
ACTS 2007

Scalable solver software
from the TOPS SciDAC project

David Keyes
Columbia University

ACTS 2007

Plan of presentation
Introduce solver software infrastructure and
software philosophy of TOPS (“Towards Optimal
Petascale Simulations”) project

one of four “enabling technology” centers in the “Scientific
Discovery through Advanced Computing” (SciDAC)
initiative of the U.S. Department of Energy

Peek at the algorithmic motivation and roots
definitions of scalability
two families of PDE-based simulation techniques that will
not scale, and why
a family of techniques that will (for multirate problems
with exploitable scale separation)

Illustrate collaborations in support of the
international ITER project

ACTS 2007

The TOPS “Center for Enabling Technology”
spans 4 labs & 5 universities

Towards Optimal Petascale Simulations

Mission: enable scientists and engineers to take full advantage of
petascale hardware by overcoming the scalability bottlenecks of
traditional solvers, and assist users to move beyond “one-off”
simulations, to validation and optimization

Columbia University University of Colorado University of Texas
University of California

at San Diego

Lawrence Livermore
National Laboratory

Sandia National Laboratories

ACTS 2007

TOPS software has taken applications to the
architectural leading edge

TOPS software is at the
heart of three Gordon Bell
“Special” Prizes 1999

fluids
2003

seismic
2004

mechanics

Scales to the edge of
BlueGene/L (131,072
processors, 2B unknowns)

0

5

10

15

20

0 50000 100000

2B dofs

15.6K dofs

After new coarsening
algorithm (red),
nearly flat scaled
speedup for
Algebraic Multigrid

processors

tim
e

C-old

C-new

Enabled numerous physics
attainments in SciDAC-1

accelerator
design QCD

magneto-
hydro-
dynamics

Prototype shape optimization capability Scalable solution algorithm for zero quark mass, fine lattices

~5X speedup of
plasma fusion codes
through linear solver
replacement – like
providing “next
generation” computer

Re part of “instanton” Im part of “instanton”

ACTS 2007

ACTS software stack supported by TOPS

TOPS-1: Hypre, PETSc, SUNDIALS,
SuperLU, TAO
TOPS-2: the above five, plus, soon Trilinos
This is about half of the ACTS software
presented at this year’s tutorial

The primary role of this talk is not to teach particulars about the software, but to
convey two aspects of the SciDAC philosophy:

the idea of a software toolchain

some of the potential of cross-disciplinary collaboration between the “apps”
community and the “enabling technology” community

ACTS 2007

Some TOPS talks @ ICIAM 2007

Dobrian Hu Pothen Dongarra Moré

U. Yang C. Yang Brannick Cai Serban

Li Knepley Norris Widlund Falgout

ACTS 2007

Only with optimal complexity solvers are scalable
architectures practical for applications

Compare with Moore’s Law:
Over 36 years, processor architecture
goes through 24 “doubling periods”
Algorithms produce an equal factor
of speedup on a small problem; much
more on a larger problem

year

relative
speedup

16 million
speedup

from each∇2u=f 64

64 64
Consider, for example:

Poisson’s equation in a 3D
domain
Solve by “best method
available” over a span of
1948 to 1984 (36 years)

Given, for example:
a “physics” phase that scales
as O(N)
a “solver” phase that scales
as O(N3/2)
computation is almost all
solver after several doublings
Optimal O(N) solver saves
the computational cycles for
the physics

Solver takes
50% time on
64 procs 0

0.2

0.4

0.6

0.8

1

1.2

1 4 16 64 256 1024

Solver
Physics

Weak scaling limit, assuming efficiency of
100% in both physics and solver phases

Processor number & relative problem size

O(N3/2) method
on 64K procs

Algorithmic and
architectural

advances work
together!

