl.F90
functions_LinearFunction.impl.xml
cca-f90.impl.xsl

% xalan –o functions_LinearFunction_Mod.F90
functions_LinearFunction.impl.xml
cca-f90.mod.xsl

4. Run Babel…

Chasm Supplementary material for notes

CCA
Common Component Architecture

74

User-Created XML
Component Description File

<componentImplementation name="LinearFunction” package="functions”>
<language name=“F90”>
<property name="impl-scope" value="LinearFunction"/>
<property name="impl-xml” value=”/home/cca/LinearFunction.xml"/>

<ports>
<provides name="FunctionPort" package="function">
<MethodsBlock>
<Method name="evaluate" impl="evaluate_lf"/>

</MethodsBlock>
</provides>

</ports>

</language>
</componentImplementation>

<componentImplementation name="LinearFunction” package="functions”>
<language name=“F90”>
<property name="impl-scope" value="LinearFunction"/>
<property name="impl-xml” value=”/home/cca/LinearFunction.xml"/>

<ports>
<provides name="FunctionPort" package="function">
<MethodsBlock>
<Method name="evaluate" impl="evaluate_lf"/>

</MethodsBlock>
</provides>

</ports>

</language>
</componentImplementation>

Chasm Supplementary material for notes

CCA
Common Component Architecture

75

Recent and Upcoming Features

• Generate Fortran 2003 MPI Bindings
• Update XML processor and generator to new

PDToolkit releases

Chasm Supplementary material for notes

1Q 20061Q 2006

1Q 20061Q 2006

CCA
Common Component Architecture

76

Tools Module Overview

• Language interoperability tools

• Frameworks

• CCA Interactive Development Environment

Component A

Babel Chasm

CCA/Frameworks

Component B

CCA IDE

CCA
Common Component Architecture

77

Frameworks are Specialized to Different
Computing Environments

• “Direct connection” preserves high
performance of local (“in-process”)
and parallel components

• Framework makes connection
• Framework not involved in

invocation

• Distributed computing has same
uses/provides pattern, but the
framework intervenes between user
and provider

• Framework provides a proxy port
local to the user’s uses port

• Framework conveys invocation
from proxy to actual provides port

Integrator Linear Fun
Provides/Uses

Port

Direct Connection

Integrator

Linear Fun

Provides
Port

Network
Connection

Proxy Provides/
Uses Port

CCA
Common Component Architecture

78

Graphical User Interfaces (GUIs) Deliver
Plug-and-Play Experience

• Plug & play for:
– Application software assembly
– Visualization pipelines
– Workflow management

• Assembling “wiring” diagrams is almost
universal.
– Software assembly: Ccaffeine, XCAT, SciRUN
– Workflow: XCAT, SciRUN
– Visualization: SciRUN

None of these (yet) plug into your favorite Integrated Development Environment
(e.g., Eclipse, MS Dev. Studio, Java Studio, …).

None of these (yet) plug into your favorite Integrated Development Environment
(e.g., Eclipse, MS Dev. Studio, Java Studio, …).

CCA
Common Component Architecture

79

Ccaffeine is a Direct-Connect,
Parallel-Friendly Framework

• Supports SIDL/Babel components
– Conforms to latest CCA specification (0.7)
– Also supports legacy CCA specification (0.5)

• Any C++ allowed with C and Fortran by C++ wrappers

• Provides command-line and GUI for composition
– Scripting supports batch mode for SPMD
– MPMD/SPMD custom drivers in any Babel language

Ccaffeine Framework

Supported on Linux, AIX, OSX and is portable to modern UNIXes.Supported on Linux, AIX, OSX and is portable to modern UNIXes.

VersionedVersioned

CCA
Common Component Architecture

80

• As easy as 1-2-3:
– Write your component.
– Describe it with an XML file.
– Add a line to your Ccaffeine input file to load the

component at runtime.

• Proceed to plug & play...

Ccaffeine Involves a Minimum of Three Steps

Ccaffeine Framework

There are many details and automated tools that help manage components.There are many details and automated tools that help manage components.

CCA
Common Component Architecture

81

Ccaffeine GUI
• Process

– User input is broadcast SPMD-wise from Java.
– Changes occur in GUI after the C++ framework replies.
– If your components are computing, GUI changes are blocked.

• Components interact through port connections
– provide ports implement class or subroutines
– use ports call methods or subroutines in the port.
– Links denote caller/callee relationship not data flow

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

“Provides” Port

“Uses” Port

Ccaffeine Framework (ccafe-gui)

Java is required.Java is required.

VersionedVersioned

OptionalOptional

CCA
Common Component Architecture

82

connect Driver IntegratorPort MonteCarloIntegrator IntegratorPort
connect MonteCarloIntegrator FunctionPort LinearFunction FunctionPort
…

User Connects Ports

• Can only connect uses &
provides
– Not uses/uses
– Not provides/provides

• Ports connected by type not
name
– Port names must be unique

within component
– Types must match across

components
• Framework puts info about

provider of port into using
component’s Services object

Ccaffeine Framework (ccafe-gui) Supplementary material for notes

CCA
Common Component Architecture

83

create Driver Driver
create LinearFunction LinearFunction
create MonteCarloIntegrator MonteCarloIntegrator

• Components are code + XML metadata
• Using metadata, a Palette of available components is constructed.
• Components are instantiated by user action (i.e. by dragging from

Palette into Arena).
• Framework calls

component’s constructor,
then setServices

Ccaffeine Framework (ccafe-gui)

Building an Application (1 of 2)

CCA
Common Component Architecture

84

Ccaffeine Framework (ccafe-gui)

1. Click Configure port to
start parameter input
dialogue.

3. Click Go port to start
the application.

2. For each connection:
click a uses port
then click a provides port
to establish a connection.

Right-clicking a connection line breaks the connection -- enabling component substitution.Right-clicking a connection line breaks the connection -- enabling component substitution.

Building an Application (2 of 2)

CCA
Common Component Architecture

85

Ccaffeine Framework (ccafe-gui)

Application Configurations can be Re-used

1. Click Save or Save
As… to save actions.

2. Click Open to replay
actions.

• Script optimization
% simplify-bld saved_file.bld > faster_file.bld

• Batch conversion
% bld2rc faster_file.bld > faster_file.batch

• C++ stand-alone execution
% bld2babel-cpp faster_file.bld faster_file_babel outdir

or % bld2neo faster_file.bld faster_file.batch outdir

Supplementary material for notes

CCA
Common Component Architecture

86

Recent and Upcoming Features

• Interoperate with other CCA frameworks
– Via Babel RMI

Ccaffeine Framework Supplementary material for notes

2H 20062H 2006

CCA
Common Component Architecture

87

XCAT is a Web-based
Distributed Component Framework

XCAT-C++ Framework

Tested on Linux.Tested on Linux.

