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“The partial differential equation entered theoretical physics as a 
handmaid, but has gradually become mistress.” – A. Einstein
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SciDAC is not mainly about the math…
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… It’s all about the math
Given, for example: 

a “physics” phase that 
scales as O(N)
a “solver” phase that 
scales as O(N3/2)
computation is almost all 
solver after several 
doublings 0
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Solver
Physics

Solver takes 
50% time 
on 64 procs

Solver takes 
97% time on 
64K procs

Weak scaling limit, assuming efficiency of 
100%  in both physics and solver phases

problem size
Some application groups 
have not yet “felt” this 
curve in their gut

BG/L will change this



ACTS Workshop, 24 August 2005

Examples of codes that often 
profile at 90% solver time

Environment
Porous media flow (div-grad Darcy problems)

Materials
Quantum chemistry (generalized eigenproblems)

Fusion energy
Magnetohydrodynamics (Poisson problems)

High energy and nuclear physics
Quantum chromodynamics (Dirac inversions)
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Challenges for math software designers
The past challenge: 
Increase functionality and capability for a small 

number of users who are expert in the 
domain of the software

A present and future challenge:
Increase ease of use (for correctness and for 

efficiency) for a large number of users who 
are expert in something else
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Run-up to the era of simulation

scientific models

numerical algorithms

computer architecture

scientific software engineering

“Computational science is undergoing a phase transition.” – D. Hitchcock, DOE

(dates are symbolic)
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Design principle: multiple layers
Top layer (all users)

Abstract interface featuring language of application domain, 
hiding details, with conservative parameter defaults
Robustness, correctness, ease of use

Middle layers (experienced users)
Rich collection of state-of-the-art methods and data 
structures, exposed upon demand, highly configurable
Capability, algorithmic efficiency, extensibility, composability, 
comprehensibility of performance and resource use

Bottom layer (developers)
Support for variety of execution environments
Portability, implementation efficiency
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What physicists want in math software
Develop code “without having to make bets”

accomplish certain abstract mathematical tasks
stay agnostic about particular solution methods and codes
run everywhere: laptops (on travel), low-cost unmetered 
clusters (at work), and unique shared national resources

Ordered goals (need them all for production use)
usability and robustness
portability
algorithmic efficiency (optimality) and implementation 
efficiency (within a processor and in parallel)

Algorithmic optimality and software stability
scalable methods needed for multiscale problems
no “hand coding” for evanescent computing environments
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Foci for math ISICs
The past focus: 
Meet the understood and expressed needs of 

application groups, where they are, typically 
across a conventional interface

A present and future focus:
Lure application groups into new explorations, 

boldly going where no one has gone before, 
typically blurring conventional interfaces



ACTS Workshop, 24 August 2005

Multiscale apps demand scalable solvers
Multiple spatial scales

interfaces, fronts, layers
thin relative to domain size, 
δ << L

Multiple temporal scales
fast waves
small transit times relative 
to convection or diffusion, τ
<< T

Analyst must isolate dynamics of interest and model the rest in a system 
that can be discretized over more modest range of scales
Often involves filtering of high frequency modes, quasi-equilibrium 
assumptions, etc.
May lead to infinitely “stiff” subsystem requiring implicit treatment
Resulting implicit subsystem may be very ill-conditioned

Richtmeyer-Meshkov instability, c/o A. Mirin, LLNL
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2004 Gordon Bell “special” prize

Cortical 
bone

Trabecular 
bone

2004 Bell Prize in “special category” went to an implicit, 
unstructured grid bone mechanics simulation

0.5 Tflop/s sustained on 4 thousand procs of ASCI White
0.5 billion degrees of freedom
large-deformation analysis
employed in NIH bone research at Berkeley

c/o M. Adams, et al.
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2003 Gordon Bell “special” prize
2003 Bell Prize in “special category” went to unstructured 
grid geological parameter estimation problem 

