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Moré, Munson, and Sarich Continuous Optimization and TAO



Outline

• Introduction

• Unconstrained optimization
• Model-based methods
• Limited-memory variable metric methods
• Newton’s method

• Automatic Differentiation

• Solving optimization problems with TAO
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Nonlinearly Constrained Optimization

min {f(x) : xl ≤ x ≤ xu, cl ≤ c(x) ≤ cu}
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Isomerization of α-pinene

Determine the reaction coefficients in the thermal isomerization of
α-pinene from measurements z1, . . . z8 by minimizing

8∑
j=1

‖y(τj ; θ)− zj‖2

y′1 = −(θ1 + θ2)y1

y′2 = θ1y1

y′3 = θ2y1 − (θ3 + θ4)y3 + θ5y5

y′4 = θ3y3

y′5 = θ4y3 − θ5y5
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Classification of Constrained Optimization Problems

min {f(x) : xl ≤ x ≤ xu, cl ≤ c(x) ≤ cu}

• Number of variables n

• Number of constraints m

• Number of linear constraints

• Number of equality constraints ne

• Number of degrees of freedom n− ne

• Sparsity of c′(x) = (∂icj(x))
• Sparsity of ∇2

xL(x, λ) = ∇2f(x) +
∑m

k=1∇2ck(x)λk
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Classification of Constrained Optimization Software

• Formulation

• Interfaces: MATLAB, AMPL, GAMS

• Second-order information options:
• Differences
• Limited memory
• Hessian-vector products

• Linear solvers
• Direct solvers
• Iterative solvers
• Preconditioners

• Partially separable problem formulation

• Documentation

• License
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Unconstrained Optimization: Background

Given a continuously differentiable f : Rn 7→ R and

min {f(x) : x ∈ Rn}

generate a sequence of iterates {xk} such that the gradient test

‖∇f(xk)‖ ≤ τ

is eventually satisfied

Theorem. If f : Rn 7→ R is continuously differentiable and bounded
below, then there is a sequence {xk} such that

lim
k→∞

‖∇f(xk)‖ = 0.
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Ginzburg-Landau Model

Minimize the Gibbs free energy for a homogeneous superconductor∫
D

{
−|v(x)|2 + 1

2 |v(x)|4 + ‖[∇− iA(x)] v(x)‖2 + κ2 ‖(∇×A)(x)‖2}
dx

v : R2 → C (order parameter)
A : R2 → R2 (vector potential)

Unconstrained problem with a non-convex objective function. The
Hessian matrix is singular, but has a unique minimizer and saddle points.
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Unconstrained Optimization

What can I use if the gradient ∇f(x) is not available?

• Geometry-based methods: Pattern search, Nelder-Mead, . . .

• Model-based methods: Quadratic, radial-basis models, . . .

What can I use if the gradient ∇f(x) is available?

• Conjugate gradient methods

• Limited-memory variable metric methods

• Variable metric methods

What can I use if the gradient ∇f(x) and Hessian ∇2f(x) are available?

• Newton’s method with a trust region or line search
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Quadratic Model-Based Methods

Question: How do we find a minimizer of f : Rn 7→ R if we are not able
to compute the gradient?

At each iterations we have m points x1, . . . , xm, and we construct a
quadratic q that interpolates f at each point, that is,

q(xk) = f(xk), 1 ≤ k ≤ m.

We also require that the Hessian approximation B be such that

min {‖B −B0‖F : q(xk) = f(xk), 1 ≤ k ≤ m}

where B0 is the Hessian approximation obtained on the previous iteration.
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Quadratic Model-Based Methods

If x0 is the current approximation to the minimizer, then the next iterate
is determined by solving the trust region subproblem

min {q(x0 + w) : ‖w‖ ≤ ∆}

and setting x+ = x0 + w.

Research Issues

• How do we compute the quadratic q?

• How do we compute the initial set of points x1, . . . , xm?

