
OSKI
Autotuning Sparse Matrix Kernels

Jim Demmel
with Katherine Yelick, Rich Vuduc, BEBOP Group

UC Berkeley
23 Aug 2007

Outline

• Motivation for automatic performance
tuning

• Opportunities for speeding up Sparse-
Matrix-Vector-Multiplication (SpMV)

• OSKI – Optimized Sparse Kernel Interface
• Recent results on Multicore
• Optimal Krylov Methods

Outline

• Motivation for automatic performance
tuning

• Opportunities for speeding up Sparse-
Matrix-Vector-Multiplication (SpMV)

• OSKI – Optimized Sparse Kernel Interface
• Recent results on Multicore
• Optimal Krylov Methods

Automatic Performance Tuning

• Writing high performance software is hard
• Ideal: get high fraction of peak performance from

one algorithm
• Reality: Best algorithm (and its implementation) can

depend strongly on the problem, computer
architecture, compiler,…
– Best choice can depend on knowing a lot of

applied mathematics and computer science
– Changes with each new hardware, compiler

release
• How much of this can we teach?
• How much of this can we automate?

Impact of Automatic Performance Tuning

• Widely used in performance tuning of Kernels
– ATLAS (PhiPAC) - www.netlib.org/atlas

• Dense BLAS, now in Matlab, many other releases
– FFTW – www.fftw.org

• Fast Fourier Transform and similar transforms, Wilkinson Software
Prize

– Spiral - www.spiral.net
• Digital Signal Processing

• Communication Collectives (UCB, UTK)
• Rose (LLNL), Bernoulli (Cornell), Telescoping Languages

(Rice), UHFFT (Houston), POET (UTSA), …
• More projects (PERI,TOPS2,CScADS), conferences,

government reports, …

Optimizing blocksizes for mat-mul

Finding a Needle in a Haystack – So Automate

More Challenges
• Increasing parallelism

– From supercomputers to multicore

• Exponentially growing gaps between
– Floating point time << 1/Memory BW << Memory Latency

• Improving 59%/year vs 23%/year vs 5.5%/year
– Floating point time << 1/Network BW << Network Latency

• Improving 59%/year vs 26%/year vs 15%/year
– Sparse matrix operations are Bandwidth and Latency

limited
• Heterogeneity (performance and semantics)
• Asynchrony
• Unreliability

Outline

• Motivation for automatic performance
tuning

• Opportunities for speeding up Sparse-
Matrix-Vector-Multiplication (SpMV)

• OSKI – Optimized Sparse Kernel Interface
• Recent results on Multicore
• Optimal Krylov Methods

A Sparse Matrix You Use Every Day
The Google Matrix (a small section)

A case for sparse kernel
autotuning

SpMV crash course:
Compressed Sparse Row (CSR)

storage

• Matrix-vector multiply: y = A*x
– for all A(i, j): y(i) = y(i) + A(i, j) * x(j)

Dominant cost: Compress?
Irregular, indirect:
x[ind[…]]
“Regularize?”

NASA structural analysis matrix

• One index
per block

• Memory
accesses
minimized by
storing 8x8
dense blocks

NASA matrix (zoom in)

Speedups on Itanium 2: The
Need for Search

Reference

Best: 4x2

Mflop/s

Mflop/s

SpMV Performance—raefsky3

Register Profiles: IBM and Intel
IA-64

Power3 - 17% Power4 - 16%

Itanium 2 - 33%Itanium 1 - 8%

252 Mflop/s

122 Mflop/s

820 Mflop/s

459 Mflop/s

247 Mflop/s

107 Mflop/s

1.2 Gflop/s

190 Mflop/s

Another tuning challenge

• More complicated
non-zero structure
in general

• N = 16614
• NNZ = 1.1M

Zoom in to top corner

• More complicated
non-zero structure
in general

• N = 16614
• NNZ = 1.1M

3x3 blocks look natural, but…

3x3 blocks create a lot of “fill-in”

• Need to store explicit
zeros

• 50% more entries
• 1.5x as much arithmetic
• 1.5x as much memory

traffic

Takes 1.5x less time!