1 Tflop/s sustained on 2 thousand processors of HP’s “Lemieux 
each explicit forward PDE solve: 17 million degrees of freedom
seismic inverse problem: 70 billion degrees of freedom
employed in NSF seismic research at CMU

reconstruction

target

c/o O. Ghattas, et al.
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1999 Gordon Bell “special” prize

Transonic “Lambda” Shock, Mach contours on surfaces

1999 Bell Prize in “special category” went to implicit, 
unstructured grid aerodynamics problems

0.23 Tflop/s sustained on 3 thousand processors of ASCI Red
11 million degrees of freedom
incompressible and compressible Euler flow
Employed in NASA analysis/design missions

“to      s”
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Observations on Bell Prizes re: solvers
A single solver toolkit (PETSc) employed with 
three different types of functionality

as programmer interface for MPI-implemented 
distributed data structures in explicit time integration
as linear Krylov package to accelerate expert user-
provided algebraic MG
as full nonlinear pseudo-transient Newton-Krylov-
Schwarz solver

We will see a fourth use later in a PDE-
constrained optimization application
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Solvers evolve underneath “Ax=b”
Advances in algorithmic efficiency rival advances in 
hardware architecture
Consider Poisson’s equation on a cube of size N=n3

If n=64, this implies an overall reduction in flops of 
~16 million

n3n3BrandtFull MG1984

n3.5 log nn3ReidCG1971

n4 log nn3YoungOptimal SOR1950

n7n5Von Neumann & 
Goldstine

GE (banded)1947

FlopsStorage ReferenceMethodYear

∇2u=f 64

64 64

*Six months is reduced to 1 second

*
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year

relative 
speedup

Solver algorithms and Moore’s Law
This advance took place over a span of about 36 years, or 
24 doubling times for Moore’s Law
224≈16 million ⇒ the same as the factor from algorithms 
alone!
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TOPS has a dream that users will…
Understand range of algorithmic options w/tradeoffs

e.g., memory vs. time, comp. vs. comm., inner iteration work 
vs. outer

Try all reasonable options “easily” 
without recoding or extensive recompilation

Know how their solvers are performing
with access to detailed profiling information

Intelligently drive solver research
e.g., publish joint papers with algorithm researchers

Simulate truly new physics free from solver limits
e.g., finer meshes, complex coupling, full nonlinearity

User’s 
Rights
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What we believe about apps
Solution of a system of 
PDEs is rarely a goal in 
itself 

Actual goal is characterization 
of a response surface or a 
design or control strategy
Solving the PDE is just one 
forward map in this process
Together with analysis, 
sensitivities and stability are 
often desired

⇒ Software tools for PDE 
solution should also 
support related follow-on 
desires

No general purpose PDE 
solver can anticipate all 
needs

Why we have national 
laboratories, not numerical 
libraries for PDEs today
A PDE solver improves 
with user interaction
Pace of algorithmic 
development is very rapid

⇒ Extensibility is important
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What we believe about users
Solvers are used by people 
of varying numerical 
backgrounds

Some expect MATLAB-like 
defaults
Others want to control 
everything, e.g., even 
varying the type of 
smoother and number of 
smoothings on different 
levels of a multigrid 
algorithm

⇒ Multilayered software 
design is important

Users’ demand for 
resolution is virtually 
insatiable

Relieving resolution 
requirements with 
modeling (e.g., turbulence 
closures, homogenization) 
only defers the demand for 
resolution to the next level
Validating such models 
requires high resolution

⇒ Processor scalability and 
algorithmic scalability 
(optimality) are critical 
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What we believe about legacy code
Porting to a scalable 
framework does not mean 
starting from scratch

High-value physics routines 
in original languages can be 
substantially preserved
Partitioning, reordering 
and mapping onto 
distributed data structures 
(that solver may provide) 
adds code but little runtime

⇒ Solver distributions should 
include code samples 
exemplifying “separation 
of concerns”