• Remote references
– Port types described in C++ header files or in WSDL documents

• User Interface
– C++ and Python interface to CCA BuilderService
– Uses SWIG for Python-C++ translations

• Component creation
– Remote creation via SSH

• Component communication
– Proteus multi-protocol library
– Communication libraries can be loaded at run-time

WSDL = Web Service Definition Language

AlphaAlpha

CCA
Common Component Architecture

88

XCAT is Designed for High-Performance
Scientific Applications

XCAT-C++ Framework

CCA
Common Component Architecture

89

Recent and Upcoming Features

• Support GRAM for component creation
– Allow use of grid resources

• Automated component registration and discovery
• Support new protocols such as UDT (in Proteus)
• Support Babel’s Remote Method Invocation

– Allows access to Babel objects through remote Babel stubs
– Provides direct support for SIDL in distributed applications
– Leverages Proteus

XCAT-C++ Framework Supplementary material for notes

1H 20061H 2006

2H 20062H 2006
1H 20061H 2006

2H 20062H 2006

GRAM = Grid Resource Allocation Management UDT = UDP-based Data Transfer protocol

CCA
Common Component Architecture

90

SCIRun2 is a Cross-Component Model,
Distributed Component Framework

• Semi-automatically bridges component models
– Templated components connected at

run-time generate bridges
• Parallel Interface Definition Language

(PIDL) – a SIDL variant
• User interface – GUI and textual

– Dynamic composition
• Component and framework creation

– Remote via SSH
• Component communication

– C++ RMI with co-location optimization
– MPI/ Parallel Remote Method Invocation (PRMI)

SCIRun2 Framework

Supported on Linux.Supported on Linux.

AlphaAlpha

CCA
Common Component Architecture

91

Master Framework Coordinates Slave Frameworks in Each
Remote Address Space

Component Loader
(Slave Framework)

Uses Ports

Provides Ports

PRMI

Connection
Table

(Referencing remote
Components)

Component ID
Table

(Referencing remote
provides ports)

SCIRun2 Framework (Master Framework)

Component Code
(User)

Component Code
(PIDL-Generated)

Component

Component Loader
(Slave Framework)

Uses Ports

Provides Ports

Component Code
(User)

Component Code
(PIDL-Generated)

Component

Builder Service

Service Object Service Object

SCIRun2 Framework

CCA
Common Component Architecture

92

Basic How-To
1. Add component source files and makefile to

SCIRun2 sources
� May need to define ports in SIDL

2. Add component information to the component
model xml file

3. Build component using SCIRun2 make scripts
� Alternatively, build component using Babel

4. Start the framework and graphical (default) or text
builder

5. Graphically connect component to other CCA-based
or non CCA-based components
� May need to create bridge components to go between

models
6. Press the “Go” button on the driver component

SCIRun2 Framework

CCA
Common Component Architecture

93

Simple SCIRun2 CCA (PIDL) and Babel Bridge

SCIRun2 Framework Supplementary material for notes

CCA
Common Component Architecture

94

Recent and Upcoming Features

• Merge PIDL with SIDL/Babel
• Support additional component models

– Kepler workflows
• Support Babel’s Remote Method Invocation

PRMI
• Automate bridging

SCIRun2 Framework Supplementary material for notes

1H 20051H 2005

1H 20061H 2006

2H 20062H 2006

OnOn--goinggoing

CCA
Common Component Architecture

95

Experimental Frameworks

• Goal: allow component-based CCA applications to
run in Grid-scale environments using Legion
• Supports creation, scheduling, persistence,
migration, and fault notification; relies on Legion’s
built-in RPC mechanism (~Unix sockets)

Grid-
based
research

LegionCCA

• Goal: explore MxN Parallel-Remote Method
Invocation (PRMI) using MPI
• Parallel data transfer and redistribution integrated
into port invocation mechanism

MxN
research

Distributed
CCA

Framework
(DCA)

• Goal: explore web interface for launching
distributed applications
• This (alpha) version compatible with latest CCA
specification and provides built-in seamless
compatibility with OGSI.

Globus-
based
Grid
research

XCAT-Java

SummaryPurposeFramework

Supplementary material for notes

OGSI = Open Grid Services Infrastructure

VersionedVersioned

CCA
Common Component Architecture

96

Tools Module Overview

• Language interoperability tools

• Frameworks

• CCA Interactive Development Environment

Component A

Babel Chasm

CCA/Frameworks

Component B

CCA IDE

CCA
Common Component Architecture

97

Component Development Environment
Provided via Eclipse Plug-ins

• Provides a high-level graphical environment
– Creating new SIDL-based components
– Componentizing legacy codes

• C, C++, Java and Fortran

• Automatic code generation

CCA IDE

Supported on Linux, Windows, MacOS.Supported on Linux, Windows, MacOS.

AlphaAlpha

CCA
Common Component Architecture

98

Component Development Environment Starts at the
Eclipse Platform Level

CCA IDE

Plug-ins for:
• SIDL Editor

• Wizards

• Preliminary
automated build
support

Imperative that you start by creating a new project!Imperative that you start by creating a new project!

CCA
Common Component Architecture

99

Wizards are Available for Adding Packages and
Classes or Generating SIDL from Legacy Codes

CCA IDE

• Intuitive
interfaces to port
and component
definition

• Helper wizards
for setting port,
component and
(in the future)
application
properties

CCA
Common Component Architecture

100

A Wizard is also Available for Adding Methods

CCA IDE Supplementary material for notes

CCA
Common Component Architecture

101

Recent and Upcoming Features

• Provide automated build support
• Launch application via GUI

CCA IDE Supplementary material for notes

1H 20051H 2005

1H 20061H 2006

CCA
Common Component Architecture

102

CCA Tools Contacts (1 of 2)

Email: usability@cca-forum.orgCCA development
environment

CCA IDE

URL: www.cs.indiana.edu/~febertra/mxn
Email: Felipe Bertrand,

febertra@cs.indiana.edu

MxN research
framework

DCA

URL: www.cca-forum.org/software/
Email: Ben Allan, ccafe-help@z.ca.sandia.gov
Wiki: https://www.cca-forum.org/wiki

Direct-connect,
parallel-friendly
framework

Ccaffeine

URL: chasm-interop.sourceforge.net
Examples: chasm/example/cca-tutorial

Fortran90
interoperability
wrapper

Chasm

URL: www.llnl.gov/CASC/components
Email: components@llnl.gov

or babel-users@lists.llnl.gov

Scientific language
interoperability tool
kit

Babel
More informationPurposeTool

Supplementary material for notes

CCA
Common Component Architecture

103

CCA Tools Contacts (2 of 2)