• Flop rate is (1.5)2 = 2.25x
higher on Pentium III

Automatic Selection of
Register Block Size (r x c)

• Off-line benchmark
– Precompute Mflops(r,c) using dense A for

each r x c
– Once per machine/architecture

• Run-time “search”
– Sample A to estimate Fill(r,c) for each r x c

• Run-time heuristic model
– Choose r, c to minimize

time ~ Fill(r,c) / Mflops(r,c)

Summary of Other Performance
Optimizations

• Optimizations for SpMV
– Register blocking (RB): up to 4x over CSR
– Variable block splitting: 1.8x over RB
– Diagonals: 2x over CSR
– Reordering to create dense structure + splitting: 2x over CSR
– Symmetry: 2.6x over RB
– Cache blocking: 2.8x over CSR
– Multiple vectors (SpMM): 7x over CSR
– And combinations…

• Sparse triangular solve
– Hybrid sparse/dense data structure: 1.8x over CSR

• Higher-level kernels
– AAT*x, ATA*x: 4x over CSR, 1.8x over RB
– A2*x: 2x over CSR, 1.5x over RB

Split A = A1 + A2 + …, and tune Ai independently

2.1×
over CSR

1.8×
over RB

Example: Row-segmented diagonals

2×
over CSR

Dense sub-triangles for triangular solve

Dense trailing triangle:
dim=2268, 20% of total nz

Can be as high as 90+%!

• Solve Tx = b for x, T triangular
• Raefsky4 (structural problem) +

SuperLU + colmmd
• N=19779, nnz=12.6 M

• Idea: Interleave multiplication by A, AT

• Combine with register optimizations: ai = r
× c block row

() ∑
=

=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
n

i

T
ii

T
n

T

n
T xaax

a

a
aaxAA

1

1

1)(ML

Cache optimizations for AAT·x

dot product“axpy”

OSKI

OSKI tunes for workloads
• Bi-conjugate gradients - equal mix of A·x and AT·y

– 3×1: A·x, AT·y = 1053, 343 Mflop/s 517 Mflop/s
– 3×3: A·x, AT·y = 806, 826 Mflop/s 816 Mflop/s

• Higher-level operation - (A·x, AT·y) kernel
– 3×1: 757 Mflop/s
– 3×3: 1400 Mflop/s

• Workload tuning
– Evaluate weighted sums of empirical models
– Dynamic programming to evaluate alternatives

Potential Impact on Applications:
Omega3P

• Application: accelerator cavity design [Ko]
• Relevant optimization techniques

– Symmetric storage
– Register blocking
– Reordering

• Reverse Cuthill-McKee ordering to reduce bandwidth
• Traveling Salesman Problem-based ordering to create blocks

– Nodes = columns of A
– Weights(u, v) = # nonzeros u, v have in common
– Tour = ordering of columns
– Choose maximum weight tour
– See [Pinar & Heath ’97]

Source: Accelerator Cavity Design Problem (Ko via Husbands)

100x100 Submatrix Along Diagonal

Post-RCM Reordering

Before: Green + Red
After: Green + Blue

“Microscopic” Effect of RCM Reordering

“Microscopic” Effect of Combined RCM+TSP Reordering

Before: Green + Red
After: Green + Blue

(Omega3P)

Outline

• Motivation for automatic performance
tuning

• Opportunities for speeding up Sparse-
Matrix-Vector-Multiplication (SpMV)

• OSKI – Optimized Sparse Kernel Interface
• Recent results on Multicore
• Optimal Krylov Methods

See: bebop.cs.berkeley.edu

Optimized Sparse Kernel
Interface: OSKI

• Provides sparse kernels automatically tuned for user’s
function, matrix & machine (work in progress)
– Many functions, optimizations
– Searches over large set of possible data structures and algorithms
– Some search at install time, some at run-time
– Performance models to prune search
– Learns from past optimizations
– Hides details from user – BLAS-style interface