O(N) method
on 64K procs

ACTS 2007

Reminder: solvers evolve underneath “Ax=b”
Advances in algorithmic efficiency rival advances in
hardware architecture
Consider Poisson’s equation on a cube of size N=n3

If n=64, this implies an overall reduction in flops of
~16 million

n3n3BrandtFull MG1984

n3.5 log nn3ReidCG1971

n4 log nn3YoungOptimal SOR1950

n7n5Von Neumann &
Goldstine

GE (banded)1947

FlopsStorage ReferenceMethodYear

∇2u=f 64

64 64

*Six months is reduced to 1 second

*

ANL’s IBM BlueGene/P: 72K quad-core
procs w/ 2 FMADD @ 850 MHz
= 1.008 Pflop/s

13.6 GF/s
8 MB EDRAM

4 processors

1 chip

13.6 GF/s
2 GB DDRAM

32 compute cards

435 GF/s
64 GB

32 node cards

72 racks

1 PF/s
144 TB

Rack

System

Node Card

Compute Card

Chip

14 TF/s
2 TB

Thread-concurrency: 288K
(or 294,912 processors)

On the floor at Argonne
National Laboratory by
early 2009

ACTS 2007

Building platforms is the “easy” part

Algorithms must be
highly concurrent and straightforward to load balance
latency tolerant
cache friendly (good temporal and spatial locality)
highly scalable (in the sense of convergence)

Domain decomposition “natural” for all of these
Weak scaling possible on a per iteration basis, despite
Amdahl’s Law under typical mesh refinement for multiscale
problems, thanks to surface-to-volume scaling of
communication-to-computation
Still need attention to number of iterations, which focuses
attention on multilevel algorithms

ACTS 2007

SciDAC customer applications
requiring scalable solvers

Plasma fusion
Poisson problems
coupled nonlinear systems within a
single “physics” domain (e.g., MHD)
nonlinear coupling of multiple physics
codes

Accelerator design
Maxwell eigenproblems
shape optimization subject to PDE
constraints

Porous media flow
div-grad Darcy problems

Quantum chromodynamics
Dirac operator inversions

Quantum chemistry
generalized eigenproblems

Physicists want to concentrate on
physics instead of solvers

express solver tasks at a level of
mathematical abstraction
exploit state-of-the-art solvers as these
evolve under the interface
run same code on laptops (on travel),
low-cost unmetered clusters (at work),
and on unique shared national
resources

Ordered goals for TOPS (need them
all, in this order)

usability and robustness
portability
algorithmic efficiency (optimality)
and implementation efficiency (within
a processor and in parallel)
algorithmic optimality and software
stability

ACTS 2007

Large-scale simulation in SciDAC
Applications-driven

motivation is from applications to
enabling technologies
applications expose challenges,
enabling technologies respond

Enabling technologies-
intensive

in many cases, the application
agenda is well-defined
architecture, algorithms, and
software represent bottlenecks

Most worthwhile development
may be at the interface

CS

Math

Applications

ACTS 2007

Hardware Infrastructure

A
R
C
H
I
T
E
C
T
U
R
E
S

Applications

Role of scientific software engineering in
our scientific simulation era

scientific models

numerical algorithms

computer architecture

scientific software engineering

“Computational science is undergoing a phase transition.” – D. Hitchcock, DOE

(dates are symbolic)

1686

1947

1976

1992

ACTS 2007

Challenges for software designers

The old challenge:
Increase functionality and capability for a small number of

users who are expert in the domain of the software

A new challenge:
Increase ease of use (for correctness and efficiency) for a

large number of users who are expert in something else

ACTS 2007

Design principle: multiple layers

Top layer (all users)
Abstract interface featuring language of application domain, hiding
details, with conservative parameter defaults
Robustness, correctness, ease of use

Middle layers (experienced users)
Rich collection of state-of-the-art methods and data structures,
exposed upon demand, highly configurable
Capability, algorithmic efficiency, extensibility, composability,
comprehensibility of performance and resource use

Bottom layer (developers)
Support for variety of execution environments
Portability, implementation efficiency

