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Plan of presentation
Introduce solver software infrastructure and 
software philosophy of TOPS (“Towards Optimal 
Petascale Simulations”) project

one of four “enabling technology” centers in the “Scientific 
Discovery through Advanced Computing” (SciDAC) 
initiative of the U.S. Department of Energy 

Peek at the algorithmic motivation and roots
definitions of scalability
two families of PDE-based simulation techniques that will 
not scale, and why
a family of techniques that will (for multirate problems 
with exploitable scale separation)

Illustrate collaborations in support of the 
international ITER project
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The TOPS “Center for Enabling Technology”
spans 4 labs & 5 universities

Towards Optimal Petascale Simulations

Mission: enable scientists and engineers to take full advantage of 
petascale hardware by overcoming the scalability bottlenecks of 
traditional solvers, and assist users to move beyond “one-off”
simulations, to validation and optimization 

Columbia University University of Colorado University of Texas
University of California 

at San Diego

Lawrence Livermore 
National Laboratory

Sandia National Laboratories
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TOPS software has taken applications to the 
architectural leading edge

TOPS software is at the 
heart of three Gordon Bell 
“Special” Prizes 1999 

fluids
2003 

seismic
2004 

mechanics

Scales to the edge of 
BlueGene/L (131,072 
processors, 2B unknowns)

0

5

10

15

20

0 50000 100000

2B dofs

15.6K dofs

After new coarsening 
algorithm (red), 
nearly flat scaled 
speedup for 
Algebraic Multigrid

# processors

tim
e

C-old

C-new

Enabled numerous physics 
attainments in SciDAC-1
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Prototype shape optimization capability Scalable solution algorithm for zero quark mass, fine lattices

~5X speedup of  
plasma fusion codes 
through linear solver 
replacement – like 
providing “next 
generation” computer

Re part of “instanton” Im part of “instanton”
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ACTS software stack supported by TOPS

TOPS-1: Hypre, PETSc, SUNDIALS, 
SuperLU, TAO 
TOPS-2: the above five, plus, soon  Trilinos
This is about half of the ACTS software 
presented at this year’s tutorial

The primary role of this talk is not to teach particulars about the software, but to 
convey two aspects of the SciDAC philosophy: 

the idea of a software toolchain

some of the potential of cross-disciplinary collaboration between the “apps”
community and the “enabling technology” community
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Some TOPS talks @ ICIAM 2007

Dobrian               Hu               Pothen            Dongarra           Moré

U. Yang          C. Yang          Brannick              Cai    Serban

Li                 Knepley            Norris             Widlund          Falgout



ACTS 2007

Only with optimal complexity solvers are scalable 
architectures practical for applications

Compare with Moore’s Law: 
Over 36 years, processor architecture 
goes through 24 “doubling periods”
Algorithms produce an equal factor 
of speedup on a small problem; much 
more on a larger problem

year

relative 
speedup

16 million 
speedup 

from each∇2u=f 64

64 64
Consider, for example: 

Poisson’s equation in a 3D 
domain
Solve by “best method 
available” over a span of 
1948 to 1984 (36 years)

Given, for example: 
a “physics” phase that scales 
as O(N)
a “solver” phase that scales 
as O(N3/2)
computation is almost all 
solver after several doublings
Optimal O(N) solver saves 
the computational cycles for 
the physics

Solver takes 
50% time on 
64 procs 0
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Solver
Physics

Weak scaling limit, assuming efficiency of 
100%  in both physics and solver phases

Processor number & relative problem size

O(N3/2) method 
on 64K procs

Algorithmic and 
architectural 

advances work 
together!