URL: www.extreme.indiana.edu/xcat/
Email: Dennis Gannon, gannon@cs.indiana.edu

Grid
research
framework

XCAT-Java

URL: grid.cs.binghamton.edu/projects/xcat/
Email: Madhu Govindaraju,

mgovinda@cs.binghamton.edu

Globus-
based GRID
framework

XCAT-C++

URL: grid.cs.binghamton.edu/projects/legioncca.html
Email: Michael J. Lewis, mlewis@binghamton.edu

Grid-based
research
framework

LegionCCA

URL: www.sci.utah.edu/
Email: Steve Parker, sparker@cs.utah.edu

Cross-
component
model
framework

SCIRun2

More informationPurposeTool

Supplementary material for notes

CCA
Common Component Architecture

104

Module Summary

• Described tools for multi-lingual, scientific component
‘plug-and-play’
– Language interoperability through Babel and Chasm
– CCA Frameworks provide mechanisms for composition
– CCA Interactive Development Environment via Eclipse plug-in

Component A

Babel Chasm

CCA/Frameworks

Component B

CCA IDE

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

105This work is licensed under a Creative Commons Attribution 2.5 License

Language Interoperable
CCA Components via

CCA
Common Component Architecture

106

Goal of This Module

Legacy codes ���� Babelized CCA Components

• Introduction
• Example

– “Hello World”
• Babelized CCA components

CCA
Common Component Architecture

107

Language Interoperability Facilitates Building
Multiple Language Applications

Simulation Framework
(C)

Solver Library
(C++)

Numerical Routines
(f77)

Scripting Driver
(Python)

Visualization System
(Java)

Callback Handlers
(Python)

CCA
Common Component Architecture

108

Babel Toolkit Consists of Two Parts:
Code Generator + Runtime Library

SIDL
interface

description

Babel
Compiler

C++

F77

F90

Python

C

XML

Java

Application

HTML

SIDL = Scientific Interface Definition Language

Babel
Runtime

CCA
Common Component Architecture

109

The Basic Middleware Generation Process is
Fairly Straightforward

mycode.sidl Babel
Compiler Skeletons

Implementations

IORs

Stubs

libmycode.so

1. Write your SIDL file to define public methods
2. Generate middleware in your native language using Babel
3. Fill in the implementation details as appropriate
4. Compile and link into library/DLL

IOR = Intermediate Object Representation

CCA
Common Component Architecture

110

Babel Module’s Outline

• Introduction
• Example

– “Hello World”
• Babelized CCA components

CCA
Common Component Architecture

111

greetings.sidl: A Sample SIDL File for our
“Hello World” Example

packagepackagepackagepackage greetings greetings greetings greetings version version version version 1.0 { 1.0 { 1.0 { 1.0 {

interfaceinterfaceinterfaceinterface Hello { Hello { Hello { Hello {

void void void void setNamesetNamesetNamesetName((((inininin string name);string name);string name);string name);

string string string string sayItsayItsayItsayIt ();();();();

}}}}

classclassclassclass English English English English implementsimplementsimplementsimplements----allallallall Hello { }Hello { }Hello { }Hello { }

}}}}

packagepackagepackagepackage greetings greetings greetings greetings version version version version 1.0 { 1.0 { 1.0 { 1.0 {

interfaceinterfaceinterfaceinterface Hello { Hello { Hello { Hello {

void void void void setNamesetNamesetNamesetName((((inininin string name);string name);string name);string name);

string string string string sayItsayItsayItsayIt ();();();();

}}}}

classclassclassclass English English English English implementsimplementsimplementsimplements----allallallall Hello { }Hello { }Hello { }Hello { }

}}}}

CCA
Common Component Architecture

112

At a Minimum, the Library Developer
Generates Single-Language Middleware

1. Execute `babel --server=C++ greetings.sidl`
2. Fill in the implementation details
3. Compile and link into a library/DLL

greetings.sidl Babel
Compiler

C++ Skeletons

C++
Implementations

IORs

C++ Stubs

libgreetings.so

legacy_library.so

•

to dispatch to legacy codeto dispatch to legacy code

CCA
Common Component Architecture

113

Implementation Details Must be Filled in
Between Splicer Blocks

stringstringstringstring

greetings::English_impl::sayItgreetings::English_impl::sayItgreetings::English_impl::sayItgreetings::English_impl::sayIt() () () ()

throw () throw () throw () throw ()

{{{{

// DO// DO// DO// DO----NOTNOTNOTNOT----DELETE DELETE DELETE DELETE splicer.begin(greetings.English.sayItsplicer.begin(greetings.English.sayItsplicer.begin(greetings.English.sayItsplicer.begin(greetings.English.sayIt))))

string string string string msg(“Hellomsg(“Hellomsg(“Hellomsg(“Hello “);“);“);“);

return return return return msgmsgmsgmsg + d_name + “!”;+ d_name + “!”;+ d_name + “!”;+ d_name + “!”;

// DO// DO// DO// DO----NOTNOTNOTNOT----DELETE DELETE DELETE DELETE splicer.end(greetings.English.sayItsplicer.end(greetings.English.sayItsplicer.end(greetings.English.sayItsplicer.end(greetings.English.sayIt))))

}}}}

stringstringstringstring

greetings::English_impl::sayItgreetings::English_impl::sayItgreetings::English_impl::sayItgreetings::English_impl::sayIt() () () ()

throw () throw () throw () throw ()

{{{{

// DO// DO// DO// DO----NOTNOTNOTNOT----DELETE DELETE DELETE DELETE splicer.begin(greetings.English.sayItsplicer.begin(greetings.English.sayItsplicer.begin(greetings.English.sayItsplicer.begin(greetings.English.sayIt))))

string string string string msg(“Hellomsg(“Hellomsg(“Hellomsg(“Hello “);“);“);“);

return return return return msgmsgmsgmsg + d_name + “!”;+ d_name + “!”;+ d_name + “!”;+ d_name + “!”;

// DO// DO// DO// DO----NOTNOTNOTNOT----DELETE DELETE DELETE DELETE splicer.end(greetings.English.sayItsplicer.end(greetings.English.sayItsplicer.end(greetings.English.sayItsplicer.end(greetings.English.sayIt))))

