
SuperLU: Sparse Direct SolverSuperLU: Sparse Direct Solver

X. Sherry Li
xsli@lbl.gov

http://crd.lbl.gov/~xiaoye/SuperLU

8th DOE ACTS Collection Workshop
August 23, 2007

X. Li 2

AcknowledgementAcknowledgement

Supports from DOE, NSF, DARPA
DOE SciDAC: Towards Optimal Petascale Simulations

Developers / Contributors
Sherry Li, LBNL
James Demmel, UC Berkeley
John Gilbert, UC Santa Barbara
Laura Grigori, INRIA, France
Jason Riedy, UC Berkeley
Daniel Schreiber, UIUC

X. Li 3

Quick InstallationQuick Installation

Download site http://crd.lbl.gov/~xiaoye/SuperLU
Include a complete Users’ Guide

Gunzip, untar
Follow README at top level directory

Edit make.inc for your platform (compilers, optimizations, libraries, ...)
(may move to autoconf in the future)
Performance depends on good BLAS library

The one in the distribution under CBLAS/ is functional, but not optimized

X. Li 4

Outline of TutorialOutline of Tutorial

Overview of the software
Background of the algorithms

Differences between sequential and parallel solvers

Sparse matrix distribution and user interface
Example program, Fortran 90 interface
Application

X. Li 5

What is SuperLU?What is SuperLU?

Solve general sparse linear system A x = b, no assumption of any
structure in A.

Sparse: many zeros in A; worth special treatment
E.g.: A of dimension 105, only 10 ~ 100 nonzeros per row

Algorithm: Gaussian elimination (LU factorization: A = LU),
followed by lower/upper triangular solutions.

Store only nonzeros and perform operations only on nonzeros.

SuperLU: Efficient and portable implementation for high-
performance architectures; flexible interface.

X. Li 6

Software StatusSoftware Status

Friendly interface for Fortran users
SuperLU_MT similar to SuperLU both numerically and in usage

Real/complex,
Double

Real/complex,
Single/double

Real/complex,
Single/double

Data type

C + MPIC + Pthreads
or OpenMP

CLanguage

DistributedSMPSerialPlatform

SuperLU_DISTSuperLU_MTSuperLU

X. Li 7

Content of SuperLU LibraryContent of SuperLU Library

LAPACK-style interface
Simple and expert driver routines
Computational routines
Comprehensive testing routines and example programs

Functionalities
Minimum degree ordering [MMD, Liu `85] applied to ATA or AT+A
User-controllable pivoting

Pre-assigned row and/or column permutations
Partial pivoting with threshold

Solving transposed system
Equilibration:
Condition number estimation
Iterative refinement
Componentwise error bounds [Skeel `79, Arioli/Demmel/Duff `89]

cr ADD

X. Li 8

Adoptions of SuperLUAdoptions of SuperLU

Industrial
FEMLAB
HP Mathematical Library
IMSL Numerical Library
NAG
Python (NumPy, SciPy extensions)

Academic/Lab:
In other ACTS Tools: Hypre, PETSc, Overture, Trilinos.
M3D-C1, NIMROD (simulate fusion reactor plasmas)
Omega3P (accelerator design, SLAC)
OpenSees (earthquake simluation, UCB)
NIKE (finite element code for structural mechanics, LLNL)
. . .

X. Li 9

Review of Gaussian Elimination (GE)Review of Gaussian Elimination (GE)

Solving a system of linear equations Ax = b

First step of GE: (make sure not too small . . . may need pivoting)

Repeats GE on C
Results in {L\U} decomposition (A = LU)

L lower triangular with unit diagonal, U upper triangular

Then, x is obtained by solving two triangular systems with L and U

⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

C
w

IvBv
w

A
TT

0/
01 α

α
α

α

TwvBC ⋅
−=

α

X. Li 10

FillFill--in in Sparse GEin in Sparse GE

Fill-in: original zero entry Aij becomes nonzero in L or U.