• For “advanced” users & solver library writers
– OSKI-PETSc; Trilinos (Heroux)
– Adopted by ClearShape, Inc. for shipping product (2× speedup)

• Bebop.cs.berkeley.edu
– Joint with Katherine Yelick, Rich Vuduc

How OSKI tunes (Overview)

OSKI

Library Install-Time (offline) Application Run-Time

Benchmark
data

1. Build for
Target
Arch.

2. Benchmark

Generated
code

variants

Heuristic
models

1. Evaluate
Models

Workload
from program

monitoring History
Matrix

2. Select
Data Struct.

& Code

To user:
Matrix handle
for kernel
calls

Calling OSKI

For a fully-working example, see
Section 3 of the OSKI User’s Guide.

OSKI

Initializing OSKI

• Must initialize once per run
oski_Init ();

• Optionally, “close” once per run
oski_Close ();

OSKI

How to call OSKI in a “legacy” app

OSKI

int* ptr = …, *ind = …; double* val = …; /* Matrix A, in CSR format */
double* x = …, *y = …; /* Dense BLAS-compatible vectors */

/* Compute y = β·y + α·A·x, 500 times */
for(i = 0; i < 500; i++)

my_matmult (ptr, ind, val, α, x, β, y);
r = ddot (x, y); /* Some dense BLAS op on vectors */

How to call OSKI in a “legacy” app

OSKI

int* ptr = …, *ind = …; double* val = …; /* Matrix A, in CSR format */
double* x = …, *y = …; /* Vectors */

/* Step 1: Create OSKI wrappers */
oski_matrix_t A_tunable = oski_CreateMatCSR (ptr, ind, val, num_rows,

num_cols, SHARE_INPUTMAT, …);
oski_vecview_t x_view = oski_CreateVecView (x, num_cols,

UNIT_STRIDE);
oski_vecview_t y_view = oski_CreateVecView (y, num_rows,

UNIT_STRIDE);

/* Compute y = β·y + α·A·x, 500 times */
for(i = 0; i < 500; i++)

my_matmult (ptr, ind, val, α, x, β, y);
r = ddot (x, y);

How to call OSKI in a “legacy” app

OSKI

int* ptr = …, *ind = …; double* val = …; /* Matrix A, in CSR format */
double* x = …, *y = …; /* Vectors */

/* Step 1: Create OSKI wrappers */
oski_matrix_t A_tunable = oski_CreateMatCSR (ptr, ind, val, num_rows,

num_cols, SHARE_INPUTMAT, …);
oski_vecview_t x_view = oski_CreateVecView (x, num_cols,

UNIT_STRIDE);
oski_vecview_t y_view = oski_CreateVecView (y, num_rows,

UNIT_STRIDE);

/* Step 2: Call tune (with optional hints) */
oski_SetHintMatMult (A_tunable, …, 500);
oski_TuneMat (A_tunable);

/* Compute y = β·y + α·A·x, 500 times */
for(i = 0; i < 500; i++)

my_matmult(ptr, ind, val, α, x, β, y);
r = ddot (x, y);

How to call OSKI in a “legacy” app

OSKI

int* ptr = …, *ind = …; double* val = …; /* Matrix A, in CSR format */
double* x = …, *y = …; /* Vectors */

/* Step 1: Create OSKI wrappers */
oski_matrix_t A_tunable = oski_CreateMatCSR (ptr, ind, val, num_rows,

num_cols, SHARE_INPUTMAT, …);
oski_vecview_t x_view = oski_CreateVecView (x, num_cols,

UNIT_STRIDE);
oski_vecview_t y_view = oski_CreateVecView (y, num_rows,

UNIT_STRIDE);

/* Step 2: Call tune (with optional hints) */
oski_SetHintMatMult(A_tunable, …, 500);
oski_TuneMat (A_tunable);

/* Compute y = β·y + α·A·x, 500 times */
for(i = 0; i < 500; i++)

oski_MatMult (A_tunable, OP_NORMAL, α, x_view, β, y_view);
// Step 3: Call kernel

r = ddot (x, y);