O(N) method 
on 64K procs
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Reminder: solvers evolve underneath “Ax=b”
Advances in algorithmic efficiency rival advances in 
hardware architecture
Consider Poisson’s equation on a cube of size N=n3

If  n=64, this implies an overall reduction in flops of 
~16 million

n3n3BrandtFull MG1984

n3.5 log nn3ReidCG1971

n4 log nn3YoungOptimal SOR1950

n7n5Von Neumann & 
Goldstine

GE (banded)1947

FlopsStorage ReferenceMethodYear

∇2u=f 64

64 64

*Six months is reduced to 1 second

*



ANL’s IBM BlueGene/P: 72K quad-core 
procs w/ 2 FMADD @ 850 MHz              
= 1.008 Pflop/s

13.6 GF/s
8 MB EDRAM

4 processors

1 chip

13.6 GF/s
2 GB DDRAM

32 compute cards

435 GF/s
64 GB 

32 node cards

72 racks

1 PF/s
144 TB 

Rack

System

Node Card

Compute Card

Chip

14 TF/s
2 TB 

Thread-concurrency: 288K 
(or 294,912 processors)

On the floor at Argonne 
National Laboratory by 
early 2009
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Building platforms is the “easy” part

Algorithms must be
highly concurrent and straightforward to load balance
latency tolerant
cache friendly (good temporal and spatial locality)
highly scalable (in the sense of convergence)

Domain decomposition “natural” for all of these
Weak scaling possible on a per iteration basis, despite 
Amdahl’s Law under typical mesh refinement for multiscale 
problems, thanks to surface-to-volume scaling of 
communication-to-computation
Still need attention to number of iterations, which focuses 
attention on multilevel algorithms
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SciDAC customer applications 
requiring scalable solvers

Plasma fusion 
Poisson problems
coupled nonlinear systems within a 
single “physics” domain (e.g., MHD)
nonlinear coupling of multiple physics 
codes

Accelerator design
Maxwell eigenproblems
shape optimization subject to PDE 
constraints

Porous media flow
div-grad Darcy problems

Quantum chromodynamics 
Dirac operator inversions

Quantum chemistry 
generalized eigenproblems

Physicists want to concentrate on 
physics instead of solvers

express solver tasks at a level of 
mathematical abstraction
exploit state-of-the-art solvers as these 
evolve under the interface
run same code on laptops (on travel), 
low-cost unmetered clusters (at work), 
and on unique shared national 
resources

Ordered goals for TOPS (need them 
all, in this order)

usability and robustness
portability
algorithmic efficiency (optimality) 
and implementation efficiency (within 
a processor and in parallel)
algorithmic optimality and software 
stability
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Large-scale simulation  in SciDAC
Applications-driven

motivation is from applications to 
enabling technologies
applications expose challenges, 
enabling technologies respond

Enabling technologies-
intensive

in many cases, the application 
agenda is well-defined 
architecture, algorithms, and 
software represent bottlenecks

Most worthwhile development 
may be at the interface

CS

Math

Applications
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Hardware Infrastructure
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Applications

Role of scientific software engineering in 
our scientific simulation era

scientific models

numerical algorithms

computer architecture

scientific software engineering

“Computational science is undergoing a phase transition.” – D. Hitchcock, DOE

(dates are symbolic)

1686

1947

1976

1992
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Challenges for software designers

The old challenge: 
Increase functionality and capability for a small number of 

users who are expert in the domain of the software

A new challenge:
Increase ease of use (for correctness and efficiency) for a 

large number of users who are expert in something else
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Design principle: multiple layers

Top layer (all users)
Abstract interface featuring language of application domain, hiding 
details, with conservative parameter defaults
Robustness, correctness, ease of use

Middle layers (experienced users)
Rich collection of state-of-the-art methods and data structures, 
exposed upon demand, highly configurable
Capability, algorithmic efficiency, extensibility, composability, 
comprehensibility of performance and resource use

Bottom layer (developers)
Support for variety of execution environments
Portability, implementation efficiency



ACTS 2007

What users want in math software
Develop code “without having to make bets”

accomplish certain abstract mathematical tasks
stay agnostic about particular solution methods and codes
run everywhere: laptops (on travel), low-cost unmetered clusters (at 
work), and unique shared national resources

