
Numerical Optimization and the
Toolkit for Advanced Optimization

Jason Sarich, Todd Munson, Jorge Moré

Mathematics and Computer Science Division,
Argonne National Laboratory

August 21, 2007

Jason Sarich Toolkit for Advanced Optimization



ACTS Workshop 2007

Part I

Nonlinear Optimization

Jason Sarich Toolkit for Advanced Optimization



ACTS Workshop 2007

Nonlinear Optimization

• Unconstrained Optimization

• Bound-constrained Optimization

• General Constrained Optimization

Jason Sarich Toolkit for Advanced Optimization



ACTS Workshop 2007

Nonlinear Optimization

Unconstrained Optimization Problem

f : RN 7→ R
min

x∈RN
f(x)

Jason Sarich Toolkit for Advanced Optimization



ACTS Workshop 2007

Nonlinear Optimization

Bound-constrained Optimization Problem

min f(x) (objective function)

subject to xl ≤ x ≤ xu (bounds)

Jason Sarich Toolkit for Advanced Optimization



ACTS Workshop 2007

Nonlinear Optimization

Constrained Optimization Problem

min f(x) (objective function)

subject to cl ≤ c(x) ≤ cu (constraints)

Note: TAO is not yet able to solve constrained optimization
problems.

Jason Sarich Toolkit for Advanced Optimization



Part II

Algorithms

Jason Sarich Toolkit for Advanced Optimization



Algorithms

Nonlinear optimization algorithms are iterative processes. In many
cases, each iteration involve calculating a ’search direction’, then
function values along that direction are calculated until certain
conditions are met.

• Newton’s Method

• Quasi-Newton Methods

• Conjugate Gradient

Jason Sarich Toolkit for Advanced Optimization



Algorithms

Newton’s Method

• Step 0 Choose initial vector x0

• Step 1 Compute gradient ∇f(xk) and Hessian ∇2f(xk)

• Step 2 Calculate the direction dk+1 by solving the system:

∇2f(xk)dk+1 = −∇f(xk)

• Step 3 Apply line search algorithm to obtain “acceptable”
new vector:

xk+1 = xk + τdk+1

• Return to Step 1

Jason Sarich Toolkit for Advanced Optimization



Algorithms

Problems with Newton’s Method

• Hessian must be derived, computed, and stored

• Linear solve must be performed on Hessian

Jason Sarich Toolkit for Advanced Optimization



Algorithms

Quasi-Newton Methods
Use approximate Hessian Bk ≈ ∇2f(xk). Choose a formula for Bk

so that:

• Bk relies on first derivative information only

• Bk can be easily stored

• Bkdk+1 = −∇f(xk) can be easily solved

Jason Sarich Toolkit for Advanced Optimization



Algorithms

Conjugate Gradient Algorithms

These algorithms are an extension of the conjugate gradient
methods for solving linear systems.

dk+1 = −∇f(xk) + βkdk

Some possible choices of βk (gk = ∇f(xk)):

βFR
k =

(
‖gk+1‖
‖gk‖

)2

, Fletcher-Reeves

βPR
k =

〈gk+1, gk+1 − gk〉
‖gk‖2

, Polak-Ribière

βPR+
k = max

{
βPR

k , 0
}

, PR-plus

Jason Sarich Toolkit for Advanced Optimization



Algorithms

Derivate Free Algorithms

There are some applications for which it is not feasible to find the
derivative of the objective function. There are some algorithms
available that can solve these applications, but they can be very
slow to converge.

• Pattern Searches

• Nelder-Mead Simplex

• Use finite differences

Jason Sarich Toolkit for Advanced Optimization



Part III

TAO

The process of nature by which all things change and which is to
be followed for a life of harmony

Jason Sarich Toolkit for Advanced Optimization



TAO

What does TAO do for you?

• Contains a library of optimization solvers for solving
unconstrained and bound-constrained optimization problems.
These solvers include Newton methods, Quasi-Newton
methods, conjugate gradients, and derivative free methods.

• Provides C, C++, and Fortran interfaces to these libraries

• Allows for large scale, sparse objects, and parallel applications

• Uses PETSc data structures and utilities

Jason Sarich Toolkit for Advanced Optimization



TAO

Pressure in a Journal Bearing

min

{∫
D

{
1
2wq(x)‖∇v(x)‖2 − wl(x)v(x)

}
dx : v ≥ 0

}

wq(ξ1, ξ2) = (1 + ε cos ξ1)
3

wl(ξ1, ξ2) = ε sin ξ1

D = (0, 2π)× (0, 2b)

Number of active constraints depends on the choice of ε in (0, 1).
Nearly degenerate problem. Solution v /∈ C2.

Jason Sarich Toolkit for Advanced Optimization



TAO

Minimal Surface with Obstacles

min

{∫
D

√
1 + ‖∇v(x)‖2 dx : v ≥ vL

}

Number of active constraints depends on the height of the
obstacle. The solution v /∈ C1. Almost all multipliers are zero.

Jason Sarich Toolkit for Advanced Optimization



TAO

Parallel Performance

Processors BLMVM Execution Percentage of Time
Used Iterations Time AXPY Dot FG

8 996 1083.8 31 9 60
16 991 538.2 30 10 60
32 966 267.7 29 11 60
64 993 139.5 27 13 60
128 987 72.4 25 15 60
256 996 39.2 26 18 56
512 1000 21.6 23 22 53

Table: Scalability of BLMVM on Obstacle Problem with 2,560,000
variables.