}}}}

namespace greetings { namespace greetings { namespace greetings { namespace greetings {
class class class class English_implEnglish_implEnglish_implEnglish_impl {{{{

private:private:private:private:
// DO// DO// DO// DO----NOTNOTNOTNOT----DELETE DELETE DELETE DELETE splicer.begin(greetings.English._implsplicer.begin(greetings.English._implsplicer.begin(greetings.English._implsplicer.begin(greetings.English._impl))))
string d_name;string d_name;string d_name;string d_name;
// DO// DO// DO// DO----NOTNOTNOTNOT----DELETE DELETE DELETE DELETE splicer.end(greetings.English._implsplicer.end(greetings.English._implsplicer.end(greetings.English._implsplicer.end(greetings.English._impl))))

namespace greetings { namespace greetings { namespace greetings { namespace greetings {
class class class class English_implEnglish_implEnglish_implEnglish_impl {{{{

private:private:private:private:
// DO// DO// DO// DO----NOTNOTNOTNOT----DELETE DELETE DELETE DELETE splicer.begin(greetings.English._implsplicer.begin(greetings.English._implsplicer.begin(greetings.English._implsplicer.begin(greetings.English._impl))))
string d_name;string d_name;string d_name;string d_name;
// DO// DO// DO// DO----NOTNOTNOTNOT----DELETE DELETE DELETE DELETE splicer.end(greetings.English._implsplicer.end(greetings.English._implsplicer.end(greetings.English._implsplicer.end(greetings.English._impl))))

CCA
Common Component Architecture

114

To Allow the Library User To Use Another Language,
the Library Developer Must Generate Stubs

greetings.sidl Babel
Compiler IOR

Headers

F90 Stubs

libgreetings.so

Babel
Runtime

Application

1. Execute `babel --client=F90 greetings.sidl`
2. Invoke stub versions of the methods
3. Compile and link with generated code, library, & Runtime
4. Place DLL in suitable location

Could be done
by the User!

CCA
Common Component Architecture

115

So an F90 Version of the “Hello World”
Application is Pretty Basic

programprogramprogramprogram helloclienthelloclienthelloclienthelloclient

useuseuseuse greetings_Englishgreetings_Englishgreetings_Englishgreetings_English

implicit noneimplicit noneimplicit noneimplicit none

typetypetypetype(greetings_English_t) :: (greetings_English_t) :: (greetings_English_t) :: (greetings_English_t) :: objobjobjobj

charactercharactercharactercharacter ((((lenlenlenlen====80808080)))) :: :: :: :: msgmsgmsgmsg

charactercharactercharactercharacter ((((lenlenlenlen====20202020)))) :: name:: name:: name:: name

name=name=name=name=’World’’World’’World’’World’

callcallcallcall newnewnewnew((((objobjobjobj))))

callcallcallcall setNamesetNamesetNamesetName((((objobjobjobj, name), name), name), name)

callcallcallcall sayItsayItsayItsayIt((((objobjobjobj, , , , msgmsgmsgmsg))))

printprintprintprint *, *, *, *, msgmsgmsgmsg

callcallcallcall deleteRefdeleteRefdeleteRefdeleteRef((((objobjobjobj))))

endendendend programprogramprogramprogram helloclienthelloclienthelloclienthelloclient

programprogramprogramprogram helloclienthelloclienthelloclienthelloclient

useuseuseuse greetings_Englishgreetings_Englishgreetings_Englishgreetings_English

implicit noneimplicit noneimplicit noneimplicit none

typetypetypetype(greetings_English_t) :: (greetings_English_t) :: (greetings_English_t) :: (greetings_English_t) :: objobjobjobj

charactercharactercharactercharacter ((((lenlenlenlen====80808080)))) :: :: :: :: msgmsgmsgmsg

charactercharactercharactercharacter ((((lenlenlenlen====20202020)))) :: name:: name:: name:: name

name=name=name=name=’World’’World’’World’’World’

callcallcallcall newnewnewnew((((objobjobjobj))))

callcallcallcall setNamesetNamesetNamesetName((((objobjobjobj, name), name), name), name)

callcallcallcall sayItsayItsayItsayIt((((objobjobjobj, , , , msgmsgmsgmsg))))

printprintprintprint *, *, *, *, msgmsgmsgmsg

callcallcallcall deleteRefdeleteRefdeleteRefdeleteRef((((objobjobjobj))))

endendendend programprogramprogramprogram helloclienthelloclienthelloclienthelloclient

These subroutines were
specified in the SIDL.
These subroutines were
specified in the SIDL.

Other basic subroutines
are “built in” to SIDL
classes (and interfaces).

Other basic subroutines
are “built in” to SIDL
classes (and interfaces).

••

CCA
Common Component Architecture

116

Using Babel, Step-by-Step

C Stub

C++ Stub

F77 Stub

F90 Stub

Java Stub

Py Stub

Java Skel

F90 Skel

F77 Skel

C++ Skel

C Skel

Intermediate
Object

Representation
(C)

Py Skel Py Impl

Java Impl

F90 Impl

F77 Impl

C++ Impl

C Impl

SIDL

• • • • • •

C++
Library

CCA
Common Component Architecture

117

Babel Module’s Outline

• Introduction
• Example

– “Hello World”
• Babelized CCA components

CCA
Common Component Architecture

118

How to write a
Babelized CCA Component (1/3)

1. Define “Ports” in SIDL
– CCA Port =

• a SIDL Interface
• extends gov.cca.Port

package functions version 1.0 {
interface Function extends gov.cca.Port {

double evaluate(in double x);
}

}

package functions version 1.0 {
interface Function extends gov.cca.Port {

double evaluate(in double x);
}

}

CCA
Common Component Architecture

119

How to write a
Babelized CCA Component (2/3)

2. Define “Components” that implement those Ports
– CCA Component =

• SIDL Class
• implements gov.cca.Component (and any provided ports)

class LinearFunction implements functions.Function,
gov.cca.Component {

double evaluate(in double x);
void setServices(in cca.Services svcs);

}

class LinearFunction implements functions.Function,
gov.cca.Component {

double evaluate(in double x);
void setServices(in cca.Services svcs);

}

class LinearFunction implements-all
functions.Function, gov.cca.Component { }

class LinearFunction implements-all
functions.Function, gov.cca.Component { }

CCA
Common Component Architecture

120

Tip: Use Babel’s XML output like precompiled
headers in C++

1. Precompile SIDL into XML using ‘--text=xml’
2. Store XML in a directory
3. Use Babel’s –R option to specify

search directories

cca.sidl Babel
Compiler XML Type

Repository

functions.sidl Babel
Compiler Skeletons

Implementations

IORs

Stubs

Supplementary material for notes

CCA
Common Component Architecture

121

How to write a
Babelized CCA Component (3/3)

3. Use Babel to generate the interoperability glue
– Execute `babel --server=C –RRepo functions.sidl`

4. Fill in Implementations as needed

functions.sidl Babel
Compiler C Skeletons

C
Implementations

IORs

C Stubs

libfunctions.so

Repo
(XML)

CCA
Common Component Architecture

122

Contact Information
• Project: http://www.llnl.gov/CASC/components

– Babel: language interoperability tool
– Alexandria: component repository
– Quorum: web-based parliamentary system
– Gauntlet: testing framework

• Project Team Email: components@llnl.gov
• Mailing Lists: majordomo@lists.llnl.gov

subscribe babel-users [email address]
subscribe babel-announce [email address]