ACTS 2007

What users want in math software
Develop code “without having to make bets”

accomplish certain abstract mathematical tasks
stay agnostic about particular solution methods and codes
run everywhere: laptops (on travel), low-cost unmetered clusters (at
work), and unique shared national resources

Ordered goals (need them all for production use)
usability and robustness
portability
algorithmic efficiency (optimality) and implementation efficiency
(within a processor and in parallel)

Algorithmic optimality and software stability
scalable methods needed for multiscale problems
no “hand coding” for evanescent computing environments

ACTS 2007

Foci for math CETs
The past focus:
Meet the understood and expressed needs of application groups, where

they are, typically across a conventional interface, like Ax=b

A present and future focus:
Lure application groups into new explorations, boldly going where no

one has gone before, typically blurring conventional interfaces, like
debating what goes into A, and whether it is ever even explicitly
assembled

ACTS 2007

TOPS is building a toolchain of proven
solver components that interoperate

We aim to carry users from “one-off” solutions to
the full scientific agenda of sensitivity, stability, and
optimization (from heroic point studies to systematic
parametric studies) all in one software suite
TOPS solvers are nested, from applications-
hardened linear solvers outward, leveraging
common distributed data structures
Communication and performance-oriented details
are hidden so users deal with mathematical objects
throughout
TOPS features these trusted packages, whose
functional dependences are illustrated (right)*:
Hypre, PETSc, ScaLAPACK,
SUNDIALS, SuperLU, TAO, Trilinos
These are in use and actively debugged in dozens of
high-performance computing environments, in
dozens of applications domains, by thousands of
user groups around the world
* See also the webpages for each code

Optimizer

Linear
solver

Eigensolver

Time
integrator

Nonlinear
solver

Indicates
dependence

Sens. Analyzer

ACTS 2007

Multiscale apps demand scalable solvers
Multiple spatial scales

interfaces, fronts, layers
thin relative to domain size, δ
<< L

Multiple temporal scales
fast waves
small transit times relative to
convection or diffusion, τ << T

Analyst must isolate dynamics of interest and model the rest in a system that
can be discretized over more modest range of scales
Often involves filtering of high frequency modes, quasi-equilibrium
assumptions, etc.
May lead to infinitely “stiff” subsystem requiring implicit treatment
Resulting implicit subsystem may be very ill-conditioned
Freedom from operator-splitting error allows high-order integration in time

Richtmeyer-Meshkov instability, c/o A. Mirin, LLNL

ACTS 2007

Review: two definitions of scalability
“Strong scaling”

execution time decreases in
inverse proportion to the
number of processors
fixed size problem overall
often instead graphed as
reciprocal, “speedup”

“Weak scaling”
execution time remains constant,
as problem size and processor
number are increased in
proportion
fixed size problem per processor
also known as “Gustafson
scaling”

T

p

good

poor

poor

N ∝ p

log T

log p
good

N constant

Slope
= -1

Slope
= 0

ACTS 2007

Strong scaling illus. (1999 Bell Prize)
Newton-Krylov-Schwarz (NKS) algorithm for compressible and
incompressible Euler and Navier-Stokes flows
Used in NASA application FUN3D (M6 wing results below with 11M dof)

128 nodes
43min

3072 nodes
2.5min,
226Gf/s

15µs/unknown
70% efficient

ACTS 2007

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000

ASCI-White Processors

T
im

e
(s

ec
on

ds
)

Total Salinas FETI-DP

Weak scaling illus. (2002 Bell Prize)

1mdof

4mdof

9mdof

18mdof

30mdof

60mdof

c/o C. Farhat, Stanford

Finite Element Tearing and Interconnection (FETI) algorithm for
solid/shell models
Used in Sandia applications Salinas, Adagio, Andante

ACTS 2007

Contraindications of scalability
Fixed problem size

Amdahl-type constraints
“fully resolved” discrete problems (protein folding,
network problems)
“sufficiently resolved” problems from the
continuum

Scalable problem size
Resolution-limited progress in “long time”
integration

explicit schemes for time-dependent PDEs
suboptimal iterative relaxations schemes for
equilibrium PDEs