Ordered goals (need them all for production use)
usability and robustness
portability
algorithmic efficiency (optimality) and implementation efficiency 
(within a processor and in parallel)

Algorithmic optimality and software stability
scalable methods needed for multiscale problems
no “hand coding” for evanescent computing environments
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Foci for math CETs
The past focus: 
Meet the understood and expressed needs of application groups, where 

they are, typically across a conventional interface, like Ax=b

A present and future focus:
Lure application groups into new explorations, boldly going where no 

one has gone before, typically blurring conventional interfaces, like 
debating what goes into A, and whether it is ever even explicitly 
assembled
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TOPS is building a toolchain of proven 
solver components that interoperate

We aim to carry users from “one-off” solutions to 
the full scientific agenda of sensitivity, stability, and 
optimization (from heroic point studies to systematic 
parametric studies) all in one software suite
TOPS solvers are nested, from applications-
hardened linear solvers outward, leveraging 
common distributed data structures 
Communication and performance-oriented details 
are hidden so users deal with mathematical objects 
throughout
TOPS features these trusted packages, whose 
functional dependences are illustrated (right)*:
Hypre, PETSc, ScaLAPACK, 
SUNDIALS, SuperLU, TAO, Trilinos
These are in use and actively debugged in dozens of 
high-performance computing environments, in 
dozens of applications domains, by thousands of 
user groups around the world                                    
* See also the webpages for each code

Optimizer

Linear 
solver

Eigensolver

Time 
integrator

Nonlinear 
solver

Indicates 
dependence

Sens. Analyzer
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Multiscale apps demand scalable solvers
Multiple spatial scales

interfaces, fronts, layers
thin relative to domain size, δ
<< L

Multiple temporal scales
fast waves
small transit times relative to 
convection or diffusion, τ << T

Analyst must isolate dynamics of interest and model the rest in a system that 
can be discretized over more modest range of scales
Often involves filtering of high frequency modes, quasi-equilibrium 
assumptions, etc.
May lead to infinitely “stiff” subsystem requiring implicit treatment
Resulting implicit subsystem may be very ill-conditioned
Freedom from operator-splitting error allows high-order integration in time

Richtmeyer-Meshkov instability, c/o A. Mirin, LLNL
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Review: two definitions of scalability
“Strong scaling”

execution time decreases in 
inverse proportion to the 
number of processors
fixed size problem overall
often instead graphed as 
reciprocal, “speedup”

“Weak scaling”
execution time remains constant, 
as problem size and processor 
number are increased in 
proportion
fixed size problem per processor
also known as “Gustafson 
scaling”

T  

p

good

poor

poor

N ∝ p

log T

log p
good

N constant

Slope
= -1

Slope
= 0
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Strong scaling illus. (1999 Bell Prize)
Newton-Krylov-Schwarz (NKS) algorithm for compressible and 
incompressible Euler and Navier-Stokes flows 
Used in NASA application FUN3D (M6 wing results below with 11M dof)

128 nodes 
43min

3072 nodes 
2.5min, 
226Gf/s

15µs/unknown 
70% efficient
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c/o C. Farhat, Stanford

Finite Element Tearing and Interconnection (FETI) algorithm for 
solid/shell models
Used in Sandia applications Salinas, Adagio, Andante
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Contraindications of scalability
Fixed problem size

Amdahl-type constraints
“fully resolved” discrete problems (protein folding, 
network problems)
“sufficiently resolved” problems from the 
continuum

Scalable problem size
Resolution-limited progress in “long time”
integration

explicit schemes for time-dependent PDEs
suboptimal iterative relaxations schemes for 
equilibrium PDEs