How the User Calls OSKI: Implicit Tuning

• Ask library to infer workload
– Library profiles all kernel calls
– May periodically re-tune

oski_matrix_t A_tunable = oski_CreateMatCSR(…);
/* … */

for(i = 0; i < 500; i++) {

oski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);
oski_TuneMat(A_tunable); /* Ask OSKI to tune */

}

Creating matrix handles
• Create handle, A, from m x n CSR matrix <ptr, ind, val>

A = oski_CreateMatCSR (ptr, ind, val, m, n, copy_mode, n_opts, …)

• copy_mode controls sharing of <ptr, ind, val> arrays
– SHARE_INPUTMAT: User promises not to modify or free arrays,

except via OSKI’s get/set value calls.
– COPY_INPUTMAT: OSKI must duplicate arrays

• n_opts, …: Specifies semantics of <ptr, ind, val>
– Indexing, e.g., INDEX_ZERO_BASED, INDEX_ONE_BASED,

INDEX_SORTED, INDEX_REPEATED, INDEX_UNIQUE, …
– Pattern, e.g., MAT_TRI_LOWER, MAT_HERM_FULL, …
– Implicit (not stored) unit-diagonal: MAT_UNIT_DIAG_IMPLICIT

OSKI

Create (multi)vector handles

• Create single column vector
xview = oski_CreateVecView (x, n, incx)

• Create multivector (m n-vectors)
Xview = oski_CreateMultiVecView (X, m, n,

storage, ldx)

• incx, ldx are “strides” (a la BLAS)
• storage is LAYOUT_ROWMAJ or

LAYOUT_COLMAJ
OSKI

All matrix/vector-view routines

Routine Description
oski_CreateMat{CSR, CSC} Create handle from CSR or CSC input
oski_{Copy, Destroy}Mat Duplicate or destroy matrix handle
oski_{Get,Set}MatEntry Get/set an existing non-zero value
oski_{Get,Set}MatClique Get/set an existing clique of values
oski_{Get,Set}MatDiagValues Get/set entries along a diagonal
oski_Create{Vec, MultiVec}View Create single- or multi-vector view
oski_{Copy,Destroy}VecView Duplicate or destroy vector-view handle

OSKI

Executing OSKI’s kernels

Routine Description
oski_MatMult Sparse matrix-vector multiply

y β * y + α * op(A) * x
where op(A) in {A, AT, AH}

oski_MatTrisolve Sparse triangular solve
x α * op(T)-1 * x

oski_MatMultAndMatTransMult Independent multiply by A, op(A)
y β * y + α * A * x
z β * z + α * op(A) * w

oski_MatTransMatMult Multiply by A*op(A) or op(A)*A
y β * y + α * op2(A) * x

where op2(A) in {ATA, AAT, AHA, AAH}
oski_MatPowMult Compute {op(A)*x, op(A)2*x, …, op(A)k*x}

OSKI

Providing tuning hints

• Structural (matrix pattern) hints
oski_SetHint (A, hint, hint-args …);
– Example: Matrix has 6 x 6 blocks

• oski_SetHint (A, HINT_SINGLE_BLOCKSIZE, 6, 6);
– Example: Matrix has a nearly structurally symmetric pattern

• oski_SetHint (A, SYMM_PATTERN);
• Workload hints

oski_SetHintMatMult (A, …, num_calls);
oski_SetHintMatTrisolve (A, …, num_calls);
…
– Same calling signature/arguments as corresponding kernel call
– Hints “accumulate”, so you can specify complex workload

OSKI

Tuning

• Must explicitly ask OSKI to tune
status = oski_TuneMat (A);
– status = TUNESTAT_NEW = Did tune
– status = TUNESTAT_AS_IS = Did not tune

• Call marks point where run-time tuning
occurs
– Handle “A” ~ possible storage overhead for

new data structure
– Time for call ~ tuning time

OSKI

Getting and applying
transforms: OSKI-Lua

• Ask OSKI to report tuning applied, or apply custom tuning
xform = oski_GetMatTransforms (A);
oski_SetMatTransforms (A, xform);
– xform encodes tuning transformation as an OSKI-Lua program