Nonuniformity of threads
adaptive schemes
multiphase computations (e.g, particle and field)

ACTS 2007

Amdahl’s Law (1967)
Fundamental limit to strong scaling due to small overheads
Speedup asymptotically independent of number of processors
available
Analyze by binning code segments by degree of exploitable
concurrency and dividing by available processors, up to limit
Illustration for just two bins:

fraction f1 of work that is purely sequential
fraction (1-f1) of work that is arbitrarily concurrent

Wall clock time for p processors
Speedup

for f1=0.01

Fundamental limit to any performance enhancement, not just
parallelism

pff /)1(11 −+∝

]/)1(/[1 11 pff −+=
99.091.050.39.21.0S

100001000100101p

ACTS 2007

SPMD parallelism w/domain decomposition
puts off limitation of Amdahl in weak scaling

Partitioning of the grid
induces block structure on
the system matrix
(Jacobian)

Ω1

Ω2

Ω3

A23A21 A22
rows assigned

to proc “2”

ACTS 2007

DD relevant to any local stencil formulation

finite differences finite elements finite volumes

• All lead to sparse Jacobian matrices

J=

node i

row i
• However, the inverses are generally
dense; even the factors suffer
unacceptable fill-in in 3D
• Want to solve in subdomains only, and
use to precondition full sparse problem

ACTS 2007

Resolution-limited progress (weak scaling)
Illustrate for CFL-limited
explicit time stepping*
Parallel wall clock time

dd PST //1 αα+∝

d-dimensional domain, length scale L
d+1-dimensional space-time, time scale T
h computational mesh cell size
τ computational time step size
τ=O(hα) stability bound on time step
n=L/h number of mesh cells in each dim
N=nd number of mesh cells overall
M=T/τ number of time steps overall
O(N) total work to perform one time step
O(MN) total work to solve problem
P number of processors
S storage per processor
PS total storage on all processors (=N)
O(MN/P) parallel wall clock time
∝ (T/τ)(PS)/P ∝ T S1+α/d Pα/d

(since τ ∝ hα ∝ 1/nα = 1/Nα/d = 1/(PS)α/d)

3 months10 days1 dayExe. time

105×105×105104×104×104103× 103×103Domain

Example: explicit wave
problem in 3D (α=1, d=3)

27 years3 months1 dayExe. time

105× 105104× 104103× 103Domain

Example: explicit diffusion
problem in 2D (α=2, d=2)

*assuming dynamics needs to be
followed only on coarse scales

ACTS 2007

“Scalable” includes “optimal”
“Optimal” for a theoretical numerical analyst means a
method whose floating point complexity grows at most
linearly in the data of the problem, N, or (more
practically and almost as good) linearly times a polylog
term
For iterative methods, this means that both the cost per
iteration and the number of iterations must be O(N logp N)
Cost per iteration must include communication cost as
processor count increases in weak scaling, P ∝ N

BlueGene permits this with its log-diameter global
reduction

Number of iterations comes from condition number for
linear iterative methods; Newton’s superlinear
convergence is important for nonlinear iterations

ACTS 2007

Components of scalable solvers for PDEs
Subspace solvers

Elementary smoothers
Incomplete factorizations
Full direct factorizations

Global linear preconditioners
Schwarz and Schur methods
Multigrid

Linear accelerators
Krylov methods

Nonlinear rootfinders
Newton-like methods

ACTS 2007

Digression for notation’s sake
We need a convenient notation for
mapping vectors (representing
discrete samples of a continuous
field) from full domain to subdomain
and back

1
3

1

6

5

4

3

2

1

1 00
00

01
00

00
01

u
x
x

x
x
x
x
x
x

uR ≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎦

⎤
⎢
⎣

⎡
=

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0
0
0

0

00
00
00
10
00
01

3

1

3

1
11

x

x

x
x

uR T

x1
x2

x3

x4

x5

x6

u1

⎥
⎦

⎤
⎢
⎣

⎡
=

00
00

01
00

00
01

1R
Let Ri be a Boolean operator
that extracts the elements of
the ith subdomain from the
global vector