Legacy solvers may be 
limiting resolution, 
accuracy, and generality of 
modeling overall

Replacing the solver may 
“solve” several other issues
However, pieces of the 
legacy solver may have 
value as part of a 
preconditioner

⇒ Solver toolkits should 
include “shells” for 
callbacks to high-value
legacy routines
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What we believe about solvers
Solvers are employed as 
part of a larger code

Solver library is not the only
library to be linked
Solvers may be called in 
multiple, nested places
Solvers typically make 
callbacks
Solvers should be swappable

⇒ Solver threads must not 
interfere with other 
component threads, 
including other active 
instances of themselves

Solvers are employed in 
many ways over the life 
cycle of an applications 
code

During development and 
upgrading, robustness (of 
the solver) and verbose 
diagnostics are important
During production, solvers 
are streamlined for 
performance  

⇒ Tunability is important
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What we believe about numerical software
A continuous operator may 
appear in a discrete code in 
many different instances

Optimal algorithms are nested
iterative and hierarchical
Majority of progress towards 
desired highly resolved, high 
fidelity result occurs through 
cost-effective low resolution, 
low fidelity parallel-efficient
stages

⇒ Operator and grid-function 
abstractions must let the 
user glide up and down the 
representation hierarchy

Hardware changes many 
times over the life cycle of a 
software package

Processors, memory, and 
networks evolve annually
Machines are replaced every 
3-5 years at major DOE 
centers
Codes persist for decades 

⇒ Portability is critical 
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A central concept: solver toolchain

From solutions to sensitivity, stability, 
optimization
Nested modules
Leveraging of coding work in the distributed 
data structures
Hiding of communication and performance-
oriented details so users deal with 
mathematical objects throughout 
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Solver software toolchain
Design and implementation of 
“solvers”

Linear solvers

Eigensolvers

Nonlinear solvers

Time integrators

Optimizers

Software integration
Performance optimization

0),,,( =ptxxf &
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u
φ

Optimizer

Linear 
solver

Eigensolver

Time 
integrator

Nonlinear 
solver

Indicates 
dependence

Sens. Analyzer

(w/ sens. anal.)

(w/ sens. anal.)



ACTS Workshop, 24 August 2005

SciDAC solver collaboration examples
Meeting physicists at a well-defined traditional 
interface

Magnetic fusion energy – swapping in new linear 
solvers

Collaborating with physicists across traditional 
interfaces

Accelerator design – multidisciplinary design 
optimization
Quantum chromodynamics – research prototyping of 
new algorithm
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Illustrations from computational MHD
M3D code (Princeton)

multigrid replaces block Jacobi/ASM preconditioner 
for optimality
new algorithm callable across Ax=b interface

NIMROD code (General Atomics)
direct elimination replaces PCG solver for robustness
scalable implementation of old algorithm for Ax=b

The fusion community may use more cycles on unclassified U.S. 
DOE computers than any other (e.g., 32% of all cycles at NERSC 
in 2003).  Well over 90% of these cycles are spent solving linear 
systems in M3D and NIMROD, which are prime U.S. code 
contributions to the designing of ITER.



ACTS Workshop, 24 August 2005

NIMROD: direct elim. for robustness
NIMROD code 

high-order finite elements
complex, nonsymmetric linear 
systems with 10K-100K 
unknowns (>90% exe. time)

TOPS collaboration
replacement of diagonally scaled 
Krylov with SuperLU, a 
supernodal parallel sparse direct 
solver
2D tests run 100 × faster; 3D 
production runs are 4-5 × faster

c/o D. Schnack, et al.
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M3D: multigrid for optimality
M3D code

unstructured mesh, hybrid FE/FD 
discretization with C0 elements
Sequence of real scalar systems  
(>90% exe. time)

TOPS collaboration
replacement of additive Schwarz 
(ASM) preconditioner with 
algebraic multigrid (AMG)
achieved mesh-independent 
convergence rate 
4-5 × improvement in execution 
time 0