• OSKI-Lua: Embedded scripting language w/ small executable
footprint

OSKI

In file, “my_xform.txt”
Compute Afast = P*A*PT using Pinar’s

reordering algorithm
A_fast, P = reorder_TSP(InputMat);

Split Afast = A1 + A2, where A1 in 2x2 block
format, A2 in CSR

A1, A2 = A_fast.extract_blocks(2, 2);

return transpose(P)*(A1+A2)*P;

/* In “my_app.c” */
fp = fopen(“my_xform.txt”, “rt”);
fgets(buffer, BUFSIZE, fp);

oski_ApplyMatTransform(A_tunable,
buffer);

oski_MatMult(A_tunable, …);

Extracting tuning permutations

• A tuning transformation may permute rows and/or cols
– E.g., tuning for SpMV creates A_fast = Pr*A*PcT,

where multiply by A_fast is faster than multiply by A
– But, every SpMV must permute input/output vecs

• May ask OSKI for A_fast, Pr, Pc to reduce permutations

OSKI

Routine Description
oski_ViewPermutedMat Returns “A_fast”, a matrix

handle
oski_ViewPermutedMat{Row,Col}Perm Returns permutation handle,

“Pr”, “Pc”
oski_PermuteVecView Permutes a vector view by a

given permutation handle

Custom memory allocators and
error handlers

• Can replace the default memory allocator
– Default: call standard C’s “malloc”, “free”

• Can replace the default error handler
– Default: Prints text message to standard error, but

does not abort
– Can also get a pointer to the default error handler

• Debugging aid: OSKI_DEBUG_LEVEL
– Set environment variable to integer >= 1 to see what

OSKI is doing as it executes & tunes
– Messages go to standard errorOSKI

Installing OSKI

What you need to get started

• Requirements
– ANSI C compiler (tested: GNU, Intel, PGI, IBM, Sun, HP)
– POSIX-compliant UNIX environment (grep, sed, awk, …)

• Architecture / OS platforms tested
– x86 / {Linux, FreeBSD, Mac OS X, cygwin}
– IA-64 / Linux
– UltraSparc / Solaris
– PowerPC / {AIX, Mac OS X}

OSKI

What you need to decide about
before installing or updating

• What precisions?
– {32-bit, 64-bit} indices
– {real, complex} x {single, double}-precision
– Default: 32-bit indices, double-precision real values

• Installation directory?
– “OSKIDIR” in examples

• Static or shared libraries?
– Builds both by default
– Shared libs keep binary footprints much smaller

• Support libraries?
– BLAS, pthreads, PAPI

OSKI

Installing OSKI: Basic steps
(see User’s Guide for details)

• Configure for your platform
configure --prefix=OSKIDIR [options…]

• Compile
make

• Run off-line benchmarks
make benchmarks

• (Optional) Test your build of OSKI
make check

• Install into “OSKIDIR”
make install

• (May take a couple hours, depending on options & disk)
OSKI

How to customize your build

• Set options at configure-time: configure [options]
• List all available options & exit

--help
• Example: In addition to default (32-bit int, real double),

also build 64-bit int, complex single
--enable-long-scomplex

• Example: Only build 64-bit int, real double
--disable-int-double --enable-long-double

• Example: Set linker flags for your BLAS
--with-blas=“-LBLASDIR -lblas”

OSKI

Where to go for help

OSKI

Where to go for help

• General information: Home page
– bebop.cs.berkeley.edu/oski

• Installation and troubleshooting: User’s
Guide
– bebop.cs.berkeley.edu/oski/oski-ug.pdf

• Help forums, mailing lists: SourceForge
– sf.net/projects/oski

OSKI

Outline

• Motivation for automatic performance
tuning

• Opportunities for speeding up Sparse-
Matrix-Vector-Multiplication (SpMV)

• OSKI – Optimized Sparse Kernel Interface
• Recent results on Multicore
• Optimal Krylov Methods