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00
00
00
10
00
01

1
TR

Then Ri
T maps the elements

of the ith subdomain back
into the global vector,
padding with zeros

ACTS 2007

Schwarz domain decomposition method

Consider restriction and extension
operators for subdomains, ,
and for possible coarse grid,
Replace discretized with

Solve by a Krylov method
Matrix-vector multiplies with

parallelism on each subdomain
nearest-neighbor exchanges, global reductions
possible small global system (not needed for parabolic case)

iΩ
iR

0R

TRR 00 ,

T
ii RR ,

fAu =
fBAuB 11 −− =

ii
T
ii

T RARRARB 1
0

1
00

1 −−− ∑+=

T
iii ARRA =

=

ACTS 2007

Schwarz formula (projections)

0
1

000
11)()(RARRRRARRRB TT

i
T
ii

T
ii

−−− +∑=

0
1

00
11 RARRARB T

ii
T
ii

−−− +∑=

If A is an operator on a space V and Ri are
restrictions into (possibly overlapping) subspaces of
V, Vi, such that V=∪Vi

Then for a good approximation, B-1, to A-1:

or

Then , where C is independent of
subdomain size and mesh size (resp., processor
number and problem size)

CAB =−)(1κ

ACTS 2007

Convergence estimates

In terms of N and P, where for d-dimensional
isotropic problems, N=h-d and P=H-d, for mesh
parameter h and subdomain diameter H,
iteration counts may be estimated as follows:

Ο(P1/3)Ο(P1/2)1-level Additive Schwarz

Ο(1)Ο(1)2-level Additive Schwarz

Ο((NP)1/6)Ο((NP)1/4)Domain Jacobi (δ=0)
Ο(N1/3)Ο(N1/2)Point Jacobi

in 3Din 2DPreconditioning Type

Krylov iterative methods typically converge in a number
of iterations that scales as the square-root of the condition
number of the preconditioned system

ACTS 2007

Additive vs. multiplicative projections
Additive projection methods are well-suited for SPMD
Can be hierarchically combined via multiplicative
projection
Suppose we have two preconditioners, each of which is
effective on part of the problem Au=f, and we use them
sequentially)(1

1 AufBuu −+← −

)(1
2 AufBuu −+← −

1
1

1
2

1
2

1)(−−−− −+= BABIBB
This leads to a multiplicative scheme:

This is the form of a standard two-level multigrid
scheme in which B1 is a “smoother” and B2 handles the
complementary modes: T

CC
T RARARARB == −− ;11

2

ACTS 2007

smoother

Finest Grid

First Coarse Grid
coarser grid has fewer cells

(less work & storage)

Restriction
transfer from
fine to coarse
grid

Recursively apply this
idea until we have an
easy problem to solve

A Multigrid V-cycle

Prolongation
transfer from coarse
to fine grid

For multigrid, one recurs on this…

ACTS 2007

Algebraic multigrid
For Poisson, there is a correspondence between the hard-to-
smooth error modes and wavenumber, leading to the
classification of “fine” (easy to smooth) and “coarse” (hard to
smooth, near null-space)
For more general operators, this geometrical correspondence
is broken; the “coarse” space is whatever is complementary to
the readily smoothable space and is found algebraically, in an
operator-sensitive way (anisotropy, inhomogeneity, etc.)
This freedom from geometry is liberating, since problems on
unstructured meshes are readily accommodated
Near null-space modes may now, however, be dense to
represent, unlike in Poisson (okay, if just a few of them)
Identifying the coarse space may defy heuristics and need to
be found adaptively (see SIAM Review 47:317-346 (2005))