• Bug Tracking: https://www.cca-forum.org/bugs/babel/
or email to babel-bugs@cca-forum.org

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

123This work is licensed under a Creative Commons Attribution 2.5 License

CCA Applications

CCA
Common Component Architecture

124

Modern Scientific Software Development
• Complex codes, often coupling multiple types of physics, time or length

scales, involving a broad range of computational and numerical
techniques

• Different parts of the code require significantly different expertise to
write (well)

• Generally written
by teams rather
than individuals

Discretization

Algebraic Solvers

Data Redistribution

Mesh

Data Reduction

Physics Modules

Optimization

Derivative Computation

Collaboration

Diagnostics

Steering

Visualization

Adaptive Solution

Time Evolution

CCA
Common Component Architecture

125

Overview

• Examples (scientific) of increasing complexity
– Laplace equation
– Time-dependent heat equation
– Nonlinear reaction-diffusion system
– Quantum chemistry
– Climate simulation

• Tools
– MxN parallel data redistribution
– Performance measurement, modeling and scalability studies

• Community efforts & interface development
– TSTT Mesh Interface effort
– CCTTSS’s Data Object Interface effort

CCA
Common Component Architecture

126

Laplace Equation

∇ 2ϕ (x,y) = 0 ∈ [0,1] x [0,1]
ϕ(0,y)=0 ϕ(1,y)=sin (2πy)
δϕ/δy(x,0) = δϕ/δy(x,1) = 0

Discretization

Algebraic Solvers

Mesh

Physics Modules

Visualization

CCA
Common Component Architecture

127

Laplace Equation with Components

• The Driver
Component

– Responsible for
the overall
application flow

– Initializes the
mesh,
discretization,
solver and
visualization
components

– Sets the physics
parameters and
boundary
condition
information

• The Driver
Component

– Responsible for
the overall
application flow

– Initializes the
mesh,
discretization,
solver and
visualization
components

– Sets the physics
parameters and
boundary
condition
information

CCA
Common Component Architecture

128

Laplace Equation with Components

• The Driver
Component

– Responsible for
the overall
application flow

– Initializes the
mesh,
discretization,
solver and
visualization
components

– Sets the physics
parameters and
boundary
condition
information

• The Driver
Component

– Responsible for
the overall
application flow

– Initializes the
mesh,
discretization,
solver and
visualization
components

– Sets the physics
parameters and
boundary
condition
information

• The Mesh
Component

– Provides
geometry,
topology, and
boundary
information

– Provides the
ability to attach
user defined data
as tags to mesh
entities

– Is used by the
driver,
discretization
and visualization
components

• The Mesh
Component

– Provides
geometry,
topology, and
boundary
information

– Provides the
ability to attach
user defined data
as tags to mesh
entities

– Is used by the
driver,
discretization
and visualization
components

CCA
Common Component Architecture

129

Laplace Equation with Components

• The Driver
Component

– Responsible for
the overall
application flow

– Initializes the
mesh,
discretization,
solver and
visualization
components

– Sets the physics
parameters and
boundary
condition
information

• The Driver
Component

– Responsible for
the overall
application flow

– Initializes the
mesh,
discretization,
solver and
visualization
components

– Sets the physics
parameters and
boundary
condition
information

• The Mesh
Component

– Provides
geometry and
topology
information

– Provides the
ability to attach
user defined data
to mesh entities

– Is used by the
driver,
discretization
and visualization
components

• The Mesh
Component

– Provides
geometry and
topology
information

– Provides the
ability to attach
user defined data
to mesh entities

– Is used by the
driver,
discretization
and visualization
components

• The Discretization
Component

– Provides a finite
element
discretization of
basic operators
(gradient,
Laplacian, scalar
terms)

– Driver
determines
which terms are
included and
their coefficients

– Boundary
conditions,
assembly etc

• The Discretization
Component

– Provides a finite
element
discretization of
basic operators
(gradient,
Laplacian, scalar
terms)

– Driver
determines
which terms are
included and
their coefficients

– Boundary
conditions,
assembly etc

CCA
Common Component Architecture

130

Laplace Equation with Components

• The Driver
Component

– Responsible for
the overall
application flow

– Initializes the
mesh,
discretization,
solver and
visualization
components

– Sets the physics
parameters and
boundary
condition
information

• The Driver
Component

– Responsible for
the overall
application flow

– Initializes the
mesh,
discretization,
solver and
visualization
components

– Sets the physics
parameters and
boundary
condition
information

• The Mesh
Component

– Provides
geometry and
topology
information

– Provides the
ability to attach
user defined data
to mesh entities

– Is used by the
driver,
discretization
and visualization
components

• The Mesh
Component

– Provides
geometry and
topology
information

– Provides the
ability to attach
user defined data
to mesh entities

– Is used by the
driver,
discretization
and visualization
components

• The Discretization
Component

– Provides a finite
element
discretization of
basic operators
(gradient,
laplacian, scalar
terms)

– Provides
mechanisms for
general Dirichlet
and Neumann
boundary
condition
manipulations

• The Discretization
Component

– Provides a finite
element
discretization of
basic operators
(gradient,
laplacian, scalar
terms)

– Provides
mechanisms for
general Dirichlet
and Neumann
boundary
condition
manipulations

• The Solver
Component

– Provides access
to vector and
matrix operations
(e.g., create,
destroy, get, set)

– Provides a
“solve”
functionality for a
linear operator

• The Solver
Component

– Provides access
to vector and
matrix operations
(e.g., create,
destroy, get, set)

– Provides a
“solve”
functionality for a
linear operator

CCA
Common Component Architecture

131

Laplace Equation with Components

• The Driver
Component

– Responsible for
the overall
application flow

– Initializes the
mesh,
discretization,
solver and
visualization
components

– Sets the physics
parameters and
boundary
condition
information

• The Driver
Component

– Responsible for
the overall
application flow

– Initializes the
mesh,
discretization,
solver and
visualization
components

– Sets the physics
parameters and
boundary
condition
information

• The Mesh
Component

– Provides
geometry and
topology
information

– Provides the
ability to attach
user defined data
to mesh entities

– Is used by the
driver,
discretization
and visualization
components

• The Mesh
Component

– Provides
geometry and
topology
information

– Provides the
ability to attach
user defined data
to mesh entities

– Is used by the
driver,
discretization
and visualization
components

• The Discretization
Component

– Provides a finite
element
discretization of
basic operators
(gradient,
laplacian, scalar
terms)

– Provides
mechanisms for
general Dirichlet
and Neumann
boundary
condition
manipulations

– Computes

• The Discretization
Component

– Provides a finite
element
discretization of
basic operators
(gradient,
laplacian, scalar
terms)

– Provides
mechanisms for
general Dirichlet
and Neumann
boundary
condition
manipulations