Nonuniformity of threads
adaptive schemes
multiphase computations (e.g, particle and field)
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Amdahl’s Law (1967)
Fundamental limit to strong scaling due to small overheads
Speedup asymptotically independent of number of processors 
available
Analyze by binning code segments by degree of exploitable 
concurrency and dividing by available processors, up to limit
Illustration for just two bins:

fraction f1 of work that is purely sequential
fraction (1-f1) of work that is arbitrarily concurrent

Wall clock time for p processors
Speedup 

for f1=0.01

Fundamental limit to any performance enhancement, not just 
parallelism

pff /)1( 11 −+∝

]/)1(/[1 11 pff −+=
99.091.050.39.21.0S

100001000100101p
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SPMD parallelism w/domain decomposition
puts off limitation of Amdahl in weak scaling

Partitioning of the grid 
induces block structure on 
the system matrix 
(Jacobian)

Ω1

Ω2

Ω3

A23A21 A22
rows assigned 

to proc “2”
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DD relevant to any local stencil formulation

finite differences finite elements finite volumes

• All lead to sparse Jacobian matrices 

J=

node i

row i
• However, the inverses are generally 
dense; even the factors suffer 
unacceptable fill-in in 3D
• Want to solve in subdomains only, and 
use to precondition full sparse problem
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Resolution-limited progress (weak scaling)
Illustrate for CFL-limited 
explicit time stepping*
Parallel wall clock time

dd PST //1 αα+∝

d-dimensional domain, length scale L
d+1-dimensional space-time, time scale T
h computational mesh cell size
τ computational time step size 
τ=O(hα) stability bound on time step
n=L/h number of mesh cells in each dim
N=nd number of mesh cells overall
M=T/τ number of time steps overall
O(N) total work to perform one time step
O(MN) total work to solve problem
P number of processors
S storage per processor
PS total storage on all processors (=N)
O(MN/P) parallel wall clock time
∝ (T/τ)(PS)/P ∝ T S1+α/d Pα/d

(since τ ∝ hα ∝ 1/nα = 1/Nα/d  = 1/(PS)α/d )

3 months10 days1 dayExe. time

105×105×105104×104×104103× 103×103Domain

Example: explicit wave 
problem in 3D (α=1, d=3)

27 years3 months1 dayExe. time

105× 105104× 104103× 103Domain

Example: explicit diffusion 
problem in 2D (α=2, d=2)

*assuming dynamics needs to be 
followed only on coarse scales
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“Scalable” includes “optimal”
“Optimal” for a theoretical numerical analyst means a 
method whose floating point complexity grows at most 
linearly in the data of the problem, N, or (more 
practically and almost as good) linearly times a polylog 
term
For iterative methods, this means that both the cost per 
iteration and the number of iterations must be O(N logp N)
Cost per iteration must include communication cost as 
processor count increases in weak scaling, P ∝ N

BlueGene permits this with its log-diameter global 
reduction

Number of iterations comes from condition number for 
linear iterative methods; Newton’s superlinear 
convergence is important for nonlinear iterations
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Components of scalable solvers for PDEs
Subspace solvers

Elementary smoothers
Incomplete factorizations 
Full direct factorizations

Global linear preconditioners
Schwarz and Schur methods
Multigrid

Linear accelerators
Krylov methods

Nonlinear rootfinders
Newton-like methods
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Digression for notation’s sake
We need a convenient notation for 
mapping vectors (representing 
discrete samples of a continuous 
field) from full domain to subdomain 
and back

1
3

1

6

5

4

3

2

1

1 00
00

01
00

00
01

u
x
x

x
x
x
x
x
x

uR ≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎦

⎤
⎢
⎣

⎡
=

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0
0
0

0

00
00
00
10
00
01

3

1

3

1
11

x

x

x
x

uR T

x1
x2

x3

x4

x5

x6

u1

⎥
⎦

⎤
⎢
⎣

⎡
=

00
00

01
00

00
01

1R
Let Ri be a Boolean operator 
that extracts the elements of 
the ith subdomain from the 
global vector
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⎡
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Then Ri
T maps the elements 

of the ith subdomain back 
into the global vector, 
padding with zeros
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Schwarz domain decomposition method

