
ACTS Workshop, 24 August 2005

Letting Physicists be Physicists,
and Other Goals of the TOPS

Scalable Solver Project

David E. Keyes
Department of Applied Physics & Applied Mathematics

Columbia University

ACTS Workshop, 24 August 2005

TOPS Integrated Software Infrastructure
Center (ISIC) spans 3 labs & 7 universities

ACTS Workshop, 24 August 2005

“The partial differential equation entered theoretical physics as a
handmaid, but has gradually become mistress.” – A. Einstein

PDEsPDEs

are are
densedense

in the in the
CS&ECS&E

portfolioportfolio

model, mesh,
discretize, partition,

solve, adapt,
visualize, optimize
probe sensitivity,

probe stability

ACTS Workshop, 24 August 2005

SciDAC is not mainly about the math…

CS

Math

Applications

Enabling
technologies
respond

Applications
drive

ACTS Workshop, 24 August 2005

… It’s all about the math
Given, for example:

a “physics” phase that
scales as O(N)
a “solver” phase that
scales as O(N3/2)
computation is almost all
solver after several
doublings 0

0.2

0.4

0.6

0.8

1

1.2

1 4 16 64 256 1024

Solver
Physics

Solver takes
50% time
on 64 procs

Solver takes
97% time on
64K procs

Weak scaling limit, assuming efficiency of
100% in both physics and solver phases

problem size
Some application groups
have not yet “felt” this
curve in their gut

BG/L will change this

ACTS Workshop, 24 August 2005

Examples of codes that often
profile at 90% solver time

Environment
Porous media flow (div-grad Darcy problems)

Materials
Quantum chemistry (generalized eigenproblems)

Fusion energy
Magnetohydrodynamics (Poisson problems)

High energy and nuclear physics
Quantum chromodynamics (Dirac inversions)

ACTS Workshop, 24 August 2005

Challenges for math software designers
The past challenge:
Increase functionality and capability for a small

number of users who are expert in the
domain of the software

A present and future challenge:
Increase ease of use (for correctness and for

efficiency) for a large number of users who
are expert in something else

ACTS Workshop, 24 August 2005

Hardware Infrastructure

A
R
C
H
I
T
E
C
T
U
R
E
S

Applications

Run-up to the era of simulation

scientific models

numerical algorithms

computer architecture

scientific software engineering

“Computational science is undergoing a phase transition.” – D. Hitchcock, DOE

(dates are symbolic)

1686

1947

1976

1992

ACTS Workshop, 24 August 2005

Design principle: multiple layers
Top layer (all users)

Abstract interface featuring language of application domain,
hiding details, with conservative parameter defaults
Robustness, correctness, ease of use

Middle layers (experienced users)
Rich collection of state-of-the-art methods and data
structures, exposed upon demand, highly configurable
Capability, algorithmic efficiency, extensibility, composability,
comprehensibility of performance and resource use

Bottom layer (developers)
Support for variety of execution environments
Portability, implementation efficiency

ACTS Workshop, 24 August 2005

What physicists want in math software
Develop code “without having to make bets”

accomplish certain abstract mathematical tasks
stay agnostic about particular solution methods and codes
run everywhere: laptops (on travel), low-cost unmetered
clusters (at work), and unique shared national resources

Ordered goals (need them all for production use)
usability and robustness
portability
algorithmic efficiency (optimality) and implementation
efficiency (within a processor and in parallel)

Algorithmic optimality and software stability
scalable methods needed for multiscale problems
no “hand coding” for evanescent computing environments

ACTS Workshop, 24 August 2005

Foci for math ISICs
The past focus:
Meet the understood and expressed needs of

application groups, where they are, typically
across a conventional interface

A present and future focus:
Lure application groups into new explorations,

boldly going where no one has gone before,
typically blurring conventional interfaces

ACTS Workshop, 24 August 2005

Multiscale apps demand scalable solvers
Multiple spatial scales

interfaces, fronts, layers
thin relative to domain size,
δ << L

Multiple temporal scales
fast waves
small transit times relative
to convection or diffusion, τ
<< T

Analyst must isolate dynamics of interest and model the rest in a system
that can be discretized over more modest range of scales
Often involves filtering of high frequency modes, quasi-equilibrium
assumptions, etc.
May lead to infinitely “stiff” subsystem requiring implicit treatment
Resulting implicit subsystem may be very ill-conditioned

Richtmeyer-Meshkov instability, c/o A. Mirin, LLNL

ACTS Workshop, 24 August 2005

2004 Gordon Bell “special” prize

Cortical
bone

Trabecular
bone

2004 Bell Prize in “special category” went to an implicit,
unstructured grid bone mechanics simulation

0.5 Tflop/s sustained on 4 thousand procs of ASCI White
0.5 billion degrees of freedom
large-deformation analysis
employed in NIH bone research at Berkeley

c/o M. Adams, et al.