Natural order: nonzeros = 233 Min. Degree order: nonzeros = 207

X. Li 11

Representation: Compressed Row Storage (CRS)Representation: Compressed Row Storage (CRS)

Store nonzeros row by row contiguously
Example: N = 7, NNZ = 19
3 arrays:

Storage: NNZ reals, NNZ+N+1 integers

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

7
6

5
4

3
2

1

lk
jih
g

fe
dc

b
a

nzval 1 a 2 b c d 3 e 4 f 5 g h i 6 j k l 7

colind 1 4 2 5 1 2 3 2 4 5 5 7 4 5 6 7 3 5 7

rowptr 1 3 5 8 11 13 17 20

1 3 5 8 11 13 17 20

X. Li 12

SupernodeSupernode

Dense submatrices in the L & U factors

They are good for high performance
Enable use of Level 3 BLAS
Reduce inefficient indirect addressing (scatter/gather)
Reduce graph algorithms time by traversing a coarser graph

X. Li 13

Overview of the AlgorithmsOverview of the Algorithms

Sparse LU factorization: Pr A Pc
T = L U

Choose permutations Pr and Pc for numerical stability, minimizing fill-in,
and maximizing parallelism.

Phases for sparse direct solvers
1. Order equations & variables to minimize fill-in.

NP-hard, so use heuristics based on combinatorics.
2. Symbolic factorization.

Identify supernodes, set up data structures and allocate memory for L & U.
3. Numerical factorization – usually dominates total time.

How to pivot?
4. Triangular solutions – usually less than 5% total time.

Parallelization of Steps 1 and 2 is almost there . . .

X. Li 14

Numerical PivotingNumerical Pivoting

Goal of pivoting is to control element growth in L & U for stability
For sparse factorizations, often relax the pivoting rule to trade with better sparsity and
parallelism (e.g., threshold pivoting, static pivoting , . . .)

Partial pivoting used in sequential SuperLU (GEPP)
Can force diagonal pivoting (controlled by diagonal threshold)
Hard to implement scalably for sparse factorization

Static pivoting used in SuperLU_DIST (GESP)
Before factor, scale and permute A to maximize diagonal: Pr Dr A Dc = A’
During factor A’ = LU, replace tiny pivots by , without changing data structures
for L & U
If needed, use a few steps of iterative refinement after the first solution
Quite stable in practice

Aε

b

s x x

x x x

x

X. Li 15

Ordering for Sparse Ordering for Sparse CholeskyCholesky (1/2)(1/2)

Local greedy: Minimum degree (upper bound on fill-in)
[Tinney/Walker `67, George/Liu `79, Liu `85, Amestoy/Davis/Duff `94,

Ashcraft `95, Duff/Reid `95, et al.]

i j k i j k

Eliminate 1

1

i

j

k
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

×

×

×

×××× 1

i

j

k
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

•••×

•••×

•••×

××××

1

i

j

k

Eliminate 1
i

k

j

X. Li 16

Ordering for Sparse Ordering for Sparse CholeskyCholesky (2/2) (2/2)

Model problem: discretized system Ax = b from certain PDEs,
e.g., 5-point stencil on n x n grid, N = n^2

Factorization cost: O(n^3)

Nested dissection ordering gave optimal complexity in exact
arithmetic [George ’73, Hoffman/Martin/Ross]

X. Li 17

Ordering for Sparse Ordering for Sparse CholeskyCholesky (2/2)(2/2)

Generalized nested dissection [Lipton/Rose/Tarjan ’79]
Global graph partitioning: top-down, divide-and-conqure

First level

Recurse on A and B
Goal: find the smallest possible separator S at each level

Multilevel schemes:
Chaco [Hendrickson/Leland `94], Metis [Karypis/Kumar `95]

Spectral bisection [Simon et al. `90-`95]
Geometric and spectral bisection [Chan/Gilbert/Teng `94]

A BS
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Sxx
xB
xA

0
0

X. Li 18

Ordering Based on Nested DissectionOrdering Based on Nested Dissection

Original A

Permuted A LU factors

X. Li 19

Ordering for LU (Ordering for LU (unsymmetricunsymmetric))

Can use a symmetric ordering on a symmetrized matrix . . .
Case of partial pivoting (sequential SuperLU):
Use ordering based on ATA

If RTR = ATA and PA = LU, then for any row permutation P,
struct(L+U) ⊆ struct(RT+R) [George/Ng `87]
Making R sparse tends to make L & U sparse . . .

Case of static pivoting (SuperLU_DIST):
Use ordering based on AT+A

If RTR = AT+A and A = LU, then struct(L+U) ⊆ struct(RT+R)
Making R sparse tends to make L & U sparse . . .

Can find better ordering based solely on A, without symmetrization
[Amestoy/Li/Ng `03]

X. Li 20

Ordering Interface in SuperLUOrdering Interface in SuperLU

Library contains the following routines:
Ordering algorithms: MMD [J. Liu], COLAMD [T. Davis]
Utility routines: form AT+A , ATA

Users may input any other permutation vector (e.g., using Metis,
Chaco, etc.)

