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Automatic Performance Tuning

• Writing high performance software is hard
• Ideal: get high fraction of peak performance from 

one algorithm
• Reality: Best algorithm (and its implementation) can 

depend strongly on the problem, computer 
architecture, compiler,…
– Best choice can depend on knowing a lot of 

applied mathematics and computer science
– Changes with each new hardware, compiler 

release
• How much of this can we teach?
• How much of this can we automate?



Impact of Automatic Performance Tuning

• Widely used  in performance tuning of Kernels
– ATLAS (PhiPAC) - www.netlib.org/atlas

• Dense BLAS, now in Matlab, many other releases
– FFTW – www.fftw.org

• Fast  Fourier Transform and similar transforms, Wilkinson Software 
Prize

– Spiral  - www.spiral.net
• Digital Signal Processing

• Communication Collectives (UCB, UTK)
• Rose (LLNL), Bernoulli (Cornell), Telescoping Languages 

(Rice), UHFFT (Houston), POET (UTSA), …
• More projects (PERI,TOPS2,CScADS), conferences, 

government reports, …



Optimizing blocksizes for mat-mul

Finding a Needle in a Haystack – So Automate



More Challenges
• Increasing parallelism

– From supercomputers to multicore

• Exponentially growing gaps between
– Floating point time << 1/Memory BW << Memory Latency

• Improving   59%/year  vs 23%/year   vs 5.5%/year
– Floating point time << 1/Network BW << Network Latency

• Improving   59%/year  vs 26%/year  vs 15%/year
– Sparse matrix operations are Bandwidth and Latency 

limited
• Heterogeneity (performance and semantics)
• Asynchrony
• Unreliability
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A Sparse Matrix You Use Every Day
The Google Matrix (a small section)



A case for sparse kernel 
autotuning

SpMV crash course:
Compressed Sparse Row (CSR) 

storage

• Matrix-vector multiply: y = A*x
– for all A(i, j):  y(i) = y(i) + A(i, j) * x(j)

Dominant cost: Compress?
Irregular, indirect: 
x[ind[…]]
“Regularize?”



NASA structural analysis matrix



• One index 
per block

• Memory 
accesses 
minimized by 
storing 8x8 
dense blocks

NASA matrix (zoom in)



Speedups on Itanium 2: The 
Need for Search

Reference

Best: 4x2

Mflop/s

Mflop/s



SpMV Performance—raefsky3



Register Profiles: IBM and Intel 
IA-64

Power3 - 17% Power4 - 16%

Itanium 2 - 33%Itanium 1 - 8%

252 Mflop/s

122 Mflop/s

820 Mflop/s

459 Mflop/s

247 Mflop/s

107 Mflop/s

1.2 Gflop/s

190 Mflop/s



Another tuning challenge

• More complicated 
non-zero structure 
in general

• N = 16614
• NNZ = 1.1M



Zoom in to top corner

• More complicated 
non-zero structure 
in general

• N = 16614
• NNZ = 1.1M



3x3 blocks look natural, but…



3x3 blocks create a lot of “fill-in”

• Need to store explicit 
zeros

• 50% more entries
• 1.5x as much arithmetic
• 1.5x as much memory  

traffic



Takes 1.5x less time!

• Flop rate is (1.5)2 = 2.25x 
higher on Pentium III



Automatic Selection of 
Register Block Size  (r  x  c)

• Off-line benchmark
– Precompute Mflops(r,c) using dense A for 

each r x c
– Once per machine/architecture

• Run-time “search”
– Sample A to estimate Fill(r,c) for each r x c

• Run-time heuristic model
– Choose r, c to minimize                           

time ~ Fill(r,c) / Mflops(r,c)



Summary of Other Performance 
Optimizations

• Optimizations for SpMV
– Register blocking (RB): up to 4x over CSR
– Variable block splitting: 1.8x over RB
– Diagonals: 2x over CSR
– Reordering to create dense structure + splitting: 2x over CSR
– Symmetry: 2.6x over RB
– Cache blocking: 2.8x over CSR
– Multiple vectors (SpMM): 7x over CSR
– And combinations…