ACTS Workshop, 24 August 2005

2003 Gordon Bell “special” prize
2003 Bell Prize in “special category” went to unstructured
grid geological parameter estimation problem

1 Tflop/s sustained on 2 thousand processors of HP’s “Lemieux
each explicit forward PDE solve: 17 million degrees of freedom
seismic inverse problem: 70 billion degrees of freedom
employed in NSF seismic research at CMU

reconstruction

target

c/o O. Ghattas, et al.

ACTS Workshop, 24 August 2005

1999 Gordon Bell “special” prize

Transonic “Lambda” Shock, Mach contours on surfaces

1999 Bell Prize in “special category” went to implicit,
unstructured grid aerodynamics problems

0.23 Tflop/s sustained on 3 thousand processors of ASCI Red
11 million degrees of freedom
incompressible and compressible Euler flow
Employed in NASA analysis/design missions

“to s”

ACTS Workshop, 24 August 2005

Observations on Bell Prizes re: solvers
A single solver toolkit (PETSc) employed with
three different types of functionality

as programmer interface for MPI-implemented
distributed data structures in explicit time integration
as linear Krylov package to accelerate expert user-
provided algebraic MG
as full nonlinear pseudo-transient Newton-Krylov-
Schwarz solver

We will see a fourth use later in a PDE-
constrained optimization application

ACTS Workshop, 24 August 2005

Solvers evolve underneath “Ax=b”
Advances in algorithmic efficiency rival advances in
hardware architecture
Consider Poisson’s equation on a cube of size N=n3

If n=64, this implies an overall reduction in flops of
~16 million

n3n3BrandtFull MG1984

n3.5 log nn3ReidCG1971

n4 log nn3YoungOptimal SOR1950

n7n5Von Neumann &
Goldstine

GE (banded)1947

FlopsStorage ReferenceMethodYear

∇2u=f 64

64 64

*Six months is reduced to 1 second

*

ACTS Workshop, 24 August 2005

year

relative
speedup

Solver algorithms and Moore’s Law
This advance took place over a span of about 36 years, or
24 doubling times for Moore’s Law
224≈16 million ⇒ the same as the factor from algorithms
alone!

ACTS Workshop, 24 August 2005

TOPS has a dream that users will…
Understand range of algorithmic options w/tradeoffs

e.g., memory vs. time, comp. vs. comm., inner iteration work
vs. outer

Try all reasonable options “easily”
without recoding or extensive recompilation

Know how their solvers are performing
with access to detailed profiling information

Intelligently drive solver research
e.g., publish joint papers with algorithm researchers

Simulate truly new physics free from solver limits
e.g., finer meshes, complex coupling, full nonlinearity

User’s
Rights

ACTS Workshop, 24 August 2005

What we believe about apps
Solution of a system of
PDEs is rarely a goal in
itself

Actual goal is characterization
of a response surface or a
design or control strategy
Solving the PDE is just one
forward map in this process
Together with analysis,
sensitivities and stability are
often desired

⇒ Software tools for PDE
solution should also
support related follow-on
desires

No general purpose PDE
solver can anticipate all
needs

Why we have national
laboratories, not numerical
libraries for PDEs today
A PDE solver improves
with user interaction
Pace of algorithmic
development is very rapid

⇒ Extensibility is important

ACTS Workshop, 24 August 2005

What we believe about users
Solvers are used by people
of varying numerical
backgrounds

Some expect MATLAB-like
defaults
Others want to control
everything, e.g., even
varying the type of
smoother and number of
smoothings on different
levels of a multigrid
algorithm

⇒ Multilayered software
design is important

Users’ demand for
resolution is virtually
insatiable

Relieving resolution
requirements with
modeling (e.g., turbulence
closures, homogenization)
only defers the demand for
resolution to the next level
Validating such models
requires high resolution

⇒ Processor scalability and
algorithmic scalability
(optimality) are critical

ACTS Workshop, 24 August 2005

What we believe about legacy code
Porting to a scalable
framework does not mean
starting from scratch