. . .
set_default_options_dist (&options);
options.ColPerm = MY_PERMC; /* modify default option */
ScalePermstructInit (m, n, &ScalePermstruct);
METIS (. . . , &ScalePermstruct.perm_c);
. . .
pdgssvx (&options, . . . , &ScalePermstruct, . . .);
. . .

X. Li 21

Ordering ComparisonOrdering Comparison

Number of fill-in entries in the {L\U} factors (millions)

10.727.726,068WANG4

11.922.6120,750TWOTONE

0.154.417,758MEMPLUS

42.773.551,993ECL32

40.249.838,744BBMAT

SuperLU_DIST

AMD(AT+A)

SuperLU

AMD(ATA)NMatrix

X. Li 22

Symbolic FactorizationSymbolic Factorization

Cholesky [George/Liu `81 book]
Use elimination graph of L and its transitive reduction (elimination tree)
Complexity linear in output: O(nnz(L))

LU
Use elimination graphs of L & U and their transitive reductions (elimination
DAGs) [Tarjan/Rose `78, Gilbert/Liu `93, Gilbert `94]
Improved by symmetric structure pruning [Eisenstat/Liu `92]
Improved by supernodes
Complexity greater than nnz(L+U), but much smaller than flops(LU)

X. Li 23

Numerical FactorizationNumerical Factorization

Sequential SuperLU
Enhance data reuse in memory hierarchy by calling Level 3 BLAS on the
supernodes

SuperLU_MT
Exploit both coarse and fine grain parallelism
Employ dynamic scheduling to minimize parallel runtime

SuperLU_DIST
Enhance scalability by static pivoting and 2D matrix distribution

X. Li 24

How to distribute the matrices?How to distribute the matrices?

Matrices involved:
A, B (turned into X) – input, users manipulate them
L, U – output, users do not need to see them

A (sparse) and B (dense) are distributed by block rows

Local A stored in
Compressed Row Format

Natural for users, and consistent with other popular packages: e.g. PETSc

A B
x x x x

x x x

x x x

x x x

P0

P1

P2

X. Li 25

Distributed Input InterfaceDistributed Input Interface

Each process has a structure to store local part of A
Distributed Compressed Row Storage

typedef struct {
int_t nnz_loc; /* number of nonzeros in the local submatrix */
int_t m_loc; /* number of rows local to this processor */
int_t fst_row; /* global index of the first row */
void *nzval; /* pointer to array of nonzero values, packed by row */
int_t *colind; /* pointer to array of column indices of the nonzeros */
int_t *rowptr; /* pointer to array of beginning of rows in nzval[]and colind[] */

} NRformat_loc;

X. Li 26

Distributed Compressed Row StorageDistributed Compressed Row Storage

Processor P0 data structure:
nnz_loc = 5
m_loc = 2
fst_row = 0 /* 0-based indexing */
nzval = { s, u, u, l, u }
colind = { 0, 2, 3, 0, 1 }
rowptr = { 0, 3, 5 }

Processor P1 data structure:
nnz_loc = 7
m_loc = 3
fst_row = 2 /* 0-based indexing */
nzval = { l, p, e, u, l, l, r }
colind = { 1, 2, 3, 4, 0, 1, 4 }
rowptr = { 0, 2, 4, 7 }

u
s u u
l

p
e

l l r

P0

P1
l

A is distributed on 2 processors:

u

X. Li 27

2D Block Cyclic Layout for L and U2D Block Cyclic Layout for L and U

Process can be addressed by (row, col) coordinate.
Better for GE scalability, load balance
Library has a “re-distribution” phase to distribute the initial values of A to the
2D block-cyclic data structure of L & U.