• How do we update the basis points x1, . . . , xm?
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Line Search Methods

A sequence of iterates {xk} is generated via

xk+1 = xk + αkpk,

where pk is a descent direction at xk, that is,

∇f(xk)T pk < 0,

and αk is determined by a line search along pk.

Line searches

• Geometry-based: Armijo, . . .

• Model-based: Quadratics, cubics, . . .
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Powell-Wolfe Conditions on the Line Search

Given 0 ≤ µ < η ≤ 1, require that

f(x + αp) ≤ f(x) + µα∇f(xk)T pk sufficent decrease

|∇f(x + αp)T p| ≤ η |∇f(x)T p| curvature condition
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Conjugate Gradient Algorithms

Given a starting vector x0 generate iterates via

xk+1 = xk + αkpk

pk+1 = −∇f(xk) + βkpk

where αk is determined by a line search.

Three reasonable choices of βk are (gk = ∇f(xk)):

βFR
k =

(
‖gk+1‖
‖gk‖

)2

, Fletcher-Reeves

βPR
k =

〈gk+1, gk+1 − gk〉
‖gk‖2

, Polak-Rivière

βPR+
k = max

{
βPR

k , 0
}

, PR-plus
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Limited-Memory Variable-Metric Algorithms

Given a starting vector x0 generate iterates via

xk+1 = xk − αkHk∇f(xk)

where αk is determined by a line search.

The matrix Hk is defined in terms of information gathered during the
previous m iterations.

• Hk is positive definite.

• Storage of Hk requires 2mn locations.

• Computation of Hk∇f(xk) costs (8m + 1)n flops.
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Limited-Memory Algorithms: Updating Hk

Hk+1 =
(

I −
sky

T
k

ρk

)
Hk

(
I −

yks
T
k

ρk

)
+

sks
T
k

ρk
,

yk = ∇f(xk+1)−∇f(xk), sk = xk+1 − xk, ρk = yT
k sk

Store information from the last m iterations

y1, . . . , ym,

s1, . . . , sm,

ρ1, . . . , ρm

How can we compute Hm+1w ?
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Limited-Memory Algorithms: Computing Hm+1w

Recursion for qi = V T
i qi+1

qm+1 = w
do i = m, . . . , 1

βi = (sT
i qi+1)/ρi

qi = qi+1 − βiyi

end do

Recursion for ri = Hiqi

do i = 1, . . . , m
ri+1 = ri + si

(
βi − (yT

i ri)/ρi

)
end do
rm+1 = Hm+1w
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Performance

CUTEr MINPACK-2
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Trust-Region Newton Algorithm

At each iteration the step sk (approximately) minimizes

min {qk(xk + s) : ‖s‖ ≤ ∆k}

where qk is the quadratic approximation,

qk(w) = 〈∇f(xk), w〉+ 1
2〈w,∇2f(xk)w〉,

to the function, and ∆k is the trust-region bound.

The trust-region subproblem solved with preconditioned Steihaug-Toint
conjugate gradient method.
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Recommendations

But what algorithm should I use?

• If the gradient ∇f(x) is not available, then a model-based method
is a reasonable choice. Methods based on quadratic interpolation
are currently the best choice.

• If the gradient ∇f(x) is available, then a limited-memory variable
metric method is likely to produce an approximate minimizer in the
least number of gradient evaluations.

• If the Hessian is also available, then a state-of-the-art
implementation of Newton’s method is likely to produce the best
results if the problem is large and sparse.
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Computing the Gradient

Hand-coded gradients

• Generally efficient

• Error prone

• The cost is usually less than 5 function evaluations

Difference approximations

∂if(x) ≈ f(x + hei)− f(x)
hi

• Choice of hi may be problematic in the presence of noise.

• Costs n function evaluations

• Accuracy is about the ε
1/2
f where εf is the noise level of f

Moré, Munson, and Sarich Continuous Optimization and TAO



Inexpensive Gradient via Automatic Differentiation

Code generated by automatic differentiation tools

• Accurate to full precision

• For the reverse mode the cost is ΩT T{f(x)}.
• In theory, ΩT ≤ 5.