Consider restriction and extension 
operators for subdomains,           ,      
and for possible coarse grid,
Replace discretized                   with

Solve by a Krylov method
Matrix-vector multiplies with

parallelism on each subdomain
nearest-neighbor exchanges, global reductions
possible small global system (not needed for parabolic case)

iΩ
iR

0R

TRR 00 ,

T
ii RR ,

fAu =
fBAuB 11 −− =

ii
T
ii

T RARRARB 1
0

1
00

1 −−− ∑+=

T
iii ARRA =

=
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Schwarz formula (projections)

0
1

000
11 )()( RARRRRARRRB TT

i
T
ii

T
ii

−−− +∑=

0
1

00
11 RARRARB T

ii
T
ii

−−− +∑=

If A is an operator on a space V and Ri are 
restrictions into (possibly overlapping) subspaces of 
V, Vi, such that V=∪Vi

Then for a good approximation, B-1, to A-1:

or

Then                           , where C is independent of 
subdomain size and mesh size (resp., processor 
number and problem size)

CAB =− )( 1κ
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Convergence estimates 

In terms of N and P, where for d-dimensional 
isotropic problems, N=h-d and P=H-d, for mesh 
parameter h and subdomain diameter H, 
iteration counts may be estimated as follows:

Ο(P1/3)Ο(P1/2)1-level Additive Schwarz

Ο(1)Ο(1)2-level Additive Schwarz

Ο((NP)1/6)Ο((NP)1/4)Domain Jacobi (δ=0)
Ο(N1/3)Ο(N1/2)Point Jacobi

in 3Din 2DPreconditioning Type

Krylov iterative methods typically converge in a number 
of iterations that scales as the square-root of the condition 
number of the preconditioned system
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Additive vs. multiplicative projections
Additive projection methods are well-suited for SPMD 
Can be hierarchically combined via multiplicative 
projection
Suppose we have two preconditioners, each of which is 
effective on part of the problem Au=f, and we use them 
sequentially )(1

1 AufBuu −+← −

)(1
2 AufBuu −+← −

1
1

1
2

1
2

1 )( −−−− −+= BABIBB
This leads to a multiplicative scheme:

This is the form of a standard two-level multigrid 
scheme in which B1 is a “smoother” and B2 handles the 
complementary modes: T

CC
T RARARARB == −− ;11

2
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smoother

Finest Grid

First Coarse Grid
coarser grid has fewer cells

(less work & storage)

Restriction
transfer from 
fine to coarse 
grid

Recursively apply this 
idea until we have an 
easy problem to solve

A Multigrid V-cycle

Prolongation
transfer from coarse 
to fine grid

For multigrid, one recurs on this…
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Algebraic multigrid
For Poisson, there is a correspondence between the hard-to-
smooth error modes and wavenumber, leading to the 
classification of “fine” (easy to smooth) and “coarse” (hard to 
smooth, near null-space)
For more general operators, this geometrical correspondence 
is broken; the “coarse” space is whatever is complementary to 
the readily smoothable space and is found algebraically, in an 
operator-sensitive way (anisotropy, inhomogeneity, etc.)
This freedom from geometry is liberating, since problems on 
unstructured meshes are readily accommodated
Near null-space modes may now, however, be dense to 
represent, unlike in Poisson (okay, if just a few of them)
Identifying the coarse space may defy heuristics and need to 
be found adaptively (see SIAM Review 47:317-346 (2005) )
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Krylov accelerators
Given                                            and iterate    , we 
wish to generate a basis                                        for       
(                ) and a set of coefficients                    
such that       is a best fit in the sense that                 
minimizes 
Krylov methods are algebraic Petrov-Galerkin 
methods that define a complementary “test” basis 

so that        
may be solved for y
In practice  k << n and the bases are grown from seed 
vector                                   via recursive multiplication 
by       and Gram-Schmidt

nnAbAx ×ℜ∈= , 0x
{ } kn

kvvvV ×ℜ∈= ,...,, 21

kx
{ }kyyy ,...,, 21

x
ky ℜ∈

|||| bAVy −

{ } kn
kwwwW ×ℜ∈= ,...,, 21 0)( =− bAVyW T

bAxr −= 00

Vyx ≈

A
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Onward to nonlinearity
Linear versus nonlinear problems