All-to-all communication, entirely parallel
< 10% of total time for most matrices

X. Li 28

Process grid and MPI communicatorProcess grid and MPI communicator

Example: Solving a preconditioned linear system
M-1A x = M-1 b
M = diag(A11, A22, A33)

use SuperLU_DIST for
each diagonal block

Need create 3 process grids, same logical ranks (0:3),
but different physical ranks
Each grid has its own MPI communicator

A22

A33

A110 1
2 3

4 5
6 7

8 9
1011

X. Li 29

Two ways to create a process gridTwo ways to create a process grid

Superlu_gridinit(MPI_Comm Bcomm, int nprow, int npcol,
gridinfo_t *grid);

Maps the first nprow*npcol processes in the MPI communicator Bcomm to
SuperLU 2D grid

Superlu_gridmap(MPI_Comm Bcomm, int nprow, int npcol,
int usermap[], int ldumap, gridinfo_t *grid);

Maps an arbitrary set of nprow*npcol processes in the MPI communicator
Bcomm to SuperLU 2D grid. The ranks of the selected MPI processes are
given in usermap[] array. For example:

161514
131211

0 1 2
0

1

X. Li 30

ExamplesExamples

7.5109259,203ComplexNIMROD
(Fusion)

cc_linear2

9.8161801,378RealM3D-C1
(Fusion)

matrix211

40.216834,575RealOmega3P
(Accelerator)

dds15

9.3161589,698RealM3D-C1
(Fusion)

matrix181

Fill-ratio|A| / NNTypeCodesName

• Sparsity-preserving ordering: MeTis applied to structure of A’+A

X. Li 31

Performance on IBM Power5 (Performance on IBM Power5 (bassibassi, 1.9 GHz), 1.9 GHz)

• 161 Gflops factorization rate for matrix121

X. Li 32

Performance on IBM Power3 (Performance on IBM Power3 (seaborgseaborg, 375 MHz), 375 MHz)

Quantum mechanics, complex: N = 2 million

X. Li 33

Tips for Debugging PerformanceTips for Debugging Performance

Check ordering
Diagonal pivoting is preferable

E.g., matrix is diagonally dominant, . . .

Need good BLAS library (vendor, ATLAS, GOTO)
May need adjust block size for each architecture
(Parameters modifiable in routine sp_ienv())

Larger blocks better for uniprocessor
Smaller blocks better for parallellism and load balance

Open problem: automatic tuning for block size?

X. Li 34

SuperLU_DISTSuperLU_DIST Example ProgramExample Program

SuperLU_DIST_2.0/EXAMPLE/pddrive.c

Five basic steps
1. Initialize the MPI environment and SuperLU process grid
2. Set up the input matrices A and B
3. Set the options argument (can modify the default)
4. Call SuperLU routine PDGSSVX
5. Release the process grid, deallocate memory, and terminate the MPI

environment

X. Li 35

EXAMPLE/EXAMPLE/pddrive.cpddrive.c

#include "superlu_ddefs.h“

main(int argc, char *argv[])
{

superlu_options_t options;
SuperLUStat_t stat;
SuperMatrix A;
ScalePermstruct_t ScalePermstruct;
LUstruct_t LUstruct;
SOLVEstruct_t SOLVEstruct;
gridinfo_t grid;

· · · · · ·
/* Initialize MPI environment */

MPI_Init(&argc, &argv);

· · · · · ·
/* Initialize the SuperLU process grid */

nprow = npcol = 2;
superlu_gridinit(MPI_COMM_WORLD, nprow,

npcol, &grid);

/* Read matrix A from file, distribute it, and set up the
right-hand side */

dcreate_matrix(&A, nrhs, &b, &ldb, &xtrue, &ldx,
fp, &grid);

/* Set the options for the solver. Defaults are:
options.Fact = DOFACT;
options.Equil = YES;
options.ColPerm = MMD_AT_PLUS_A;
options.RowPerm = LargeDiag;
options.ReplaceTinyPivot = YES;
options.Trans = NOTRANS;
options.IterRefine = DOUBLE;
options.SolveInitialized = NO;
options.RefineInitialized = NO;
options.PrintStat = YES;

*/
set_default_options_dist(&options);

X. Li 36

EXAMPLE/EXAMPLE/pddrive.cpddrive.c (cont.)(cont.)

/* Initialize ScalePermstruct and LUstruct. */
ScalePermstructInit (m, n, &ScalePermstruct);
LUstructInit (m, n, &LUstruct);

/* Initialize the statistics variables. */
PStatInit(&stat);

/* Call the linear equation solver. */
pdgssvx (&options, &A, &ScalePermstruct, b,

ldb, nrhs, &grid, &LUstruct,
&SOLVEstruct, berr, &stat, &info);

/* Print the statistics. */

PStatPrint (&options, &stat, &grid);

/* Deallocate storage */

PStatFree (&stat);
Destroy_LU (n, &grid, &LUstruct);
LUstructFree (&LUstruct);

/* Release SuperLU process grid */
superlu_gridexit (&grid);

/* Terminate MPI execution environment */
MPI_Finalize ();

}

X. Li 37

Fortran 90 InterfaceFortran 90 Interface

SuperLU_DIST_2.0/FORTRAN/
All SuperLU objects (e.g., LU structure) are opaque for F90

They are allocated, deallocated and operated in the C side and not directly
accessible from Fortran side.