• For the reverse mode the memory is proportional to the number of
intermediate variables.
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TAO: Toolkit for Advanced Optimization

The process of nature by which all things change and which is
to be followed for a life of harmony.

• Object-oriented techniques

• Component-based interaction

• Leverage of existing parallel computing infrastructure

• Reuse of external toolkits (linear solvers, preconditioners, . . . )
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TAO Status

• Version 1.9 (December 2006)

• Source code, documentation, tutorials, example problems, . . .

• TAO components: MPQC (Sandia) and NWChem (PNNL)

• Grid sequencing via Distributed Arrays (PETSc)

• Gradients of grid functions via ADIC

Powered by PETSc and ADIC!

Moré, Munson, and Sarich Continuous Optimization and TAO



Using TAO with PETSc

TAO_SOLVER tao; /* TAO Optimization solver */
TAO_APPLICATION app; /* TAO Application using PETSc */
AppCtx user; /* User-defined application context */
Vec x; /* Solution vector */
Mat H; /* Hessian Matrix */

VecCreateSeq(PETSC_COMM_SELF,n,&x);
MatCreateSeqAIJ(PETSC_COMM_SELF,n,n,nz,PETSC_NULL,&H);
TaoCreate(PETSC_COMM_SELF,’’tao_lmvm’’,&tao);
TaoApplicationCreate(PETSC_COMM_SELF,&app);
TaoAppSetInitialSolutionVec(app,x);
TaoAppSetObjectiveRoutine(app, FormFunction,(void *)&user);
TaoAppSetGradientRoutine(app,FormGradient,(void *)&user);
TaoAppSetHessianMat(app,H,H);
TaoAppSetHessianRoutine(app,FormHessian,(void *)&user);
TaoSolveApplication(app,tao);
VecView(x,PETSC_VIEWER_STDOUT_SELF);
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Objective Function and Gradient Evaluation

typedef struct { /* Used in the minimum surface area problem */
int mx, my; /* discretization in x, y directions */
int bmx, bmy, bheight; /* The size of the plate */
double bheight; /* The height of the plate */
double *bottom, *top, *left, *right; /* boundary values */

} AppCtx;

int FormFunction(TAO_APPLICATION app, Vec x, double *fcn, void *userCtx){
AppCtx *user = (AppCtx *)userCtx;
...

}
int FormGradient(TAO_APPLICATION app, Vec x, Vec g, void *userCtx){

AppCtx *user = (AppCtx *)userCtx;
...

}
int FormHessian(TAO_APPLICATION app, Vec x, Mat *H, Mat *H, int *flag,

void *userCtx){
AppCtx *user = (AppCtx *)userCtx;
...

}
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Creating and Using a TAO Application

TAO_SOLVER tao; /* TAO Optimization solver */
TAO_APPLICATION app; /* TAO Application using PETSc */
AppCtx user; /* User-defined application context */
Vec x; /* Solution vector */
Mat H; /* Hessian Matrix */

VecCreateSeq(PETSC_COMM_SELF,n,&x);
MatCreateSeqAIJ(PETSC_COMM_SELF,n,n,nz,PETSC_NULL,&H);
TaoCreate(PETSC_COMM_SELF,"tao_lmvm",&tao);
TaoApplicationCreate(PETSC_COMM_SELF,&app);
TaoAppSetInitialSolutionVec(app,x);
TaoAppSetObjectiveRoutine(app,FormFunction,(void *)&user);
TaoAppSetGradientRoutine(app,FormGradient,(void *)&user);
TaoAppSetHessianMat(app,H,H);
TaoAppSetHessianRoutine(app,FormHessian,(void *)&user);
TaoSolveApplication(app,tao);
VecView(x,PETSC_VIEWER_STDOUT_SELF);
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Creating and Using a TAO Solver

TAO_SOLVER tao; /* TAO Optimization solver */
TAO_APPLICATION app; /* TAO Application using PETSc */
AppCtx user; /* User-defined application context */
Vec x; /* Solution vector */
Mat H; /* Hessian Matrix */