High-value physics routines
in original languages can be
substantially preserved
Partitioning, reordering
and mapping onto
distributed data structures
(that solver may provide)
adds code but little runtime

⇒ Solver distributions should
include code samples
exemplifying “separation
of concerns”

Legacy solvers may be
limiting resolution,
accuracy, and generality of
modeling overall

Replacing the solver may
“solve” several other issues
However, pieces of the
legacy solver may have
value as part of a
preconditioner

⇒ Solver toolkits should
include “shells” for
callbacks to high-value
legacy routines

ACTS Workshop, 24 August 2005

What we believe about solvers
Solvers are employed as
part of a larger code

Solver library is not the only
library to be linked
Solvers may be called in
multiple, nested places
Solvers typically make
callbacks
Solvers should be swappable

⇒ Solver threads must not
interfere with other
component threads,
including other active
instances of themselves

Solvers are employed in
many ways over the life
cycle of an applications
code

During development and
upgrading, robustness (of
the solver) and verbose
diagnostics are important
During production, solvers
are streamlined for
performance

⇒ Tunability is important

ACTS Workshop, 24 August 2005

What we believe about numerical software
A continuous operator may
appear in a discrete code in
many different instances

Optimal algorithms are nested
iterative and hierarchical
Majority of progress towards
desired highly resolved, high
fidelity result occurs through
cost-effective low resolution,
low fidelity parallel-efficient
stages

⇒ Operator and grid-function
abstractions must let the
user glide up and down the
representation hierarchy

Hardware changes many
times over the life cycle of a
software package

Processors, memory, and
networks evolve annually
Machines are replaced every
3-5 years at major DOE
centers
Codes persist for decades

⇒ Portability is critical

ACTS Workshop, 24 August 2005

A central concept: solver toolchain

From solutions to sensitivity, stability,
optimization
Nested modules
Leveraging of coding work in the distributed
data structures
Hiding of communication and performance-
oriented details so users deal with
mathematical objects throughout

ACTS Workshop, 24 August 2005

Solver software toolchain
Design and implementation of
“solvers”

Linear solvers

Eigensolvers

Nonlinear solvers

Time integrators

Optimizers

Software integration
Performance optimization

0),,,(=ptxxf &

0),(=pxF

bAx =

BxAx λ=

0,0),(..),(min ≥= uuxFtsux
u
φ

Optimizer

Linear
solver

Eigensolver

Time
integrator

Nonlinear
solver

Indicates
dependence

Sens. Analyzer

(w/ sens. anal.)

(w/ sens. anal.)

ACTS Workshop, 24 August 2005

SciDAC solver collaboration examples
Meeting physicists at a well-defined traditional
interface

Magnetic fusion energy – swapping in new linear
solvers

Collaborating with physicists across traditional
interfaces

Accelerator design – multidisciplinary design
optimization
Quantum chromodynamics – research prototyping of
new algorithm

ACTS Workshop, 24 August 2005

Illustrations from computational MHD
M3D code (Princeton)

multigrid replaces block Jacobi/ASM preconditioner
for optimality
new algorithm callable across Ax=b interface

NIMROD code (General Atomics)
direct elimination replaces PCG solver for robustness
scalable implementation of old algorithm for Ax=b

The fusion community may use more cycles on unclassified U.S.
DOE computers than any other (e.g., 32% of all cycles at NERSC
in 2003). Well over 90% of these cycles are spent solving linear
systems in M3D and NIMROD, which are prime U.S. code
contributions to the designing of ITER.

ACTS Workshop, 24 August 2005

NIMROD: direct elim. for robustness
NIMROD code

high-order finite elements
complex, nonsymmetric linear
systems with 10K-100K
unknowns (>90% exe. time)

TOPS collaboration
replacement of diagonally scaled
Krylov with SuperLU, a
supernodal parallel sparse direct
solver
2D tests run 100 × faster; 3D
production runs are 4-5 × faster

c/o D. Schnack, et al.

ACTS Workshop, 24 August 2005

M3D: multigrid for optimality
M3D code

unstructured mesh, hybrid FE/FD
discretization with C0 elements
Sequence of real scalar systems
(>90% exe. time)

TOPS collaboration
replacement of additive Schwarz
(ASM) preconditioner with
algebraic multigrid (AMG)
achieved mesh-independent
convergence rate
4-5 × improvement in execution
time 0

100

200

300

400

500

600

700

3 12 27 48 75

ASM-GMRES
AMG-FMGRES

c/o S. Jardin, et al.