Clovertown

0.0

0.5

1.0

1.5

2.0

2.5

D
en

se

P
ro

te
in

FE
M

-S
p
h
r

FE
M

-C
an

t

Tu
n
n
el

FE
M

-H
ar

Q
C
D

FE
M

-S
h
ip

Ec
on

om

Ep
id

em

FE
M

-A
cc

el

C
ir

cu
it

W
eb

b
as

e

LP

M
ed

ia
n

G
F
lo

p
/

s

1 Core - Naïve 1 Core[PF]

1 Core[PF,RB] 1 Core[PF,RB,CB]

2 Core[*] 4 Core[*]

2 Socket x4 Core[*] OSKI

OSKI-PETSc

SpMV on Intel Clovertown

To appear in SC07

AMD X2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

se

P
ro

te
in

FE
M

-S
p
h
r

FE
M

-C
an

t

Tu
n
n
el

FE
M

-H
ar

Q
C
D

FE
M

-S
h
ip

Ec
on

om

Ep
id

em

FE
M

-A
cc

el

C
ir

cu
it

W
eb

b
as

e

LP

M
ed

ia
n

G
F
lo

p
/

s

Dual Socket x 2 Core [*]
2 Core[*]
1 Core[PF,RB,CB]
1 Core[PF,RB]
1 Core[PF]
1 Core - Naïve
OSKI-PETSc
OSKI

SpMV on AMD Opteron

To appear in SC07

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

D
en

se

Pr
o
te

in

FE
M

-S
p
h
r

FE
M

-C
an

t

T
u
n
n
el

FE
M

-H
ar

Q
C
D

FE
M

-S
h
ip

E
co

n
o
m

E
p
id

em

FE
M

-A
cc

el

C
ir
cu

it

W
eb

b
as

e LP

M
ed

ia
n

G
F
lo

p
/

s

1 SPE 6 SPEs 8 SPEs 16 SPEs IJPP, 8SPEs (25.6GB/s)*(true flop:byte)

SpMV on Cell

Outline

• Motivation for automatic performance
tuning

• Opportunities for speeding up Sparse-
Matrix-Vector-Multiplication (SpMV)

• OSKI – Optimized Sparse Kernel Interface
• Recent results on Multicore
• Optimal Krylov Methods

Outline

• Motivation for automatic performance tuning
• Opportunities for speeding up Sparse-Matrix-

Vector-Multiplication (SpMV)
• OSKI – Optimized Sparse Kernel Interface
• Recent results on Multicore
• Optimal Krylov Methods

– Tuning (x,A,k) → [x,Ax,A2x,…Akx]
– Optimal communication complexity algorithms for

sparse linear algebra

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Local Dependencies for k=8

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Locally Dependent Entries for [x,Ax,…,A8x], A tridiagonal

Can be computed without communication
k=8 fold reuse of A

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Type (1) Remote Dependencies for k=8

Remotely Dependent Entries for [x,Ax,…,A8x], A tridiagonal

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

One message to get data needed to compute remotely dependent entries, not k=8
Price: redundant work

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Type (2) Remote Dependencies for k=8

Fewer Remotely Dependent Entries for [x,Ax,…,A8x], A tridiagonal

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Reduce redundant work by half

Latency Avoiding Parallel Kernel for
[x, Ax, A2x, … , Akx]

• Compute locally dependent entries
needed by nghbrs

• Send data to nghbrs, receive from nghbrs
• Compute remaining locally dependent

entries
• Wait for receive
• Compute remotely dependent entries

−5

0

5

10

15

−5

0

5

10

15

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Remote dependencies for Approach (2) to 2D mesh with 5 pt stencil, 3D view

Parallel Complexity
• Example matrix – “2D mesh”

– x lives on n-by-n mesh
– Partitioned on p½ -by- p½ processor grid
– A has “5 point stencil” (Laplacian)
– Ex: 18-by-18 mesh on 3-by-3 grid

• Cost = (flops, #words, #messages)
• Cost(conventional algorithm for [x,Ax,…,Akx])

= (9kn2 /p, 4kn / p½ , 4k)
= (O(k·volume), O(k·surface), O(k))

• Cost(new algorithm for [x,Ax,…,Akx])
= (9kn2 /p + 9k2n / p½, 4kn / p½ + 2k2, 8)
= (O(k·volume + k2·surface), O(k·surface), O(1))

• Latency cost of new algorithm is O(1), optimal

n/p½

n/p½

Optimal Communication Complexity
Algorithms for Sparse Linear Algebra

• Apply to Sparse Iterative Methods for Ax=b
– Use Krylov Subspace Methods like GMRES, CG
– Can we lower the communication costs?