VecCreateSeq(PETSC_COMM_SELF,n,&x);
MatCreateSeqAIJ(PETSC_COMM_SELF,n,n,nz,PETSC_NULL,&H);
TaoCreate(PETSC_COMM_SELF,"tao_lmvm",&tao);
TaoApplicationCreate(PETSC_COMM_SELF,&app);
TaoAppSetInitialSolutionVec(app,x);
TaoAppSetObjectiveRoutine(app,FormFunction,(void *)&user);
TaoAppSetGradientRoutine(app,FormGradient,(void *)&user);
TaoAppSetHessianMat(app,H,H);
TaoAppSetHessianRoutine(app,FormHessian,(void *)&user);
TaoSolveApplication(app,tao);
VecView(x,PETSC_VIEWER_STDOUT_SELF);

Moré, Munson, and Sarich Continuous Optimization and TAO



TAO Program Outline

TAO_SOLVER tao; /* TAO Optimization solver */
TAO_APPLICATION app; /* TAO Application using PETSc */
AppCtx user; /* User-defined application context */
Vec x; /* Solution vector */
Mat H; /* Hessian Matrix */

VecCreateSeq(PETSC_COMM_SELF,n,&x);
MatCreateSeqAIJ(PETSC_COMM_SELF,n,n,nz,PETSC_NULL,&H);
TaoCreate(PETSC_COMM_SELF,"tao_lmvm",&tao);
TaoApplicationCreate(PETSC_COMM_SELF,&app);
TaoAppSetInitialSolutionVec(app,x);
TaoAppSetObjectiveRoutine(app,FormFunction,(void *)&user);
TaoAppSetGradientRoutine(app,FormGradient,(void *)&user);
TaoAppSetHessianMat(app,H,H);
TaoAppSetHessianRoutine(app,FormHessian,(void *)&user);
TaoSolveApplication(app,tao);
VecView(x,PETSC_VIEWER_STDOUT_SELF);

Moré, Munson, and Sarich Continuous Optimization and TAO



Using PETSc Objects on Multiple Processors

TAO_SOLVER tao; /* TAO Optimization solver */
TAO_APPLICATION app; /* TAO Application using PETSc */
AppCtx user; /* user-defined application context */
Vec x; /* solution vector */
Mat H; /* Hessian Matrix */

VecCreateMPI(PETSC_COMM_WORLD,n,&x);
MatCreateMPIAIJ(PETSC_COMM_WORLD,nlocal,nlocal,n,n,d_nz,d_nnz,o_nz,o_nnz,&H);
TaoCreate(PETSC_COMM_WORLD,"tao_lmvm",&tao);
TaoApplicationCreate(PETSC_COMM_WORLD,&app);
TaoAppSetInitialSolutionVec(app,x);
TaoAppSetObjectiveRoutine(app,FormFunction,(void *)&user);
TaoAppSetGradientRoutine(app,FormGradient,(void *)&user);
TaoAppSetHessianMat(app,H,H);
TaoAppSetHessianRoutine(app,FormHessian,(void *)&user);
TaoSolveApplication(app,tao);
VecView(x,PETSC_VIEWER_STDOUT_WORLD);

Moré, Munson, and Sarich Continuous Optimization and TAO



Convergence Tolerances

Absolute tolerances specify acceptable errors in the optimality of the
function and the constraints.

f(x) ≤ f(x∗) + εfatol

Relative tolerances specify the number of significant digits required in the
solution and the constraints.

f(x) ≤ f(x∗) + εfrtol|f(x∗)|

These tolerance can be changed

int TaoSetTolerances(TAO_SOLVER solver,double fatol,double frtol,

double catol,double crtol)
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TAO Basic Facilities

• TaoAppSetInitialSolutionVec

• TaoAppSetVariableBounds

• TaoGetLinearSolver

• TaoFromOptions

• TaoAppSetMonitor

• TaoView

• . . .
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