ACTS Workshop, 24 August 2005

AMRMHD: implicit solver
Magnetic reconnection: the breaking
and reconnecting of oppositely
directed magnetic field lines in a
plasma

Large-scale current instabilities may
replace hot plasma core with cool
plasma, halting the fusion process

Current (J = r £ B)

J. Brin et al., “Geospace Environmental Modeling (GEM) magnetic reconnection challenge,” J. Geophys. Res. 106 (2001) 3715-3719.

c/o D. Reynolds, et al.

ACTS Workshop, 24 August 2005

Shape optimization for accelerators

CAD Meshing Partitioning
(parallel)

h-Refinement
p-refinement

Solvers
(parallel)

Refinement

Basic Analysis Loop for given Geometry

Omega3P

S3P

T3P

Tau3P

• Numerical modeling has replaced trial and error prototyping approach
• SciDAC adds advances that increase fidelity, speed, and accuracy:

• Next generation accelerators have complex cavities that require shape
optimization for improved performance and reduced cost
• AST/TSTT/TOPS are collaborating to develop an automated capability
to accelerate this otherwise manual process

DDS CELL

c/o W. Ko, et al.

ACTS Workshop, 24 August 2005

Omega3P design optimization components

Omega3P
Sensitivity

meshing
sensitivity

optimization
geometricgeometric

modelmodel

Omega3P meshingmeshing

(only for discrete sensitivity)

TSTT

AST/TSTTTOPS

AST/TOPS

AST/TOPS

c/o O. Ghattas, et al.

ACTS Workshop, 24 August 2005

Multigrid for Lattice Gauge QCD

Wilson-Fermion operator:

Difference operators:

Pauli spin matrices:

Fermion field: φ(x,y)=(f1,f2)

Gauge field: u(x,y)=eiθ

Real part Imaginary part

c/o James Brannick, et al.

ACTS Workshop, 24 August 2005

Algebraic Multigrid for QCD

Diagonally scaled CG

Adaptive Smoothed Aggregation AMG CG

iterations / per-iteration-reduction / condition number

ACTS Workshop, 24 August 2005

Abstract Gantt chart for solver development

Algorithmic Development

Research Implementations

Hardened Codes

Applications Integration

Dissemination

time

e.g.,PETSc

e.g.,TOPSLib

e.g., αAMG

Each color module represents an algorithmic research idea on its way to becoming part of a supported
community software tool. At any moment (vertical time slice), TOPS has work underway at multiple levels.
While some codes are in applications already, they are being improved in functionality and performance as
part of the TOPS research agenda.

ACTS Workshop, 24 August 2005

TOPS’ linear solver interface informed by
earlier interfaces

Some progenitors
FEI (finite element interface) / C++

developed at SNL

ESI (equation solver interface) / C++
multi-lab effort

hypre (conceptual interfaces) / C
developed at LLNL

PETSc / C
developed at ANL

We support all of these in some of our
packages, and will continue to do so

ACTS Workshop, 24 August 2005

Object model concepts

Solver
(is an)

Vector – represents field data

View

(has one or more)

(has a)

Layout

– provides access to the data

– how data is laid out across processes

Operator

c/o B. Smith, et al.

ACTS Workshop, 24 August 2005

View allows users to access values in
the “language of the application”

Handles any data communication transparently
Same idea as hypre’s conceptual interfaces

Data Layout
structured composite block-struc unstruc CSR

Linear Solvers
GMG, ... FAC, ... Hybrid, ... AMGe, ... ILU, ...

Conceptual (Linear System) Interfaces

c/o R. Falgout, et al.

ACTS Workshop, 24 August 2005

Views differ primarily in the way they
“set” and “get” data

Classical Linear Algebra View – indices are scalars that
represent locations in Rn

Structured Grid View – indices are 3D triples that describe
“boxes of data” (think 3D Fortran arrays)

Views / Layouts
Rn – “classical linear algebra” access
S – single structured grid
Fe – finite element interface
Ss – semi-structured grids (structured grid “parts” with additional
arbitrary connections)
…

array<double> getValues(array<int> indices);

array<double> getValues(<int,3> ilower, <int,3> iupper);

ACTS Workshop, 24 August 2005

What’s coming in solvers
Greater interface standardization
Greater solver interoperability
Better integration upwards
w/ meshing and discretization systems

Better integration downwards
w/ performance monitoring and engineering

systems
Better algorithms!