• Latency of communication, for a parallel machine
• Latency and bandwidth, for a memory hierarchy

• Example: GMRES for Ax=b on “2D Mesh”

Minimizing Communication
• What is the cost = (#flops, #words, #mess)

of k steps of standard GMRES?
GMRES, v1:
for i=1 to k

w = A * v(i-1)
MGS(w, v(0),…,v(i-1))
update v(i), H

endfor
solve LSQ problem with H n/p½

n/p½

• Cost(A * v) = k * (9n2 /p, 4n / p½ , 4)
• Cost(MGS) = k2/2 * (4n2 /p , log p , log p)
• Total cost ~ Cost(A * v) + Cost (MGS)
• Can we reduce the latency?

Minimizing Communication
• Cost(GMRES, v1) = Cost(A*v) + Cost(MGS)

• Cost(W) = (~ same, ~ same , 8)
• Latency cost independent of k – optimal

• Cost (MGS) unchanged
• Can we reduce the latency more?

= (9kn2 /p, 4kn / p½ , 4k) + (2k2n2 /p , k2 log p / 2 , k2 log p / 2)

• How much latency cost from A*v can you avoid? Almost all

GMRES, v2:
W = [v, Av, A2v, … , Akv]
[Q,R] = MGS(W)
Build H from R, solve LSQ problem

s = 3

Minimizing Communication
• Cost(GMRES, v2) = Cost(W) + Cost(MGS)

= (9kn2 /p, 4kn / p½ , 8) + (2k2n2 /p , k2 log p / 2 , k2 log p / 2)

• How much latency cost from MGS can you avoid? Almost all

• Cost(TSQR) = (~ same, ~ same , log p)
• Latency cost independent of k - optimal

GMRES, v3:
W = [v, Av, A2v, … , Akv]
[Q,R] = TSQR(W) … “Tall Skinny QR”
Build H from R, solve LSQ problem

W =
W1
W2
W3
W4

R1
R2
R3
R4

R12

R34

R1234

Minimizing Communication
• Cost(GMRES, v2) = Cost(W) + Cost(MGS)

= (9kn2 /p, 4kn / p½ , 8) + (2k2n2 /p , k2 log p / 2 , k2 log p / 2)

• How much latency cost from MGS can you avoid? Almost all

• Cost(TSQR) = (~ same, ~ same , log p)
• Oops

GMRES, v3:
W = [v, Av, A2v, … , Akv]
[Q,R] = TSQR(W) … “Tall Skinny QR”
Build H from R, solve LSQ problem

W =
W1
W2
W3
W4

R1
R2
R3
R4

R12

R34

R1234

Minimizing Communication
• Cost(GMRES, v2) = Cost(W) + Cost(MGS)

= (9kn2 /p, 4kn / p½ , 8) + (2k2n2 /p , k2 log p / 2 , k2 log p / 2)

• How much latency cost from MGS can you avoid? Almost all

• Cost(TSQR) = (~ same, ~ same , log p)
• Oops – W from power method, precision lost!

GMRES, v3:
W = [v, Av, A2v, … , Akv]
[Q,R] = TSQR(W) … “Tall Skinny QR”
Build H from R, solve LSQ problem

W =
W1
W2
W3
W4

R1
R2
R3
R4

R12

R34

R1234

Minimizing Communication
• Cost(GMRES, v3) = Cost(W) + Cost(TSQR)

= (9kn2 /p, 4kn / p½ , 8) + (2k2n2 /p , k2 log p / 2 , log p)

• Latency cost independent of k, just log p – optimal
• Oops – W from power method, so precision lost – What to do?