ACTS 2007

Krylov accelerators
Given and iterate , we
wish to generate a basis for
() and a set of coefficients
such that is a best fit in the sense that
minimizes
Krylov methods are algebraic Petrov-Galerkin
methods that define a complementary “test” basis

so that
may be solved for y
In practice k << n and the bases are grown from seed
vector via recursive multiplication
by and Gram-Schmidt

nnAbAx ×ℜ∈= , 0x
{ } kn

kvvvV ×ℜ∈= ,...,, 21

kx
{ }kyyy ,...,, 21

x
ky ℜ∈

|||| bAVy −

{ } kn
kwwwW ×ℜ∈= ,...,, 21 0)(=− bAVyW T

bAxr −= 00

Vyx ≈

A

ACTS 2007

Onward to nonlinearity
Linear versus nonlinear problems

Solving linear systems often constitutes 90% of the running
time of a large PDE simulation
The nonlinearity is often a fairly straightforward outer loop,
in that it introduces no new types of messages or
synchronizations not present in Krylov-Schwarz, and has
overall many fewer synchronizations than the preconditioned
Krylov method or other linear solver inside it

We can wrap Newton, Picard, fixed-point or other
iterations outside, linearize, and apply what we know

ACTS 2007

Newton-Krylov-Schwarz:
a PDE applications “workhorse”

Newton
nonlinear solver

asymptotically quadratic

0)(')()(=+≈ uuFuFuF cc δ
uuu c δλ+=

Krylov
accelerator

spectrally adaptive

FuJ −=δ
}{minarg

},,,{ 2
FJxu

FJJFFVx
+=

≡∈ L

δ

Schwarz
preconditioner
parallelizable

FMuJM 11 −− −=δ

i
T
ii

T
ii RJRRRM 11)(−− ∑=

ACTS 2007

Newton-like iteration
Given and iterate
we wish to pick such that

where
Neglecting higher-order terms, we get

where is the Jacobian matrix,
generally large, sparse, and ill-conditioned for PDEs
In practice, require
In practice, set where is selected
to minimize

nnFuF ℜ→ℜ= :,0)(0u
1+ku

0)()()('1 =+≈+ kkkk uuFuFuF δ
,...2,1,0,1 =−= + kuuu kkkδ

)()]([1 kkk uFuJu −−=δ
)(' kuFJ =

εδ <+ ||)()(|| kkk uuJuF
kkk uuu λδ+=+1 λ

||)(|| kk uuF λδ+

ACTS 2007

Newton-Krylov-Schur-Schwarz

for (k = 0; k < n_Newton; k++) {
compute nonlinear residual and Jacobian
for (j = 0; j < n_Krylov; j++) {

forall (i = 0; i < n_Precon ; i++) {
solve subdomain problems concurrently

} // End of loop over subdomains
perform Jacobian-vector product
enforce Krylov basis conditions
update optimal coefficients
check linear convergence

} // End of linear solver
perform DAXPY update
check nonlinear convergence

} // End of nonlinear loop

Newton
loop

Krylov
loop

concurrent
preconditioner
loop

Yet outer loops: continuation, implicit timestepping, optimization

ACTS 2007

SciDAC’s Fusion Simulation Project:
support of the international fusion program

+

J. Fusion Energy 20: 135-196 (2001)

updated in June
2007, Kritz &
Keyes, eds.

ITER: $5B
“the way (L)”

Fusion by 2017; criticality by 2022

“Big Iron” meets “Big Copper”

ACTS 2007

ITER: world’s first magnetically
confined burning plasma

ITER site in Cadaraches, France *

China

Europe

India

Japan

Korea

Russia

USA

See report:
“Simulation of
Fusion Plasmas”
(2007) Plasma
Science &
Technology,
29 authors,
Beijing 2006

ACTS 2007

ITER challenges
Performance limited by plasma instabilities

highest power production performance is near stability limits
can degrade magnetic containment
potentially damaging to the device

Important instabilities can be modeled (physicists
believe) with magnetohydrodynamics and/or
particle methods

neoclassical tearing modes (NTMs)
edge-localized modes (ELMs)