– Computes
l t t i

• The Solver
Component

– Provides access
to vector and
matrix operations
(e.g., create,
destroy, get, set)

– Provides a
“solve”
functionality for a
linear operator

• The Solver
Component

– Provides access
to vector and
matrix operations
(e.g., create,
destroy, get, set)

– Provides a
“solve”
functionality for a
linear operator

• The Visualization
Component

– Uses the mesh
component to
print a vtk file of
ϕ on the
unstructured
triangular mesh

– Assumes user
data is attached
to mesh vertex
entities

• The Visualization
Component

– Uses the mesh
component to
print a vtk file of
ϕ on the
unstructured
triangular mesh

– Assumes user
data is attached
to mesh vertex
entities

CCA
Common Component Architecture

132

Time-Dependent Heat Equation
δϕ/δt = ∇ 2ϕ (x,y,t) ∈ [0,1] x [0,1]

ϕ(0,y,t)=0 ϕ(1,y,t)=.5sin(2πy)cos(t/2)
δϕ/δy(x,0) = δϕ/δy(x,1) = 0
ϕ(x,y,0)=sin(.5πx) sin (2πy)

Time Evolution

Discretization

Algebraic Solvers

Mesh

Physics Modules

Visualization

Data RedistributionDistributed Arrays

CCA
Common Component Architecture

133

Some things change…

• Requires a time integration component
– Based on the LSODE library

• Uses a new visualization component
– Based on AVS

• The visualization component requires a
Distributed Array Descriptor component
– Similar to HPF arrays

• The driver component changes to
accommodate the new physics

CCA
Common Component Architecture

134

… and some things stay the same

• The mesh component doesn’t change
• The discretization component doesn’t change
• The solver component doesn’t change

– What we use from the solver component changes
– Only vectors are needed

CCA
Common Component Architecture

135

Heat Equation Wiring Diagram

Reused
Integration
Visualization
Driver/Physics

CCA
Common Component Architecture

136

What did this exercise teach us?

• Easy to incorporate the functionalities of components
developed at other labs and institutions given a well-
defined interface.
– In fact, some components (one uses and one provides) were

developed simultaneously across the country from each other
after the definition of a header file.

– Amazingly enough, they usually “just worked” when linked
together (and debugged individually).

• In this case, the complexity of the component-based
approach was higher than the original code
complexity.
– Partially due to the simplicity of this example
– Partially due to the limitations of the some of the current

implementations of components

CCA
Common Component Architecture

137

Nonlinear Reaction-Diffusion Equation

• Flame Approximation
– H2-Air mixture; ignition via 3 hot-spots
– 9-species, 19 reactions, stiff chemistry

• Governing equation

• Domain
– 1cm X 1cm domain
– 100x100 coarse mesh
– finest mesh = 12.5 micron.

• Timescales
– O(10ns) to O(10 microseconds)

ii
i wY

t
Y

D+∇∇=
∂
∂ α.

CCA
Common Component Architecture

138

Numerical Solution

• Adaptive Mesh Refinement: GrACE
• Stiff integrator: CVODE
• Diffusive integrator: 2nd Order Runge Kutta
• Chemical Rates: legacy f77 code
• Diffusion Coefficients: legacy f77 code
• New code less than 10%

CCA
Common Component Architecture

139

Reaction-Diffusion Wiring Diagram

Reused
Slow Time Scale Integration
Fast Time Scale Integration
Driver/Physics

CCA
Common Component Architecture

140

Evolution of the Solution

Temperature

OH Profile
No OH at t = 0

CCA
Common Component Architecture

141

The need for AMR

• H2O2 chemical subspecies profile
– Only 100 microns thick (about 10 fine level cells)
– Not resolvable on coarsest mesh

CCA
Common Component Architecture

142

• Given a rectangular 2-dimensional domain and
boundary values along the edges of the domain

• Find the surface with minimal area that satisfies the
boundary conditions, i.e., compute

min f(x), where f: R → R
• Solve using optimization

components based on
TAO (ANL)

Unconstrained Minimization Problem

CCA
Common Component Architecture

143

Unconstrained Minimization Using a Structured Mesh

Reused
TAO Solver
Driver/Physics

CCA
Common Component Architecture

144

Computational Chemistry:
Molecular Optimization

• Problem Domain: Optimization of
molecular structures using quantum
chemical methods

• Investigators: Yuri Alexeev (PNNL), Steve Benson (ANL),
Curtis Janssen (SNL), Joe Kenny (SNL), Manoj Krishnan
(PNNL), Lois McInnes (ANL), Jarek Nieplocha (PNNL),
Jason Sarich (ANL), Theresa Windus (PNNL)

• Goals: Demonstrate interoperability among software
packages, develop experience with large existing code
bases, seed interest in chemistry domain

CCA
Common Component Architecture

145

Molecular Optimization Overview
• Decouple geometry optimization from electronic structure
• Demonstrate interoperability of electronic structure components
• Build towards more challenging optimization problems, e.g.,

protein/ligand binding studies

Components in gray can be swapped in to create new applications
with different capabilities.

CCA
Common Component Architecture

146

Wiring Diagram for Molecular Optimization

• Electronic structures components:
• MPQC (SNL)

http://aros.ca.sandia.gov/~cljanss/mpqc

• NWChem (PNNL)

http://www.emsl.pnl.gov/pub/docs/nwchem

• Optimization components: TAO (ANL)
http://www.mcs.anl.gov/tao

• Linear algebra components:
• Global Arrays (PNNL)

http://www.emsl.pnl.gov:2080/docs/global/ga.html

• PETSc (ANL)

http://www.mcs.anl.gov/petsc

CCA
Common Component Architecture

147

Actual Improvements

30273033Cholesterol

48545143Aspirin

62856779Phosposerine

43754556Isoprene

19261933Glycine

MPQC/TAOMPQCNWChem/TAONWChemMolecule

Function and gradient evaluations

CCA
Common Component Architecture

148

Componentized Climate Simulations
• NASA’s ESMF project has a component-based design for Earth

system simulations
– ESMF components can be assembled and run in CCA compliant

frameworks such as Ccaffeine.
• Zhou et al (NASA Goddard) has integrated a simple coupled

Atmosphere-Ocean model into Ccaffeine and is working on the
Cane-Zebiak model, well-known for predicting El Nino events.

• Different PDEs for ocean and atmosphere, different grids and
time-stepped at different rates.
– Synchronization at ocean-atmosphere interface; essentially,

interpolations between meshes
– Ocean & atmosphere advanced in sequence

• Intuitively : Ocean, Atmosphere and 2 coupler components
– 2 couplers : atm-ocean coupler and ocean-atm coupler.
– Also a Driver/orchestrator component.