ACTS Workshop, 24 August 2005

Tuning for performance
After functionality, efficiency is essential
Combinatorially many implementations exist

produce same results at very different rates and
resource costs
little useful theory, few useful models to guide choices

We mention efforts aimed at
implementation efficiency, in the real world of
multilevel memory hierarchies
algorithm selection efficiency in the real world of and
unsymmetric, unstructured, nonlinear problems

ACTS Workshop, 24 August 2005

Implementation efficiency
Ordering and blocking critical to floating point
code performance

due to two-order-of-magnitude mismatch between FPU
rate and memory BW
arithmetically neutral code transformations can lead to
factors of up to ~7 in performance improvement in
common linear algebraic kernels

Well exploited for dense kernels in, e.g., ATLAS
Successes for sparse kernels now available in, e.g.,
OSKI

ACTS Workshop, 24 August 2005

(Omega3P)

Combined gains for SpMV

c/o J. Demmel, et al.

These labels
represent best
percentage of
theoretical peak
flop/s achieved
on each
processor

ACTS Workshop, 24 August 2005

Speedups on Itanium 2 from blocking

Reference

Best: 4x2

Mflop/s

Mflop/s

c/o J. Demmel, et al.

ACTS Workshop, 24 August 2005

Algorithm tuning efficiency
Parameter tuning critical to solver convergence
performance

optimal scalable solvers are iterative, and hierarchical
(employ multiple representations of the same
continuous operator on different scales)
impedes their widespread adoption and leaves
performance “on the table”

Solver of choice is data- and machine-dependent
Solvers used in inner loops of apps, w/related data
Tremendous opportunity to apply machine
learning methods (e.g., “boosting”)

ACTS Workshop, 24 August 2005

Automated solver tuning

Example of
performance
variations of
differently tuned
Krylov solvers
over a sequence
of about 85
systems, vertical
axis is log of
runtime
improvements

c/o S. Bhowmick, et al.

ACTS Workshop, 24 August 2005

On quality software

“Quality software
renormalizes the difficulty
of doing computation.”

Peter Lax, 2005 Abel Prize
Winner

ACTS Workshop, 24 August 2005

What’s coming in SciDAC-2 (2006 onward)
Commitment to maintenance of the many solver toolkits
already in use
Greater use made of “embedded mathematicians” (DOE
“SAPP”-style funding)
Greater software interface standardization
Better vertical integration of separately developed
SciDAC-1 components:

meshing and discretization systems w/ solvers
solvers w/ performance engineering

More methods for users to choose from dynamically
More automated selection of complex methods

ACTS Workshop, 24 August 2005

Acknowledgments
DOE
NSF
PETSc software team
Hypre software team
SuperLU software team
SUNDIALS software team
M. Adams, S. Bhowmick, J. Brannick, J.
Demmel, O. Ghattas, S. Jardin, K. Ko, A.
Mirin, D. Schnack

ACTS Workshop, 24 August 2005

Related URLs

TOPS project
http://www.tops-scidac.org
SciDAC initiative
http://www.science.doe.gov/scidac
SCaLeS report
http://www.pnl.gov/scales

ACTS Workshop, 24 August 2005

Abstract
Computational enabling technologies must offer both high-level abstractions
in the language of their intended user community and detailed access to
their powerful, composable innards for developers and prototypers. This can
be achieved through a multilevel interface with robust default settings for
a host of tuning parameters, the knobs for which can be exposed on demand.
Drawing upon collaborations between DOE's Integrated Software Infrastructure
Center for scalable solvers (TOPS, www.tops-scidac.org) and projects in
fusion energy, accelerator design, and QCD, we illustrate the necessity of a
providing a rich set of linear solvers under a common high-level interface,
in order to progress beyond mere feasibility to performance and portability.
The TOPS project integrates the following elements presented at ACTS 2005:
Hypre, PETSc, ScaLAPACK, SUNDIALS, and SuperLU.

While many customers can be adequately served with well defined multilevel
software interfaces, we emphasize from this same set of SciDAC
collaborations the importance of cross-disciplinary human interaction to
discover altogether better abstractions (e.g., one fully coupled nonlinear
problem, rather than a sequence of operator-split, linearized problems).