• Sparse triangular solve
– Hybrid sparse/dense data structure: 1.8x over CSR

• Higher-level kernels
– AAT*x, ATA*x: 4x over CSR, 1.8x over RB
– A2*x: 2x over CSR, 1.5x over RB



Split A = A1 + A2 + …, and tune Ai independently

2.1×
over CSR

1.8×
over RB



Example: Row-segmented diagonals

2×
over CSR



Dense sub-triangles for triangular solve

Dense trailing triangle: 
dim=2268, 20% of total nz

Can be as high as 90+%!

• Solve Tx = b for x, T triangular
• Raefsky4 (structural problem) + 

SuperLU + colmmd
• N=19779, nnz=12.6 M



• Idea: Interleave multiplication by A, AT

• Combine with register optimizations: ai = r 
× c block row
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OSKI

OSKI tunes for workloads
• Bi-conjugate gradients - equal mix of A·x and AT·y

– 3×1: A·x, AT·y = 1053, 343 Mflop/s 517 Mflop/s
– 3×3: A·x, AT·y = 806, 826 Mflop/s 816 Mflop/s

• Higher-level operation - (A·x, AT·y) kernel
– 3×1: 757 Mflop/s
– 3×3: 1400 Mflop/s

• Workload tuning
– Evaluate weighted sums of empirical models
– Dynamic programming to evaluate alternatives



Potential Impact on Applications: 
Omega3P

• Application: accelerator cavity design [Ko]
• Relevant optimization techniques

– Symmetric storage
– Register blocking
– Reordering

• Reverse Cuthill-McKee ordering to reduce bandwidth
• Traveling Salesman Problem-based ordering to create blocks

– Nodes = columns of A
– Weights(u, v) = # nonzeros u, v have in common
– Tour = ordering of columns
– Choose maximum weight tour
– See [Pinar & Heath ’97]



Source: Accelerator Cavity Design Problem (Ko via Husbands)



100x100 Submatrix Along Diagonal



Post-RCM Reordering



Before: Green + Red
After: Green + Blue

“Microscopic” Effect of RCM Reordering



“Microscopic” Effect of Combined RCM+TSP Reordering

Before: Green + Red
After: Green + Blue



(Omega3P)
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See: bebop.cs.berkeley.edu

Optimized Sparse Kernel 
Interface: OSKI

• Provides sparse kernels automatically tuned for user’s 
function, matrix & machine (work in progress)
– Many functions, optimizations 
– Searches over large set of possible data structures and algorithms 
– Some search at install time, some at run-time
– Performance models to prune search
– Learns from past optimizations
– Hides details from user – BLAS-style interface

• For “advanced” users & solver library writers
– OSKI-PETSc; Trilinos (Heroux)
– Adopted by ClearShape, Inc. for shipping product (2× speedup)

• Bebop.cs.berkeley.edu
– Joint with Katherine Yelick, Rich Vuduc



How OSKI tunes (Overview)

OSKI

Library Install-Time (offline) Application Run-Time

Benchmark
data

1. Build for
Target
Arch.

2. Benchmark

Generated
code

variants

Heuristic
models

1. Evaluate
Models

Workload
from program

monitoring History
Matrix

2. Select
Data Struct.

& Code

To user:
Matrix handle
for kernel
calls



Calling OSKI

For a fully-working example, see 
Section 3 of the OSKI User’s Guide.