CCA
Common Component Architecture

149

Coupled Atmosphere-Ocean Model Assembly

Data flow

Port link

• Climate Component :

• Schedule
component coupling

• Data flow is via pointer
NOT data copy.

• All components in
C++; run in Ccaffeine

• Multiple ocean models
with the same interface

• Can be selected by
a user at runtime

CCA
Common Component Architecture

150

Simulation Results

A non-uniform ocean field variable
(e.g., current)

…changes a field variable (e.g.,wind)
in the atmosphere !

CCA
Common Component Architecture

151

• Certain simulations need multi-granular concurrency
– Multiple Component Multiple Data, multi-model runs

• Usage Scenarios:
– Model coupling (e.g. Atmosphere/Ocean)
– General multi-physics applications
– Software licensing issues

• Approaches
– Run single parallel framework

• Driver component that partitions processes and builds rest
of application as appropriate (through BuilderService)

– Run multiple parallel frameworks
• Link through specialized communications components
• Link as components (through AbstractFramework service;

highly experimental at present)

Concurrency At Multiple Granularities

OceanAtmosphere Land
Driver

Coupler

CCA
Common Component Architecture

152

Overview

• Examples (scientific) of increasing complexity
– Laplace equation
– Time-dependent heat equation
– Nonlinear reaction-diffusion system
– Quantum chemistry
– Climate simulation

• Tools
– MxN parallel data redistribution
– Performance measurement, modeling and scalability studies

• Community efforts & interface development
– TSTT Mesh Interface effort
– CCTTSS’s Data Object Interface effort

CCA
Common Component Architecture

153

“MxN” Parallel Data Redistribution:
The Problem…

• Create complex scientific
simulations by coupling together
multiple parallel component
models
– Share data on “M”

processors with data on “N”
• M != N ~ Distinct Resources

(Pronounced “M by N”)
– Model coupling, e.g.,

climate, solver / optimizer
– Collecting data for

visualization
• Mx1; increasingly MxN (parallel

rendering clusters)
• Define common interface

– Fundamental operations for
any parallel data coupler

• Full range of synchronization
and communication options

CCA
Common Component Architecture

154

Hierarchical MxN Approach
• Basic MxN Parallel Data Exchange

– Component implementation
– Initial prototypes based on CUMULVS & PAWS

• Interface generalizes features of both

• Higher-Level Coupling Functions
– Time & grid (spatial) interpolation, flux conservation
– Units conversions…

• “Automatic” MxN Service via Framework
– Implicit in method invocations, “parallel RMI”

http://www.csm.ornl.gov/cca/mxn/

CCA
Common Component Architecture

155

CCA Delivers
Performance

Local
• No CCA overhead within components
• Small overhead between components
• Small overhead for language interoperability
• Be aware of costs & design with them in mind

– Small costs, easily amortized

Parallel
• No CCA overhead on parallel computing
• Use your favorite parallel programming model
• Supports SPMD and MPMD approaches

Distributed (remote)
• No CCA overhead – performance depends

on networks, protocols
• CCA frameworks support OGSA/Grid

Services/Web Services and other
approaches

Maximum 0.2% overhead for CCA vs
native C++ code for parallel molecular
dynamics up to 170 CPUs

Aggregate time for linear solver
component in unconstrained minimization
problem w/ PETSc

CCA
Common Component Architecture

156

Overhead from Component Invocation

• Invoke a component with
different arguments

• Array
• Complex
• Double Complex

• Compare with f77 method
invocation

• Environment
– 500 MHz Pentium III
– Linux 2.4.18
– GCC 2.95.4-15

• Components took 3X longer
• Ensure granularity is

appropriate!
• Paper by Bernholdt, Elwasif,

Kohl and Epperly

241ns86nsDouble
complex

209ns75nsComplex

224ns80 nsArray

Componentf77Function arg
type

CCA
Common Component Architecture

157

Scalability : Component versus Non-component. I

• Quantum chemistry
simulation

• Sandia’s MPQC code
– Both componentized

and non-
componentized
versions

• Componentized version
used TAO’s
optimization algorithms

• Problem :Structure of
isoprene HF/6-
311G(2df,2pd) 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 44

 48

 52

 56

 60

 64

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

S
pe

ed
-u

p

Number of Processors

Isoprene HF/6-311G(2df,2pd) Speed-up in MPQC-based Applications

linear
MPQC
MPQC/TAO

Parallel Scaling of MPQC w/ native and TAO optimizers

CCA
Common Component Architecture

158

Scalability : Component versus Non-component. II

• Hydrodynamics; uses CFRFS set
of components

• Uses GrACEComponent
• Shock-hydro code with no

refinement
• 200 x 200 & 350 x 350 meshes
• Cplant cluster

– 400 MHz EV5 Alphas
– 1 Gb/s Myrinet

• Negligible component overhead
• Worst perf : 73% scaling

efficiency for 200x200 mesh on
48 procs

Reference: S. Lefantzi, J. Ray, and H. Najm, Using the Common Component Architecture to Design High Performance
Scientific Simulation Codes, Proc of Int. Parallel and Distributed Processing Symposium, Nice, France, 2003.

CCA
Common Component Architecture

159

Performance Measurement In A
Component World

• CCA provides a novel means of profiling & modeling
component performance

• Need to collect incoming inputs and match them up
with the corresponding performance, but how ?
– Need to “instrument” the code

• But has to be non-intrusive, since we may not “own” component
code

• What kind of performance infrastructure can achieve
this?
– Previous research suggests proxies

• Proxies serve to intercept and forward method calls

CCA
Common Component Architecture

160

“Integrated” Performance
Measurement Capability

Measurement infrastructure:
• Proxy

– Notifies MasterMind of all method
invocations of a given
component, along with
performance dependent inputs

– Generated automatically using
PDT

• MasterMind
– Collects and stores all

measurement data
• TAU

– Makes all performance
measurements

Component1

Component2Component1

Component2Proxy for
Component
2

MasterMind TAU

Before:

After:

CCA
Common Component Architecture

161

Component Application With Proxies

CCA
Common Component Architecture

162

Overview

• Examples (scientific) of increasing complexity
– Laplace equation
– Time-dependent heat equation
– Nonlinear reaction-diffusion system
– Quantum chemistry
– Climate simulation

• Tools
– MxN parallel data redistribution
– Performance measurement, modeling and scalability studies

• Community efforts & interface development
– TSTT Mesh Interface effort
– CCTTSS’s Data Object Interface effort

CCA
Common Component Architecture

163

The Next Level
• Common Interface Specification

– Provides plug-and-play interchangeability
– Requires domain specific experts
– Typically a difficult, time-consuming task
– A success story: MPI

• A case study… the TSTT/CCA mesh interface
– TSTT = Terascale Simulation Tools and