Jason Sarich Toolkit for Advanced Optimization



TAO

What TAO doesn’t do

• Application Modeling

• Derivatives

• Constrained optimization

• Integer programming

• Global minimization

Jason Sarich Toolkit for Advanced Optimization



TAO Applications

Using TAO

There are two parts to solving an optimization application with
TAO:

• An Application Object that contain routines to evaluate an
objective function, define constraints on the variables, and
provide derivative information.

• A driver program (main) that creates a TAO solver with
desired algorithmic options and tolerances and connects with
the application object.

TAO uses Matrix and vector objects from PETSc but can be
extended to other linear algebra packages.

Jason Sarich Toolkit for Advanced Optimization



TAO Application

Jason Sarich Toolkit for Advanced Optimization



TAO Applications

What do you need to do for the Application Object?

You need to write C, C++, or Fortran functions that:

• Set the initial variable vector

• Compute the objective function value at a given vector

• Compute the gradient at a given vector

• Compute the Hessian matrix at a given vector (for Newton
methods)

• Set the variable bounds (for bounded optimization)

Jason Sarich Toolkit for Advanced Optimization



TAO Applications

Create a data structure that contains any state information, such
as parameter values or data viewers, that the evaluation routines
will need. For example:

typedef struct {
double epsilon; /* application parameter */
PetscViewer pv; /* helpful for debugging */

} UserContext;

The objective function evaluation routine should look like:

int MyFunction(TAO_APPLICATION app, Vec x,
double *fcn, void *userCtx){

UserContext *user = (UserContext *)userCtx;
...

}

Jason Sarich Toolkit for Advanced Optimization



TAO Applications

The routines for computing the gradient and Hessians look similar:

int MyGradient(TAO_APPLICATION app, Vec x, Vec g,
void *userCtx){

UserContext *user = (UserContext *)userCtx;
...

}
int MyHessian(TAO_APPLICATION app, Vec x, Mat *H,

Mat *Hpre, int *flag, void *userCtx){
UserContext *user = (UserContext *)userCtx;
...

}

Jason Sarich Toolkit for Advanced Optimization



TAO Applications

Writing the Driver

A “driver” program is used to hook up the user’s application to the
TAO library. This driver performs the following steps:

• Create the TAO Solver and Application objects

• Create the variable vector and Hessian matrix

• Hook up the Application to TAO

• Solve the application

Jason Sarich Toolkit for Advanced Optimization



TAO Applications

Create the TAO Solver and Application objects

TAO_SOLVER tao; /* TAO Optimization solver */
TAO_APPLICATION app; /* TAO Application using PETSc */
UserContext user; /* user-defined structure */
Vec x; /* solution vector */
Mat H; /* Hessian Matrix */

PetscInitizialize(&argc,&argv,0,0);
TaoInitialize(&argc,&argv,0,0);
TaoCreate(PETSC_COMM_SELF,"tao_lmvm",&tao);
TaoApplicationCreate(PETSC_COMM_SELF,&app);
...

Jason Sarich Toolkit for Advanced Optimization



TAO Applications

Create storage for the solution vector and Hessian matrix

TAO_SOLVER tao; /* TAO Optimization solver */
TAO_APPLICATION app; /* TAO Application using PETSc */
UserContext user;/* user-defined structure */
Vec x; /* solution vector */
Mat H; /* Hessian Matrix */

...
VecCreateSeq(PETSC_COMM_SELF,n,&x);
MatCreateSeqAIJ(PETSC_COMM_SELF,n,n,nz,PETSC_NULL,&H);
...

Jason Sarich Toolkit for Advanced Optimization



TAO Applications

Hook up the application to TAO

TAO_SOLVER tao; /* TAO Optimization solver */
TAO_APPLICATION app; /* TAO Application using PETSc */
UserContext user; /* user-defined structure */
Vec x; /* solution vector */
Mat H; /* Hessian Matrix */

...
user.epsilon = 0.1;
TaoAppSetInitialSolutionVec(app,x);
TaoAppSetObjectiveRoutine(app,MyFunction,(void *)&user);
TaoAppSetGradientRoutine(app,MyGradient,(void *)&user);
TaoAppSetHessianRoutine(app,MyHessian,(void *)&user);
...

Jason Sarich Toolkit for Advanced Optimization



TAO Applications

Solve the application

TAO_SOLVER tao; /* TAO Optimization solver */
TAO_APPLICATION app; /* TAO Application using PETSc */
UserContext user; /* user-defined structure */
Vec x; /* solution vector */
Mat H; /* Hessian Matrix */

...
TaoSolveApplication(app, tao);
VecView(x,PETSC_VIEWER_STDOUT_SELF);

Jason Sarich Toolkit for Advanced Optimization



TAO Applications

Solve a multiple processor application

The most important and difficult part of solving a multiple
processor application is writing the function, gradient, and Hessian
evaluation routines to run in parallel.
Once that is done, it is trivial to get TAO to run in parallel:

...
TaoCreate(PETSC_COMM_WORLD,"tao_lmvm",&tao);
TaoApplicationCreate(PETSC_COMM_WORLD,&app);
VecCreateMPI(PETSC_COMM_WORLD,n,&x);
MatCreateMPIAIJ(PETSC_COMM_WORLD,n,n,nz,PETSC_NULL,&H);
...

Jason Sarich Toolkit for Advanced Optimization



Toolkit for Advanced Optimization

• You can download TAO from the webpage
http://www.mcs.anl.gov/tao

• The documention online includes installation instructions, a
user’s manual and a man page for every TAO function.

• The download includes several examples for using TAO in C
and Fortran. We will use some of these examples in the
tutorial.

• If you have any questions, please contact us at
tao-comments@mcs.anl.gov

Jason Sarich Toolkit for Advanced Optimization

http://www.mcs.anl.gov/tao
tao-comments@mcs.anl.gov

	ACTS Workshop 2007