OSKI



Initializing OSKI

• Must initialize once per run
oski_Init ();

• Optionally, “close” once per run
oski_Close ();

OSKI



How to call OSKI in a “legacy” app

OSKI

int* ptr = …, *ind = …;  double* val = …; /* Matrix A, in CSR format */
double* x = …, *y = …; /* Dense BLAS-compatible vectors */

/* Compute y = β·y + α·A·x, 500 times */
for( i = 0; i < 500; i++ )

my_matmult (ptr, ind, val, α, x, β, y);
r = ddot (x, y); /* Some dense BLAS op on vectors */



How to call OSKI in a “legacy” app

OSKI

int* ptr = …, *ind = …;  double* val = …; /* Matrix A, in CSR format */
double* x = …, *y = …; /* Vectors */

/* Step 1: Create OSKI wrappers */
oski_matrix_t A_tunable = oski_CreateMatCSR (ptr, ind, val, num_rows, 

num_cols, SHARE_INPUTMAT, …);
oski_vecview_t x_view = oski_CreateVecView (x, num_cols, 

UNIT_STRIDE);
oski_vecview_t y_view = oski_CreateVecView (y, num_rows, 

UNIT_STRIDE);

/* Compute y = β·y + α·A·x, 500 times */
for( i = 0; i < 500; i++ )

my_matmult (ptr, ind, val, α, x, β, y);
r = ddot (x, y);



How to call OSKI in a “legacy” app

OSKI

int* ptr = …, *ind = …;  double* val = …; /* Matrix A, in CSR format */
double* x = …, *y = …; /* Vectors */

/* Step 1: Create OSKI wrappers */
oski_matrix_t A_tunable = oski_CreateMatCSR (ptr, ind, val, num_rows, 

num_cols, SHARE_INPUTMAT, …);
oski_vecview_t x_view = oski_CreateVecView (x, num_cols, 

UNIT_STRIDE);
oski_vecview_t y_view = oski_CreateVecView (y, num_rows, 

UNIT_STRIDE);

/* Step 2: Call tune (with optional hints) */
oski_SetHintMatMult (A_tunable, …, 500);
oski_TuneMat (A_tunable);

/* Compute y = β·y + α·A·x, 500 times */
for( i = 0; i < 500; i++ )

my_matmult( ptr, ind, val, α, x, β, y );
r = ddot (x, y);



How to call OSKI in a “legacy” app

OSKI

int* ptr = …, *ind = …;  double* val = …; /* Matrix A, in CSR format */
double* x = …, *y = …; /* Vectors */

/* Step 1: Create OSKI wrappers */
oski_matrix_t A_tunable = oski_CreateMatCSR (ptr, ind, val, num_rows, 

num_cols, SHARE_INPUTMAT, …);
oski_vecview_t x_view = oski_CreateVecView (x, num_cols, 

UNIT_STRIDE);
oski_vecview_t y_view = oski_CreateVecView (y, num_rows, 

UNIT_STRIDE);

/* Step 2: Call tune (with optional hints) */
oski_SetHintMatMult(A_tunable, …, 500);
oski_TuneMat (A_tunable);

/* Compute y = β·y + α·A·x, 500 times */
for( i = 0; i < 500; i++ )

oski_MatMult (A_tunable, OP_NORMAL, α, x_view, β, y_view);       
// Step 3: Call kernel

r = ddot (x, y);



How the User Calls OSKI: Implicit Tuning

• Ask library to infer workload
– Library profiles all kernel calls
– May periodically re-tune

oski_matrix_t A_tunable = oski_CreateMatCSR( … );
/* … */

for( i = 0; i < 500; i++ ) {

oski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);
oski_TuneMat(A_tunable); /* Ask OSKI to tune */

}



Creating matrix handles
• Create handle, A, from m x n CSR matrix <ptr, ind, val>

A = oski_CreateMatCSR (ptr, ind, val, m, n, copy_mode, n_opts, …)

• copy_mode controls sharing of <ptr, ind, val> arrays
– SHARE_INPUTMAT: User promises not to modify or free arrays, 

except via OSKI’s get/set value calls.
– COPY_INPUTMAT: OSKI must duplicate arrays

• n_opts, …: Specifies semantics of <ptr, ind, val>
– Indexing, e.g., INDEX_ZERO_BASED, INDEX_ONE_BASED, 

INDEX_SORTED, INDEX_REPEATED, INDEX_UNIQUE, …
– Pattern, e.g., MAT_TRI_LOWER, MAT_HERM_FULL, …
– Implicit (not stored) unit-diagonal: MAT_UNIT_DIAG_IMPLICIT