High power radio frequency electromagnetic
waves can influence stability

triggering or suppressing
wave-plasma interactions are multiscale

ACTS 2007

0)(=Φ u

ACTS 2007

Scaling fusion simulations up to ITER

c/o S. Jardin, PPPL

1012 needed
(explicit
uniform

baseline)

International
Thermonuclear
Experimental
Reactor

2017 – first
experiments, in
Cadaraches,
France

Small
tokamak

Large
tokamak

Huge
tokamak

ACTS 2007

1.5 orders: increased processor speed and efficiency
1.5 orders: increased concurrency
1 order: higher-order discretizations

Same accuracy can be achieved with many fewer elements

1 order: flux-surface following gridding
Less resolution required along than across field lines

4 orders: adaptive gridding
Zones requiring refinement are <1% of ITER volume and
resolution requirements away from them are ~102 less severe

3 orders: implicit solvers
Mode growth time 9 orders longer than Alfven-limited CFL

Where to find 12 orders of magnitude in 10 years?
H

ar
dw

ar
e:

 3
So

ftw
ar

e:
 9

Algorithmic
improvements bring

yottascale (1024)
calculation down to

petascale (1015)!

ACTS 2007

increased processor speed
10 years is 6.5 Moore doubling times

increased concurrency
BG/L is already 217 procs, MHD now at ca. 212

higher-order discretizations
low-order FE preconditioning of high-order discretizations
(Orszag, Fischer, Manteuffel, etc.)

flux-surface following gridding
evolve mesh to approximately follow flux surfaces

adaptive gridding
adapt mesh to concentrate points in high-gradient regions

implicit solvers
we propose Newton-like fully implicit, with Krylov/MG innards

Comments on JK roadmap

ACTS 2007

SciDAC solver collaboration examples

Meeting physicists at a well-defined traditional
interface

Magnetic fusion energy – swapping in new linear solvers

Collaborating with physicists across traditional
interfaces

Accelerator design – multidisciplinary design optimization
Quantum chromodynamics – research prototyping of new
algorithm

ACTS 2007

Illustration from computational MHD
M3D code (Princeton)

block Jacobi/ASM preconditioner is fine for Helmholtz
solvers
multigrid replaces block Jacobi/ASM preconditioner for
optimality on elliptic solves
either algorithm, and combinatorially more, callable
across same TOPS Ax=b interface

The fusion community may use more cycles on unclassified U.S.
DOE computers than any other (e.g., about 30% of all cycles at
NERSC, 2003-2005). Well over 90% of these cycles are spent
solving linear systems in M3D and NIMROD, which are two
prime U.S. code contributions to the designing of ITER.

ACTS 2007

NIMROD: direct elim. for robustness
NIMROD code

high-order finite elements
complex, nonsymmetric linear
systems with 10K-100K unknowns
in 2D (>90% exe. time)

TOPS collaboration
replacement of diagonally scaled
Krylov with SuperLU, a
supernodal parallel sparse direct
solver
2D tests run 100× faster; 3D
production runs are ~5× faster

c/o D. Schnack, et al.

ACTS 2007

M3D: multigrid for optimality
M3D code

unstructured mesh, hybrid FE/FD
discretization with C0 elements
Sequence of real scalar systems
(>90% exe. time)

TOPS collaboration
replacement of additive Schwarz
(ASM) preconditioner with algebraic
multigrid (AMG) from Hypre
achieved mesh-independent
convergence rate
~5× improvement in execution time

0

100

200

300

400

500

600

700

3 12 27 48 75

ASM-GMRES
AMG-FMGRES

c/o S. Jardin, et al.