C objects are accessed via handles that exist in Fortran’s user
space
In Fortran, all handles are of type INTEGER
Example:

0.12,0.18,0.5,0.16,0.21,0.19 , ======

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= lrepus

rll
ue

pl
ul

uus

A

X. Li 38

SuperLU_DIST_2.0/FORTRAN/f_5x5.f90SuperLU_DIST_2.0/FORTRAN/f_5x5.f90

program f_5x5
use superlu_mod
include 'mpif.h'
implicit none
integer maxn, maxnz, maxnrhs
parameter (maxn = 10, maxnz = 100, maxnrhs
= 10)
integer colind(maxnz), rowptr(maxn+1)
real*8 nzval(maxnz), b(maxn), berr(maxnrhs)
integer n, m, nnz, nrhs, ldb, i, ierr, info, iam
integer nprow, npcol
integer init
integer nnz_loc, m_loc, fst_row
real*8 s, u, p, e, r, l

integer(superlu_ptr) :: grid
integer(superlu_ptr) :: options
integer(superlu_ptr) :: ScalePermstruct
integer(superlu_ptr) :: LUstruct
integer(superlu_ptr) :: SOLVEstruct
integer(superlu_ptr) :: A
integer(superlu_ptr) :: stat

! Initialize MPI environment
call mpi_init(ierr)

! Create Fortran handles for the C structures used
! in SuperLU_DIST
call f_create_gridinfo(grid)
call f_create_options(options)
call f_create_ScalePermstruct(ScalePermstruct)
call f_create_LUstruct(LUstruct)
call f_create_SOLVEstruct(SOLVEstruct)
call f_create_SuperMatrix(A)
call f_create_SuperLUStat(stat)

! Initialize the SuperLU_DIST process grid
nprow = 1
npcol = 2
call f_superlu_gridinit

(MPI_COMM_WORLD,
nprow, npcol, grid)

call get_GridInfo(grid, iam=iam)

X. Li 39

f_5x5.f90 (cont.)f_5x5.f90 (cont.)

! Set up the input matrix A
! It is set up to use 2 processors:
! processor 1 contains the first 2 rows
! processor 2 contains the last 3 rows

m = 5
n = 5
nnz = 12
s = 19.0
u = 21.0
p = 16.0
e = 5.0
r = 18.0
l = 12.0

if (iam == 0) then
nnz_loc = 5
m_loc = 2
fst_row = 0 ! 0-based indexing
nzval (1) = s
colind (1) = 0 ! 0-based indexing
nzval (2) = u
colind (2) = 2
nzval (3) = u
colind (3) = 3
nzval (4) = l
colind (4) = 0
nzval (5) = u
colind (5) = 1
rowptr (1) = 0 ! 0-based indexing
rowptr (2) = 3
rowptr (3) = 5

else
nnz_loc = 7
m_loc = 3
fst_row = 2 ! 0-based indexing
nzval (1) = l
colind (1) = 1
nzval (2) = p
colind (2) = 2
nzval (3) = e
colind (3) = 3
nzval (4) = u
colind (4) = 4
nzval (5) = l
colind (5) = 0
nzval (6) = l
colind (6) = 1
nzval (7) = r
colind (7) = 4
rowptr (1) = 0 ! 0-based indexing
rowptr (2) = 2
rowptr (3) = 4
rowptr (4) = 7

endif

X. Li 40

f_5x5.f90 (cont.)f_5x5.f90 (cont.)

! Create the distributed compressed row matrix
! pointed to by the F90 handle
call f_dCreate_CompRowLoc_Matrix_dist

(A, m, n, nnz_loc, m_loc, fst_row, &
nzval, colind, rowptr, SLU_NR_loc, &
SLU_D, SLU_GE)

! Setup the right hand side
nrhs = 1
call get_CompRowLoc_Matrix

(A, nrow_loc=ldb)
do i = 1, ldb

b(i) = 1.0
enddo

! Set the default input options
call f_set_default_options(options)

! Modify one or more options
Call set_superlu_options

(options,ColPerm=NATURAL)
call set_superlu_options

(options,RowPerm=NOROWPERM)