OSKI



Create (multi)vector handles

• Create single column vector
xview = oski_CreateVecView (x, n, incx)

• Create multivector (m n-vectors)
Xview = oski_CreateMultiVecView (X, m, n, 

storage, ldx)

• incx, ldx are “strides” (a la BLAS)
• storage is LAYOUT_ROWMAJ or 

LAYOUT_COLMAJ
OSKI



All matrix/vector-view routines

Routine Description
oski_CreateMat{CSR, CSC} Create handle from CSR or CSC input
oski_{Copy, Destroy}Mat Duplicate or destroy matrix handle
oski_{Get,Set}MatEntry Get/set an existing non-zero value
oski_{Get,Set}MatClique Get/set an existing clique of values
oski_{Get,Set}MatDiagValues Get/set entries along a diagonal
oski_Create{Vec, MultiVec}View Create single- or multi-vector view
oski_{Copy,Destroy}VecView Duplicate or destroy vector-view handle

OSKI



Executing OSKI’s kernels

Routine Description
oski_MatMult Sparse matrix-vector multiply

y β * y + α * op(A) * x
where op(A) in {A, AT, AH}

oski_MatTrisolve Sparse triangular solve
x α * op(T)-1 * x

oski_MatMultAndMatTransMult Independent multiply by A, op(A)
y β * y + α * A * x
z β * z + α * op(A) * w

oski_MatTransMatMult Multiply by A*op(A) or op(A)*A
y β * y + α * op2(A) * x

where op2(A) in {ATA, AAT, AHA, AAH}
oski_MatPowMult Compute {op(A)*x, op(A)2*x, …, op(A)k*x}

OSKI



Providing tuning hints

• Structural (matrix pattern) hints
oski_SetHint (A, hint, hint-args …);
– Example: Matrix has 6 x 6 blocks

• oski_SetHint (A, HINT_SINGLE_BLOCKSIZE, 6, 6);
– Example: Matrix has a nearly structurally symmetric pattern

• oski_SetHint (A, SYMM_PATTERN);
• Workload hints

oski_SetHintMatMult (A, …, num_calls);
oski_SetHintMatTrisolve (A, …, num_calls);
…
– Same calling signature/arguments as corresponding kernel call
– Hints “accumulate”, so you can specify complex workload

OSKI



Tuning

• Must explicitly ask OSKI to tune
status = oski_TuneMat (A);
– status = TUNESTAT_NEW = Did tune
– status = TUNESTAT_AS_IS = Did not tune

• Call marks point where run-time tuning 
occurs
– Handle “A” ~ possible storage overhead for 

new data structure
– Time for call ~ tuning time

OSKI



Getting and applying 
transforms: OSKI-Lua

• Ask OSKI to report tuning applied, or apply custom tuning
xform = oski_GetMatTransforms (A);
oski_SetMatTransforms (A, xform);
– xform encodes tuning transformation as an OSKI-Lua program

• OSKI-Lua: Embedded scripting language w/ small executable 
footprint

OSKI

# In file, “my_xform.txt”
# Compute Afast = P*A*PT using Pinar’s

reordering algorithm
A_fast, P = reorder_TSP(InputMat);

# Split Afast = A1 + A2, where A1 in 2x2 block 
format, A2 in CSR

A1, A2 = A_fast.extract_blocks(2, 2);

return transpose(P)*(A1+A2)*P;

/* In “my_app.c” */
fp = fopen(“my_xform.txt”, “rt”);
fgets(buffer, BUFSIZE, fp);

oski_ApplyMatTransform(A_tunable, 
buffer);

oski_MatMult(A_tunable, …);



Extracting tuning permutations

• A tuning transformation may permute rows and/or cols
– E.g., tuning for SpMV creates A_fast = Pr*A*PcT, 

where multiply by A_fast is faster than multiply by A
– But, every SpMV must permute input/output vecs