Solving linear systems often constitutes 90% of the running 
time of a large PDE simulation
The nonlinearity is often a fairly straightforward outer loop, 
in that it introduces no new types of messages or 
synchronizations not present in Krylov-Schwarz, and has 
overall many fewer synchronizations than the preconditioned 
Krylov method  or other linear solver inside it

We can wrap Newton, Picard, fixed-point or other 
iterations outside, linearize, and apply what we know
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Newton-Krylov-Schwarz: 
a PDE applications “workhorse”

Newton
nonlinear solver

asymptotically quadratic

0)(')()( =+≈ uuFuFuF cc δ
uuu c δλ+=

Krylov
accelerator

spectrally adaptive

FuJ −=δ
}{minarg

},,,{ 2
FJxu

FJJFFVx
+=

≡∈ L

δ

Schwarz
preconditioner
parallelizable

FMuJM 11 −− −=δ

i
T
ii

T
ii RJRRRM 11 )( −− ∑=
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Newton-like iteration
Given                                                           and iterate      
we wish to pick        such that

where
Neglecting higher-order terms, we get

where                                   is the Jacobian matrix, 
generally large, sparse, and ill-conditioned for PDEs
In practice, require
In practice, set                                     where      is selected 
to minimize         

nnFuF ℜ→ℜ= :,0)( 0u
1+ku

0)()()( '1 =+≈+ kkkk uuFuFuF δ
,...2,1,0,1 =−= + kuuu kkkδ

)()]([ 1 kkk uFuJu −−=δ
)(' kuFJ =

εδ <+ ||)()(|| kkk uuJuF
kkk uuu λδ+=+1 λ

||)(|| kk uuF λδ+
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Newton-Krylov-Schur-Schwarz

for (k = 0; k < n_Newton; k++) {
compute nonlinear residual and Jacobian
for (j = 0; j < n_Krylov; j++) {

forall (i = 0; i < n_Precon ; i++) {
solve subdomain problems concurrently

} // End of loop over subdomains
perform Jacobian-vector product
enforce Krylov basis conditions
update optimal coefficients 
check linear convergence

} // End of linear solver
perform DAXPY update 
check nonlinear convergence

} // End of nonlinear loop

Newton 
loop

Krylov 
loop

concurrent 
preconditioner 
loop

Yet outer loops: continuation, implicit timestepping, optimization
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SciDAC’s Fusion Simulation Project: 
support of the international fusion program

+

J. Fusion Energy 20: 135-196 (2001)

updated in June 
2007, Kritz & 
Keyes, eds.

ITER: $5B 
“the way (L)”

Fusion by 2017; criticality by 2022

“Big Iron” meets “Big Copper”
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ITER: world’s first magnetically 
confined burning plasma

ITER site in Cadaraches, France *

China 

Europe

India

Japan

Korea

Russia

USA

See report: 
“Simulation of 
Fusion Plasmas”
(2007) Plasma 
Science & 
Technology,      
29 authors, 
Beijing 2006
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ITER challenges
Performance limited by plasma instabilities 

highest power production performance is near stability limits
can degrade magnetic containment
potentially damaging to the device

Important instabilities can be modeled (physicists 
believe) with magnetohydrodynamics and/or 
particle methods

neoclassical tearing modes (NTMs)
edge-localized modes (ELMs)