100
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400
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700

3 12 27 48 75

ASM-GMRES
AMG-FMGRES

c/o S. Jardin, et al.
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AMRMHD: implicit solver
Magnetic reconnection: the breaking 
and reconnecting of oppositely 
directed magnetic field lines in a 
plasma

Large-scale current instabilities may 
replace hot plasma core with cool 
plasma, halting the fusion process

Current (J = r £ B)

J. Brin et al., “Geospace Environmental Modeling (GEM) magnetic reconnection challenge,” J. Geophys. Res. 106 (2001) 3715-3719.

c/o D. Reynolds, et al.
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Shape optimization for accelerators

CAD Meshing Partitioning
(parallel)

h-Refinement
p-refinement

Solvers
(parallel)

Refinement

Basic Analysis Loop for given Geometry

Omega3P

S3P

T3P

Tau3P

• Numerical modeling has replaced trial and error prototyping approach
• SciDAC adds advances that increase fidelity, speed, and accuracy:

• Next generation accelerators have complex cavities that require shape 
optimization for improved performance and reduced cost 
• AST/TSTT/TOPS are collaborating to develop an automated capability 
to accelerate this otherwise manual process

DDS CELL

c/o W. Ko, et al.
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Omega3P design optimization components

Omega3P
Sensitivity

meshing
sensitivity

optimization
geometricgeometric

modelmodel

Omega3P meshingmeshing

(only for discrete sensitivity)

TSTT

AST/TSTTTOPS

AST/TOPS

AST/TOPS

c/o O. Ghattas, et al.
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Multigrid for Lattice Gauge QCD

Wilson-Fermion operator:

Difference operators:

Pauli spin matrices:

Fermion field:  φ(x,y)=(f1,f2)

Gauge field:     u(x,y)=eiθ

Real part Imaginary part

c/o James Brannick, et al.
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Algebraic Multigrid for QCD

Diagonally scaled CG

Adaptive Smoothed Aggregation AMG CG

iterations / per-iteration-reduction / condition number
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Abstract Gantt chart for solver development

Algorithmic Development

Research Implementations

Hardened Codes

Applications Integration

Dissemination

time

e.g.,PETSc

e.g.,TOPSLib

e.g., αAMG

Each color module represents an algorithmic research idea on its way to becoming part of a supported 
community software tool. At any moment (vertical time slice), TOPS has work underway at multiple levels.  
While some codes are in applications already, they are being improved in functionality and performance as 
part of the TOPS research agenda.  



ACTS Workshop, 24 August 2005

TOPS’ linear solver interface informed by
earlier interfaces

Some progenitors
FEI (finite element interface) / C++ 

developed at SNL

ESI (equation solver interface) / C++ 
multi-lab effort

hypre (conceptual interfaces) / C 
developed at LLNL

PETSc / C 
developed at ANL

We support all of these in some of our 
packages, and will continue to do so
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Object model concepts

Solver
(is an)

Vector – represents field data

View

(has one or more)

(has a)

Layout

– provides access to the data

– how data is laid out across processes

Operator

c/o B. Smith, et al.
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View allows users to access values in 
the “language of the application”

Handles any data communication transparently
Same idea as hypre’s conceptual interfaces

Data Layout
structured composite block-struc unstruc CSR

Linear Solvers
GMG, ... FAC, ... Hybrid, ... AMGe, ... ILU, ...

Conceptual (Linear System) Interfaces

c/o R. Falgout, et al.