• May ask OSKI for A_fast, Pr, Pc to reduce permutations

OSKI

Routine Description
oski_ViewPermutedMat Returns “A_fast”, a matrix 

handle
oski_ViewPermutedMat{Row,Col}Perm Returns permutation handle, 

“Pr”, “Pc”
oski_PermuteVecView Permutes a vector view by a 

given permutation handle



Custom memory allocators and 
error handlers

• Can replace the default memory allocator
– Default: call standard C’s “malloc”, “free”

• Can replace the default error handler
– Default: Prints text message to standard error, but 

does not abort
– Can also get a pointer to the default error handler

• Debugging aid: OSKI_DEBUG_LEVEL
– Set environment variable to integer >= 1 to see what 

OSKI is doing as it executes & tunes
– Messages go to standard errorOSKI



Installing OSKI



What you need to get started

• Requirements
– ANSI C compiler (tested: GNU, Intel, PGI, IBM, Sun, HP)
– POSIX-compliant UNIX environment (grep, sed, awk, …)

• Architecture / OS platforms tested
– x86 / {Linux, FreeBSD, Mac OS X, cygwin}
– IA-64 / Linux
– UltraSparc / Solaris
– PowerPC / {AIX, Mac OS X}

OSKI



What you need to decide about 
before installing or updating

• What precisions?
– {32-bit, 64-bit} indices
– {real, complex} x {single, double}-precision
– Default: 32-bit indices, double-precision real values

• Installation directory?
– “OSKIDIR” in examples

• Static or shared libraries?
– Builds both by default
– Shared libs keep binary footprints much smaller

• Support libraries?
– BLAS, pthreads, PAPI

OSKI



Installing OSKI: Basic steps
(see User’s Guide for details)

• Configure for your platform
configure --prefix=OSKIDIR [options…]

• Compile
make

• Run off-line benchmarks
make benchmarks

• (Optional) Test your build of OSKI
make check

• Install into “OSKIDIR”
make install

• (May take a couple hours, depending on options & disk)
OSKI



How to customize your build

• Set options at configure-time: configure [options]
• List all available options & exit

--help
• Example: In addition to default (32-bit int, real double), 

also build 64-bit int, complex single
--enable-long-scomplex

• Example: Only build 64-bit int, real double
--disable-int-double --enable-long-double

• Example: Set linker flags for your BLAS
--with-blas=“-LBLASDIR -lblas”

OSKI



Where to go for help

OSKI



Where to go for help

• General information: Home page
– bebop.cs.berkeley.edu/oski

• Installation and troubleshooting: User’s 
Guide
– bebop.cs.berkeley.edu/oski/oski-ug.pdf

• Help forums, mailing lists: SourceForge
– sf.net/projects/oski

OSKI
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AMD X2
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– Tuning (x,A,k) → [x,Ax,A2x,…Akx]
– Optimal communication complexity algorithms for  

sparse linear algebra
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Latency Avoiding Parallel Kernel for
[x, Ax, A2x, … , Akx]

• Compute locally dependent entries
needed by nghbrs

• Send data to nghbrs, receive from nghbrs
• Compute remaining locally dependent 

entries
• Wait for receive
• Compute remotely dependent entries
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Parallel Complexity
• Example matrix – “2D mesh”

– x lives on n-by-n mesh
– Partitioned on p½ -by- p½ processor grid
– A has “5 point stencil” (Laplacian)
– Ex: 18-by-18 mesh on 3-by-3 grid

• Cost =  (flops, #words, #messages)
• Cost(conventional algorithm for [x,Ax,…,Akx])

= (9kn2 /p, 4kn / p½ ,  4k )
= ( O(k·volume), O(k·surface), O(k) )

• Cost(new algorithm for [x,Ax,…,Akx])
= (9kn2 /p + 9k2n / p½, 4kn / p½ + 2k2,  8 )
= (O(k·volume + k2·surface), O(k·surface), O(1) ) 

• Latency cost of new algorithm is O(1), optimal

n/p½

n/p½



Optimal Communication Complexity
Algorithms for Sparse Linear Algebra

• Apply to Sparse Iterative Methods for Ax=b
– Use Krylov Subspace Methods like GMRES, CG
– Can we lower the communication costs?