High power radio frequency electromagnetic 
waves can influence stability

triggering or  suppressing
wave-plasma interactions are multiscale
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0)( =Φ u
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Scaling fusion simulations up to ITER

c/o S. Jardin, PPPL

1012 needed 
(explicit 
uniform 

baseline)

International 
Thermonuclear
Experimental
Reactor

2017 – first 
experiments, in 
Cadaraches, 
France

Small 
tokamak

Large 
tokamak

Huge 
tokamak
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1.5 orders: increased processor speed and efficiency
1.5 orders: increased concurrency
1 order: higher-order discretizations 

Same accuracy can be achieved with many fewer elements

1 order: flux-surface following gridding
Less resolution required along than across field lines

4 orders: adaptive gridding
Zones requiring refinement are <1% of ITER volume and 
resolution requirements away from them are ~102 less severe

3 orders: implicit solvers
Mode growth time 9 orders longer than Alfven-limited CFL

Where to find 12 orders of magnitude in 10 years?
H

ar
dw

ar
e:

 3
So

ftw
ar

e:
 9

Algorithmic 
improvements bring 

yottascale (1024) 
calculation down to 

petascale (1015)!
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increased processor speed
10 years is 6.5 Moore doubling times

increased concurrency
BG/L is already 217 procs, MHD now at ca. 212

higher-order discretizations 
low-order FE preconditioning of high-order discretizations 
(Orszag, Fischer, Manteuffel, etc.)

flux-surface following gridding
evolve mesh to approximately follow flux surfaces

adaptive gridding
adapt mesh to concentrate points in high-gradient regions

implicit solvers
we propose Newton-like fully implicit, with Krylov/MG innards

Comments on JK roadmap
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SciDAC solver collaboration examples

Meeting physicists at a well-defined traditional 
interface

Magnetic fusion energy – swapping in new linear solvers

Collaborating with physicists across traditional 
interfaces

Accelerator design – multidisciplinary design optimization
Quantum chromodynamics – research prototyping of new 
algorithm
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Illustration from computational MHD
M3D code (Princeton)

block Jacobi/ASM preconditioner is fine for Helmholtz 
solvers
multigrid replaces block Jacobi/ASM preconditioner for 
optimality on elliptic solves
either algorithm, and combinatorially more, callable 
across same TOPS  Ax=b interface

The fusion community may use more cycles on unclassified U.S. 
DOE computers than any other (e.g., about 30% of all cycles at 
NERSC, 2003-2005).  Well over 90% of these cycles are spent 
solving linear systems in M3D and NIMROD, which are two 
prime U.S. code contributions to the designing of ITER.
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NIMROD: direct elim. for robustness
NIMROD code 

high-order finite elements
complex, nonsymmetric linear 
systems with 10K-100K unknowns 
in 2D (>90% exe. time)

TOPS collaboration
replacement of diagonally scaled 
Krylov with SuperLU, a 
supernodal parallel sparse direct 
solver
2D tests run 100× faster; 3D 
production runs are ~5× faster

c/o D. Schnack, et al.
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M3D: multigrid for optimality
M3D code

unstructured mesh, hybrid FE/FD 
discretization with C0 elements
Sequence of real scalar systems  
(>90% exe. time)

TOPS collaboration
replacement of additive Schwarz 
(ASM) preconditioner with algebraic 
multigrid (AMG) from Hypre
achieved mesh-independent 
convergence rate 
~5× improvement in execution time
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ASM-GMRES
AMG-FMGRES

c/o S. Jardin, et al.
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Algebraic multigrid a key algorithmic technology
Discrete operator defined for finest grid by the application, itself, and for many 
recursively derived levels with successively fewer degrees of freedom, for solver 
purposes
Unlike geometric multigrid, AMG not restricted to problems with “natural”
coarsenings derived from grid alone