! Initialize ScalePermstruct and LUstruct
call get_SuperMatrix (A,nrow=m,ncol=n)
call f_ScalePermstructInit(m, n, ScalePermstruct)
call f_LUstructInit(m, n, LUstruct)

! Initialize the statistics variables
call f_PStatInit(stat)

! Call the linear equation solver
call f_pdgssvx(options, A, ScalePermstruct, b,

ldb, nrhs, grid, LUstruct, SOLVEstruct,
berr, stat, info)

! Deallocate the storage allocated by SuperLU_DIST
call f_PStatFree(stat)
call f_Destroy_SuperMatrix_Store_dist(A)
call f_ScalePermstructFree(ScalePermstruct)
call f_Destroy_LU(n, grid, LUstruct)
call f_LUstructFree(LUstruct)

X. Li 41

f_5x5.f90 (cont.)f_5x5.f90 (cont.)

! Release the SuperLU process grid
call f_superlu_gridexit(grid)

! Deallocate the C structures pointed to by the
! Fortran handles
call f_destroy_gridinfo(grid)
call f_destroy_options(options)
call f_destroy_ScalePermstruct(ScalePermstruct)
call f_destroy_LUstruct(LUstruct)
call f_destroy_SOLVEstruct(SOLVEstruct)
call f_destroy_SuperMatrix(A)
call f_destroy_SuperLUStat(stat)

! Terminate the MPI execution environment
call mpi_finalize(ierr)

Stop
end

X. Li 42

Other Examples in EXAMPLE/Other Examples in EXAMPLE/

Pddrive1.c:
Solve the systems with same A but different right-hand side.

Reuse the factored form of A

Pddrive2.c:
Solve the systems with the same sparsity pattern of A.

Reuse the sparsity ordering

Pddrive3.c:
Solve the systems with the same sparsity pattern and similar values

Reuse the sparsity ordering and symbolic factorization

Pddrive4.c:
Divide the processes into two subgroups (two grids) such that each
subgroup solves a linear system independently from the other.

X. Li 43

Application: Accelerator Cavity DesignApplication: Accelerator Cavity Design

Electromagnetic applications

Important for the design of
International Linear Accelerator
(ILC)

Stanford Linear Accelerator Center

Curl-curl formulation of
Maxwell’s equation ()

() B

E

E
E
EE

Γ=×∇×
Γ=×

Ω=−×∇×∇

on 0
on 0
in 0

n
n
λ

X. Li 44

Accelerator (cont.)Accelerator (cont.)

Finite element methods lead to
large, sparse generalized
eigensystem

K x = λ M x

Real symmetric for closed
cavities;
Complex symmetric, nonlinear
for open cavities (with external
coupling)

Seek interior eigenvalues that
are relatively small in
magnitude

X. Li 45

Accelerator (cont.)Accelerator (cont.)

Algorithm: Speed up Lanczos convergence by shift-invert
Seek largest eigenvalues, well separated, of the transformed

system
M (K - σ M)-1 x = μ x
μ = 1 / (λ - σ)

Shift-invert Lanczos (SIL)
PARPACK: implicitly restarted Arnoldi
Parallel SuperLU to solve the shifted linear system

X. Li 46

DDS47, Linear ElementsDDS47, Linear Elements
Total eigensolver time: N = 1.3 M, NNZ = 20 M

X. Li 47

Large Large EigenEigen Problem Solved Using ESILProblem Solved Using ESIL

DDS47, quadratic elements
N = 7.5 M, NNZ = 304 M
6 G fill-ins using Metis

24 processors (8x3)
Factor: 3,347 s
1 Solve: 61 s
Eigensolver: 9,259 s (~2.5 hrs)

10 eigenvalues, 1 shift, 55 solves

X. Li 48

SummarySummary

Efficient implementations of sparse LU on high-performance
machines
More sensitive to latency than dense case
Continuing developments funded by DOE TOPS SciDAC project

Integrate into more applications
Parallel ordering and symbolic factorization
Improve triangular solution

Survey of other sparse direct solvers: “Eigentemplates” book
(http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf)

LLT, LDLT, LU, QR

THE ENDTHE END

X. Li 50

Scalability of Scalability of SuperLU_DISTSuperLU_DIST

Poisson’s equation on a cube of size N=n3, amount of work N2 = n6 scales with
processors for constant work per processor
Performance sensitive to communication latency

Cray T3E latency: 3 microseconds (~ 2702 flops)
IBM SP latency: 8 microseconds (~ 11940 flops)