• Latency of communication, for a parallel machine
• Latency and bandwidth, for a memory hierarchy

• Example: GMRES for Ax=b on “2D Mesh”



Minimizing Communication
• What is the cost = (#flops, #words, #mess)  

of k steps of standard GMRES?
GMRES, v1:
for i=1 to k

w = A * v(i-1)
MGS(w, v(0),…,v(i-1))
update v(i), H

endfor
solve LSQ problem with H n/p½

n/p½

• Cost(A * v) = k * (9n2 /p, 4n / p½ ,  4 )
• Cost(MGS) = k2/2 * ( 4n2 /p , log p , log p )
• Total cost ~ Cost( A * v ) + Cost (MGS)
• Can we reduce the latency?



Minimizing Communication
• Cost(GMRES, v1) = Cost(A*v) + Cost(MGS)

• Cost(W) = ( ~ same, ~ same ,  8 )
• Latency cost independent of k – optimal

• Cost (MGS) unchanged
• Can we reduce the latency more?

=  ( 9kn2 /p, 4kn / p½ ,  4k ) + ( 2k2n2 /p , k2 log p / 2 , k2 log p / 2 )

• How much latency cost from A*v can you avoid?  Almost all

GMRES, v2:
W = [ v, Av, A2v, … , Akv ]
[Q,R] = MGS(W)
Build H from R, solve LSQ problem

s = 3



Minimizing Communication
• Cost(GMRES, v2) = Cost(W) + Cost(MGS)

=  ( 9kn2 /p, 4kn / p½ ,  8 ) + ( 2k2n2 /p , k2 log p / 2 , k2 log p / 2 )

• How much latency cost from MGS can you avoid?  Almost all

• Cost(TSQR) = ( ~ same, ~ same ,  log p )
• Latency cost independent of k - optimal

GMRES, v3:
W = [ v, Av, A2v, … , Akv ]
[Q,R] = TSQR(W)  … “Tall Skinny QR”
Build H from R, solve LSQ problem

W = 
W1
W2
W3
W4

R1
R2
R3
R4

R12

R34

R1234



Minimizing Communication
• Cost(GMRES, v2) = Cost(W) + Cost(MGS)

=  ( 9kn2 /p, 4kn / p½ ,  8 ) + ( 2k2n2 /p , k2 log p / 2 , k2 log p / 2 )

• How much latency cost from MGS can you avoid?  Almost all

• Cost(TSQR) = ( ~ same, ~ same ,  log p )
• Oops

GMRES, v3:
W = [ v, Av, A2v, … , Akv ]
[Q,R] = TSQR(W)  … “Tall Skinny QR”
Build H from R, solve LSQ problem

W = 
W1
W2
W3
W4

R1
R2
R3
R4

R12

R34

R1234



Minimizing Communication
• Cost(GMRES, v2) = Cost(W) + Cost(MGS)

=  ( 9kn2 /p, 4kn / p½ ,  8 ) + ( 2k2n2 /p , k2 log p / 2 , k2 log p / 2 )

• How much latency cost from MGS can you avoid?  Almost all

• Cost(TSQR) = ( ~ same, ~ same ,  log p )
• Oops – W from power method, precision lost!

GMRES, v3:
W = [ v, Av, A2v, … , Akv ]
[Q,R] = TSQR(W)  … “Tall Skinny QR”
Build H from R, solve LSQ problem

W = 
W1
W2
W3
W4

R1
R2
R3
R4

R12

R34

R1234



Minimizing Communication
• Cost(GMRES, v3) = Cost(W) + Cost(TSQR)

=  ( 9kn2 /p, 4kn / p½ ,  8 ) + ( 2k2n2 /p , k2 log p / 2 , log p )

• Latency cost independent of k, just log p – optimal
• Oops – W from power method, so precision lost – What to do?