Optimality (cost per cycle) intimately tied to the ability to coarsen 
aggressively
Convergence scalability (number of cycles) and parallel efficiency 
also sensitive to rate of coarsening

U. M. Yang, LLNL

Solvers are scaling:
algebraic multigrid (AMG) on BG/L (hypre)

Figure shows weak scaling result for AMG out to 
120K processors, with one 25×25×25block per 
processor (up to 1.875B dofs) procs

se
c

While much research and 
development remains, multigrid 
will clearly be practical at BG/P-
scale concurrency

fu =Δ−
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Resistive MHD prototype implicit solver
Magnetic reconnection: the breaking and 
reconnecting of oppositely directed 
magnetic field lines in a plasma, replacing 
hot plasma core with cool plasma, halting 
the fusion process

Replace explicit updates with implicit 
Newton-Krylov from SUNDIALS with 
factor of ~5× in execution time

Current (J = r £ B)

J. Brin et al., “Geospace Environmental Modeling (GEM) magnetic reconnection challenge,” J. Geophys. Res. 106 (2001) 3715-3719.

c/o D. Reynolds, et al.
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Resistive MHD: implicit solver, ex #2

Magnetic reconnection: 
previous example was 
compressible – primitive 
variable; this example is 
incompressible –
streamfunction/vorticity 

Replace explicit updates with 
implicit Newton-Krylov from 
PETSc with factor of ~5× in 
speedup

c/o F. Dobrian, et al.
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Engage at a higher-level than Ax=b
Newton-Krylov-Schwarz/MG on coupled nonlinear system

Sensitivity analyses
validation studies

Stability analyses
“routine” outer loop on steady-state solutions 

Optimization
parameter identification
design of facilities (accelerators, tokamaks, power plants, 
etc.)
control of experiments

TOPS’ wishlist for MHD collaborations —
“Asymptopia”
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Shape optimization for accelerators

CAD Meshing Partitioning
(parallel)

h-Refinement
p-refinement

Solvers
(parallel)

Refinement

Basic Analysis Loop for given Geometry

Omega3P

S3P

T3P

Tau3P

• Numerical modeling has replaced trial and error prototyping approach
• SciDAC adds advances that increase fidelity, speed, and accuracy:

• Next generation accelerators have complex cavities that require shape 
optimization for improved performance and reduced cost 
• AST/TSTT/TOPS are collaborating to develop an automated capability 
to accelerate this otherwise manual process

DDS CELL

c/o W. Ko, et al.
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Omega3P design optimization components

Omega3P
Sensitivity

meshing
sensitivity

optimization
geometricgeometric

modelmodel

Omega3P meshingmeshing

(only for discrete sensitivity)

TSTT

AST/TSTTTOPS

AST/TOPS

AST/TOPS

c/o O. Ghattas, et al.
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Multigrid for Lattice Gauge QCD

Wilson-Fermion operator:

Difference operators:

Pauli spin matrices:

Fermion field:  φ(x,y)=(f1,f2)

Gauge field:     u(x,y)=eiθ

Real part Imaginary part

c/o James Brannick, et al.
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Algebraic Multigrid for QCD

Diagonally scaled CG

Adaptive Smoothed Aggregation AMG CG

iterations / per-iteration-reduction / condition number
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TOPS dreams that users will…

Understand range of algorithmic options 
w/tradeoffs
e.g., memory vs. time, comp. vs. comm., inner iteration 

work vs. outer

Try all reasonable options “easily”
without recoding or extensive recompilation

Know how their solvers are performing
with access to detailed profiling information

Intelligently drive solver research
e.g., publish joint papers with algorithm researchers

Simulate truly new physics free from solver limits
e.g., finer meshes, complex coupling, full nonlinearity

User’s 
Rights
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URLs

SciDAC homepage
http://www.scidac.gov/

TOPS SciDAC project on solvers
http://www.scidac.gov/math/TOPS.html

The SCaLeS report
http://www.pnl.gov/scales/