ACTS 2007

Algebraic multigrid a key algorithmic technology
Discrete operator defined for finest grid by the application, itself, and for many
recursively derived levels with successively fewer degrees of freedom, for solver
purposes
Unlike geometric multigrid, AMG not restricted to problems with “natural”
coarsenings derived from grid alone

Optimality (cost per cycle) intimately tied to the ability to coarsen
aggressively
Convergence scalability (number of cycles) and parallel efficiency
also sensitive to rate of coarsening

U. M. Yang, LLNL

Solvers are scaling:
algebraic multigrid (AMG) on BG/L (hypre)

Figure shows weak scaling result for AMG out to
120K processors, with one 25×25×25block per
processor (up to 1.875B dofs) procs

se
c

While much research and
development remains, multigrid
will clearly be practical at BG/P-
scale concurrency

fu =Δ−

ACTS 2007

Resistive MHD prototype implicit solver
Magnetic reconnection: the breaking and
reconnecting of oppositely directed
magnetic field lines in a plasma, replacing
hot plasma core with cool plasma, halting
the fusion process

Replace explicit updates with implicit
Newton-Krylov from SUNDIALS with
factor of ~5× in execution time

Current (J = r £ B)

J. Brin et al., “Geospace Environmental Modeling (GEM) magnetic reconnection challenge,” J. Geophys. Res. 106 (2001) 3715-3719.

c/o D. Reynolds, et al.

ACTS 2007

Resistive MHD: implicit solver, ex #2

Magnetic reconnection:
previous example was
compressible – primitive
variable; this example is
incompressible –
streamfunction/vorticity

Replace explicit updates with
implicit Newton-Krylov from
PETSc with factor of ~5× in
speedup

c/o F. Dobrian, et al.

ACTS 2007

Engage at a higher-level than Ax=b
Newton-Krylov-Schwarz/MG on coupled nonlinear system

Sensitivity analyses
validation studies

Stability analyses
“routine” outer loop on steady-state solutions

Optimization
parameter identification
design of facilities (accelerators, tokamaks, power plants,
etc.)
control of experiments

TOPS’ wishlist for MHD collaborations —
“Asymptopia”

ACTS 2007

Shape optimization for accelerators

CAD Meshing Partitioning
(parallel)

h-Refinement
p-refinement

Solvers
(parallel)

Refinement

Basic Analysis Loop for given Geometry

Omega3P

S3P

T3P

Tau3P

• Numerical modeling has replaced trial and error prototyping approach
• SciDAC adds advances that increase fidelity, speed, and accuracy:

• Next generation accelerators have complex cavities that require shape
optimization for improved performance and reduced cost
• AST/TSTT/TOPS are collaborating to develop an automated capability
to accelerate this otherwise manual process

DDS CELL

c/o W. Ko, et al.

ACTS 2007

Omega3P design optimization components

Omega3P
Sensitivity

meshing
sensitivity

optimization
geometricgeometric

modelmodel

Omega3P meshingmeshing

(only for discrete sensitivity)

TSTT

AST/TSTTTOPS

AST/TOPS

AST/TOPS

c/o O. Ghattas, et al.

ACTS 2007

Multigrid for Lattice Gauge QCD

Wilson-Fermion operator:

Difference operators:

Pauli spin matrices:

Fermion field: φ(x,y)=(f1,f2)

Gauge field: u(x,y)=eiθ

Real part Imaginary part

c/o James Brannick, et al.

ACTS 2007

Algebraic Multigrid for QCD

Diagonally scaled CG

Adaptive Smoothed Aggregation AMG CG

iterations / per-iteration-reduction / condition number

ACTS 2007

TOPS dreams that users will…

Understand range of algorithmic options
w/tradeoffs
e.g., memory vs. time, comp. vs. comm., inner iteration

work vs. outer

Try all reasonable options “easily”
without recoding or extensive recompilation

Know how their solvers are performing
with access to detailed profiling information

Intelligently drive solver research
e.g., publish joint papers with algorithm researchers

Simulate truly new physics free from solver limits
e.g., finer meshes, complex coupling, full nonlinearity

User’s
Rights

ACTS 2007

URLs

SciDAC homepage
http://www.scidac.gov/

TOPS SciDAC project on solvers
http://www.scidac.gov/math/TOPS.html

The SCaLeS report
http://www.pnl.gov/scales/