Technologies (www.tstt-scidac.org)
– A DOE SciDAC ISIC focusing on meshes

and discretization
– Goal is to enable

• hybrid solution strategies
• high order discretization
• Adaptive techniques

Geometry
Information
(Level A)

Full
Geometry
Meshes
(Level B)

Mesh
Compone
nts
(Level C)

CCA
Common Component Architecture

164

Proliferations of interfaces – the N2 problem

Current Situation
• Public interfaces for numerical libraries are unique
• Many-to-Many couplings require Many2 interfaces

• Often a heroic effort to understand the inner workings of both
codes

• Not a scalable solution

Dist. Array

Overture

PAOMD

SUMAA3d

PETSc

ISIS++

Trilinos

CCA
Common Component Architecture

165

Common Interface Specification
Reduces the Many-to-Many problem to a Many-to-One problem

– Allows interchangeability and experimentation
– Challenges

• Interface agreement
• Functionality limitations
• Maintaining performance

Dist. Array

Overture

PAOMD

SUMAA3d

ISIS++

PETSc

Trilinos

T
S
T
T

E
S
I

CCA
Common Component Architecture

166

TSTT Philosophy

• Create a small set of interfaces that existing
packages can support
– AOMD, CUBIT, Overture, GrACE, …
– Enable both interchangeability and interoperability

• Balance performance and flexibility
• Work with a large tool provider and application

community to ensure applicability
– Tool providers: TSTT and CCA SciDAC centers
– Application community: SciDAC and other DOE applications

CCA
Common Component Architecture

167

CCTTSS Research Thrust Areas
and Main Working Groups

• Scientific Components
Lois Curfman McInnes, ANL (curfman@mcs.anl.gov)

• “MxN” Parallel Data Redistribution
Jim Kohl, ORNL (kohlja@ornl.gov)

• Frameworks
– Language Interoperability / Babel / SIDL
Gary Kumfert, LLNL (kumfert@llnl.gov)

• User Outreach
David Bernholdt, ORNL (bernholdtde@ornl.gov)

CCA
Common Component Architecture

168

Summary
• Complex applications that use components are possible

– Combustion
– Chemistry applications
– Optimization problems
– Climate simulations

• Component reuse is significant
– Adaptive Meshes
– Linear Solvers (PETSc, Trilinos)
– Distributed Arrays and MxN Redistribution
– Time Integrators
– Visualization

• Examples shown here leverage and extend parallel software and
interfaces developed at different institutions

– Including CUMULVS, ESI, GrACE, LSODE, MPICH, PAWS, PETSc, PVM, TAO,
Trilinos, TSTT.

• Performance is not significantly affected by component use
• Definition of domain-specific common interfaces is key

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

169This work is licensed under a Creative Commons Attribution 2.5 License

A Few Notes in Closing

CCA
Common Component Architecture

170

Resources: Its All Online
• Information about all CCA tutorials, past, present, and

future:
http://www.cca-forum.org/tutorials/

• Specifically…
– Latest versions of hands-on materials and code:

http://www.cca-forum.org/tutorials/#sources
• Hands-On designed for self-study as well as use in an organized tutorial
• Should work on most Linux distributions, less tested on other unixen
• Still evolving, so please contact us if you have questions or problems

– Archives of all tutorial presentations:
http://www.cca-forum.org/tutorials/archives/

• Questions…
tutorial-wg@cca-forum.org

CCA
Common Component Architecture

171

Getting Help
• We want to help insure you have a good experience

with CCA, so let us know if you’re having problems!
• Tutorial or “start-up” questions

– tutorial-wg@cca-forum.org

• Problems with specific tools
– check documentation for updated contact info
– cca-tools bundle (includes Chasm, Babel, Ccaffeine): Rob

Armstrong, rob@sandia.gov
– Chasm: Craig Rasmussen, crasmussen@lanl.gov
– Babel: babel-users@llnl.gov
– Ccaffeine: ccafe-users@cca-forum.org

• General questions, or not sure who to ask?
– cca-forum@cca-forum.org

CCA
Common Component Architecture

172

CCA is Interactive
• Collectively, CCA developers and users span a broad

range of scientific interests.
– There’s a good chance we can put you in touch with others

with relevant experience with CCA

• CCA Forum Quarterly Meetings
– Meet many CCA developers and users
– http://www.cca-forum.org/meetings/

• “Coding Camps”
– Bring together CCA users & developers for a concentrated

session of coding
– Held as needed, typically 3-5 days
– May focus on a particular theme, but generally open to all

interested participants
– If you’re interested in having one, speak up (to individuals or

cca-forum@cca-forum.org)

• Visits, Internships, etc.

CCA
Common Component Architecture

173

Acknowledgements:
Tutorial Working Group

• People: Benjamin A. Allan, Rob Armstrong, David E.
Bernholdt, Randy Bramley, Tamara L. Dahlgren, Lori
Freitag Diachin, Wael Elwasif, Tom Epperly,
Madhusudhan Govindaraju, Ragib Hasan, Dan Katz,
Jim Kohl, Gary Kumfert, Lois Curfman McInnes, Alan
Morris, Boyana Norris, Craig Rasmussen, Jaideep
Ray, Sameer Shende, Torsten Wilde, Shujia Zhou

• Institutions: ANL, Binghamton U, Indiana U, JPL,
LANL, LLNL, NASA/Goddard, ORNL, SNL, U Illinois, U
Oregon

• Computer facilities provided by the Computer
Science Department and University Information
Technology Services of Indiana University, supported
in part by NSF grants CDA-9601632 and EIA-0202048.

CCA
Common Component Architecture

174

Acknowledgements: The CCA

• ANL –Steve Benson, Jay Larson, Ray Loy, Lois Curfman McInnes,
Boyana Norris, Everest Ong, Jason Sarich…

• Binghamton University - Madhu Govindaraju, Michael Lewis, …
• Indiana University - Randall Bramley, Dennis Gannon, …
• JPL – Dan Katz, …
• LANL - Craig Rasmussen, Matt Sotille, …
• LLNL – Tammy Dahlgren, Lori Freitag Diachin, Tom Epperly, Scott

Kohn, Gary Kumfert, …
• NASA/Goddard – Shujia Zhou
• ORNL - David Bernholdt, Wael Elwasif, Jim Kohl, Torsten Wilde, …
• PNNL - Jarek Nieplocha, Theresa Windus, …
• SNL - Rob Armstrong, Ben Allan, Lori Freitag Diachin, Curt

Janssen, Jaideep Ray, …
• Tech-X Corp. – Johan Carlsson, Svetlana Shasharina, Ovsei

Volberg, Nanbor Wang
• University of Oregon – Allen Malony, Sameer Shende, …
• University of Utah - Steve Parker, …
and many more… without whom we wouldn’t have much to talk about!

CCA
Common Component Architecture

175

Thank You!

Thanks for attending this tutorial

We welcome feedback and questions