ACTS Workshop, 24 August 2005

Views differ primarily in the way they 
“set” and “get” data

Classical Linear Algebra View – indices are scalars that 
represent locations in Rn

Structured Grid View – indices are 3D triples that describe 
“boxes of data” (think 3D Fortran arrays)

Views / Layouts
Rn – “classical linear algebra” access
S – single structured grid
Fe – finite element interface
Ss – semi-structured grids (structured grid “parts” with additional 
arbitrary connections)
…

array<double> getValues(array<int> indices);

array<double> getValues(<int,3> ilower, <int,3> iupper);
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What’s coming in solvers
Greater interface standardization 
Greater solver interoperability
Better integration upwards
w/ meshing and discretization systems

Better integration downwards
w/ performance monitoring and engineering 

systems
Better algorithms!
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Tuning for performance
After functionality, efficiency is essential
Combinatorially many implementations exist 

produce same results at very different rates and 
resource costs
little useful theory, few useful models to guide choices

We mention efforts aimed at
implementation efficiency, in the real world of 
multilevel memory hierarchies 
algorithm selection efficiency in the real world of and 
unsymmetric, unstructured, nonlinear problems
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Implementation efficiency
Ordering and blocking critical to floating point 
code performance

due to two-order-of-magnitude mismatch between FPU 
rate and memory BW
arithmetically neutral code transformations can lead to 
factors of up to ~7 in performance improvement in 
common linear algebraic kernels

Well exploited for dense kernels in, e.g.,  ATLAS
Successes for sparse kernels now available in, e.g., 
OSKI
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(Omega3P)

Combined gains for SpMV

c/o J. Demmel, et al.

These labels 
represent best 
percentage of 
theoretical peak 
flop/s achieved 
on each 
processor
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Speedups on Itanium 2 from blocking

Reference

Best: 4x2

Mflop/s

Mflop/s

c/o J. Demmel, et al.
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Algorithm tuning efficiency
Parameter tuning critical to solver convergence 
performance

optimal scalable solvers are iterative, and hierarchical 
(employ multiple representations of the same 
continuous operator on different scales)
impedes their widespread adoption and leaves 
performance “on the table”

Solver of choice is data- and machine-dependent
Solvers used in inner loops of apps, w/related data
Tremendous opportunity to apply machine 
learning methods (e.g., “boosting”)
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Automated solver tuning

Example of 
performance 
variations of 
differently tuned 
Krylov solvers 
over a sequence 
of about 85 
systems, vertical 
axis is log of 
runtime 
improvements 

c/o S. Bhowmick, et al.
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On quality software

“Quality software 
renormalizes the difficulty 
of doing computation.”

Peter Lax, 2005 Abel Prize 
Winner
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What’s coming in SciDAC-2 (2006 onward)
Commitment to maintenance of the many solver toolkits 
already in use
Greater use made of “embedded mathematicians” (DOE 
“SAPP”-style funding)
Greater software interface standardization 
Better vertical integration of separately developed 
SciDAC-1 components:

meshing and discretization systems w/ solvers
solvers w/ performance engineering

More methods for users to choose from dynamically
More automated selection of complex methods
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Related URLs

TOPS project
http://www.tops-scidac.org
SciDAC initiative
http://www.science.doe.gov/scidac
SCaLeS report
http://www.pnl.gov/scales
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Abstract
Computational enabling technologies must offer both high-level abstractions
in the language of their intended user community and detailed access to
their powerful, composable innards for developers and prototypers. This can
be achieved through a multilevel interface with robust default settings for
a host of tuning parameters, the knobs for which can be exposed on demand.
Drawing upon collaborations between DOE's Integrated Software Infrastructure
Center for scalable solvers (TOPS, www.tops-scidac.org) and projects in
fusion energy, accelerator design, and QCD, we illustrate the necessity of a
providing a rich set of linear solvers under a common high-level interface,
in order to progress beyond mere feasibility to performance and portability.
The TOPS project integrates the following elements presented at ACTS 2005:
Hypre, PETSc, ScaLAPACK, SUNDIALS, and SuperLU.

While many customers can be adequately served with well defined multilevel
software interfaces, we emphasize from this same set of SciDAC
collaborations the importance of cross-disciplinary human interaction to
discover altogether better abstractions (e.g., one fully coupled nonlinear 
problem, rather than a sequence of operator-split, linearized problems).