• Use a different polynomial basis
• Not Monomial basis W = [v, Av, A2v, …], instead …
• Newton Basis WN = [v, (A – θ1 I)v , (A – θ2 I)(A – θ1 I)v, …] or
• Chebyshev Basis WC = [v, T1(v), T2(v), …]

Performance Modeling
• Petascale

– Max # processor =8100
– Memory/processor = 6.25 ·109 words
– Flop time = 2 ·10-12 secs (.5 TFlops/s)
– Latency = 10-5 secs
– 1/Bandwidth = 1.5 ·10-12 secs (.67 TWords/s)

• Should be 4GB/s = .5 GW/s = 2 e-9 secs
• Grid

– Max # processor = 125
– Memory/processor = 1.2 ·1012 words
– Flop time = 10-13 secs (10 TFlops/s)
– Latency = .1 secs
– 1/Bandwidth = 3 ·10-9 secs (.33 GWords/s)

• Should be (40GB/s / 125 / 8) = 40MWords/s = 25 e-9 secs
• Could be as high as 100 e-9 secs

Modeled Speedup of 2D Mesh, 9pt stencil, on Petascale

With Overlap Without Overlap

Modeled Speedup of 3D Mesh, 27pt stencil, on Petascale

With Overlap Without Overlap

Modeled Speedup of 2D Mesh, 9pt stencil, on Grid

With Overlap Without Overlap

Modeled Speedup of 3D Mesh, 27pt stencil, on Grid

With Overlap Without Overlap

Latency and Bandwidth Avoiding
Sequential Kernel for [x, Ax, … , Akx]
• Mimic parallel algorithm:

– For i = 1 to #blocks of x
• Load rows of A needed to compute block i of [Ax,…,Akx]

(including remotely dependent entries)
• Load block i of x and parts of x from neighboring blocks

needed to compute remotely dependent entries of [Ax,…,Akx]
• Compute block i of [Ax,…,Akx]

• #Blocks chosen to fit as much of A and
[x,Ax,…,Akx] in fast memory as possible
– Double buffering, other optimizations possible

• Optimal in sense that all data moved between
fast and slow memory ≈once
– 1 + (k·surface/volume) times
– Increase computational intensity k-fold

Modeled Speedup on Clovertown

2D 3D

Measured and Modeled Performance
5.2 GFlop Itanium2, 4GB memory, Disk

1/f= 300MFlops/s, BWread = 140 MB/s, BWwrite = 30 MB/s, disk latency irrelevant

3D mesh, 27-pt stencil, n = 368, p = 64 blocks,

Measured Speedup up to 3.2x (flop time ≈ ½ bandwidth time)

Summary of Optimal Sparse Algorithms
• Tuning and algorithmic design interact
• Can eliminate latency from GMRES, CG, …

maintaining stability
– Ideas go back to Van Rosendale (1983),

Chronopoulos & Gear (1989), many others, but
without simultaneous stability & optimality

• Extends to preconditioned methods
– Kernel becomes [x,Ax,MAx,AMAx,MAMAx,…,(MA)kx]
– But only some preconditioners let us eliminate

latency, not raise flop count a lot (work in progress)
• Lots of tuning opportunities

– All SpMV techniques, plus choosing k, polynomial in
kernel, partitioning, overlapping communication and
computation, …

Minimizing Communication in
Direct Linear Algebra

• Communication costs of current ScaLAPACK
– LU & QR: O(n log p) messages
– Cholesky: O(n/b log p) messages

• New “LU” and “QR” algorithms
– As few messages as Cholesky
– “QR” returns QR but represented differently
– “LU” equivalent to LU in complexity, stability TBD

• Extends to sparse case

Summary and Conclusions

• Writing high performance code is hard
• Let the computer write it for you

– Dense linear algebra (ATLAS)
– FFTs (FFTW, Spiral)
– Sparse linear algebra (OSKI)

• Need to optimize at a higher level
(GMRES, not SpMV) to get the most
benefit