• Use a different polynomial basis
• Not Monomial basis W = [v, Av, A2v, …], instead …
• Newton Basis WN = [v, (A – θ1 I)v , (A – θ2 I)(A – θ1 I)v, …] or
• Chebyshev Basis WC = [v, T1(v), T2(v),  …]





Performance Modeling
• Petascale

– Max # processor =8100
– Memory/processor = 6.25 ·109  words
– Flop time = 2 ·10-12 secs (.5 TFlops/s)
– Latency = 10-5 secs
– 1/Bandwidth = 1.5 ·10-12 secs (.67 TWords/s)

• Should  be 4GB/s = .5 GW/s = 2 e-9 secs
• Grid

– Max # processor = 125
– Memory/processor = 1.2 ·1012 words
– Flop time = 10-13 secs (10 TFlops/s)
– Latency = .1 secs
– 1/Bandwidth = 3 ·10-9 secs (.33 GWords/s)

• Should be (40GB/s / 125 / 8) = 40MWords/s = 25 e-9 secs
• Could be as high as 100 e-9 secs



Modeled Speedup of 2D Mesh, 9pt stencil, on Petascale

With Overlap Without Overlap



Modeled Speedup of 3D Mesh, 27pt stencil, on Petascale

With Overlap Without Overlap



Modeled Speedup of 2D Mesh, 9pt stencil, on Grid

With Overlap Without Overlap



Modeled Speedup of 3D Mesh, 27pt stencil, on Grid

With Overlap Without Overlap



Latency and Bandwidth Avoiding 
Sequential Kernel for [x, Ax, … , Akx]
• Mimic parallel algorithm:

– For i = 1 to #blocks of x
• Load rows of A needed to compute block i of [Ax,…,Akx] 

(including remotely dependent entries)
• Load block i of x and parts of x from neighboring blocks 

needed to compute remotely dependent entries of [Ax,…,Akx] 
• Compute block i of [Ax,…,Akx] 

• #Blocks chosen to fit as much of A and 
[x,Ax,…,Akx] in fast memory as possible
– Double buffering, other optimizations possible

• Optimal in sense that all data moved between 
fast and slow memory ≈once
– 1 + (k·surface/volume) times
– Increase computational intensity k-fold



Modeled Speedup on Clovertown

2D 3D



Measured and Modeled Performance
5.2 GFlop Itanium2, 4GB memory, Disk

1/f= 300MFlops/s,   BWread = 140 MB/s,   BWwrite = 30 MB/s,   disk latency irrelevant

3D mesh, 27-pt stencil, n = 368, p = 64 blocks,

Measured Speedup up to 3.2x (flop time ≈ ½ bandwidth time)



Summary of Optimal Sparse Algorithms
• Tuning and algorithmic design interact
• Can eliminate latency from GMRES, CG, …

maintaining stability
– Ideas go back to Van Rosendale (1983), 

Chronopoulos & Gear (1989), many others, but 
without simultaneous stability & optimality 

• Extends to preconditioned methods
– Kernel becomes [x,Ax,MAx,AMAx,MAMAx,…,(MA)kx]
– But only some preconditioners let us eliminate 

latency, not raise flop count a lot (work in progress)
• Lots of tuning opportunities

– All SpMV techniques, plus choosing k, polynomial in 
kernel, partitioning, overlapping communication and 
computation, …



Minimizing Communication in 
Direct Linear Algebra

• Communication costs of current ScaLAPACK
– LU & QR: O(n log p) messages
– Cholesky: O(n/b log p) messages

• New “LU” and “QR” algorithms
– As few messages as Cholesky
– “QR” returns QR but represented differently
– “LU” equivalent to LU in complexity, stability TBD

• Extends to sparse case



Summary and Conclusions

• Writing high performance code is hard
• Let the computer write it for you

– Dense linear algebra (ATLAS)
– FFTs (FFTW, Spiral)
– Sparse linear algebra (OSKI)

• Need to optimize at a higher level 
(GMRES, not SpMV) to get the most 
benefit


