
CCA
Common Component Architecture

Welcome to the
Common Component ArchitectureCommon Component Architecture

Tutorial
ACTS Collection Workshop

22 August 2008g

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

t t i l @ ftutorial-wg@cca-forum.org

This work is licensed under a Creative Commons Attribution 2.5 License 1

CCA
Common Component Architecture

Licensing Information

Supplementary material for handouts

g
• This tutorial is distributed under the Creative Commons

Attribution 2.5 License
– http://creativecommons.org/licenses/by/2.5/

• In summary, you are free:
– to copy, distribute, display, and perform the work
– to make derivative works

to make commercial use of the work– to make commercial use of the work
• Under the following conditions:

– Attribution. You must attribute the work in the manner specified by
the author or licensor.

• For any reuse or distribution, you must make clear to others the
license terms of this work.

• Any of these conditions can be waived if you get permission
from the copyright holderfrom the copyright holder.

• Your fair use and other rights are in no way affected by the
above.

• Requested reference:

2

• Requested reference:
– CCA Forum Tutorial Working Group, Common Component

Architecture Tutorial, 2008, http://www.cca-forum.org/tutorials/

CCA
Common Component Architecture

Supplementary material for handouts

About the Printed Notes

• The printed version of these presentations
includes additional slides marked
“Supplementary material for handouts”

• Additional material to address questions• Additional material to address questions
sometimes raised, or provide more detail on a
topictopic

• We are happy to discuss this material if asked

3

CCA
Common Component Architecture

Introductions

• Rob Armstrong (Sandia National Laboratories)

• Benjamin Allan (Sandia National Laboratories)• Benjamin Allan (Sandia National Laboratories)

• David E. Bernholdt (Oak Ridge National Laboratory)

• Tom Epperly (Lawrence Livermore National Laboratory)

• Jaideep Ray (Sandia National Laboratories)

• Sameer Shende (U Oregon)

4

• Sameer Shende (U. Oregon)

CCA
Common Component Architecture

Agenda & Table of Contentsg
Time Title Slide No. Presenter

11:00-12:30 Welcome 1 David Bernholdt, ORNL
I t d ti t B b l d th CCA 7 D id B h ldt ORNLIntroduction to Babel and the CCA 7 David Bernholdt, ORNL
The Primary Tools 58 Tom Epperly, LLNL
Approaches & Experience 84 Jaideep Ray, SNL
Closing 109 Jaideep Ray, SNL

12:30-13:30 Lunch
13:30-14:00 Can it be that Easy? A Quick

Demonstration
Ben Allan, SNL

Demonstration
14:00-16:30 Hands-On Hands-On

Guide
Ben Allan, SNL
and the CCA team

16:30-17:00 Break16:30 17:00 Break
17:00 Adjourn

5

CCA
Common Component Architecture

Who We Are: The Common Component
Architecture (CCA) Forum

• Combination of standards body and user group for the CCA
• Define specifications for high-performance scientific components

& frameworks
• Promote and facilitate development of tools for component-based

software development, components, and component applications
• Open membership, quarterly meetings…

General mailing list: cca-forum@cca-forum.org
Web: http://www cca forum org/Web: http://www.cca-forum.org/

• Center for Technology for Advanced Scientific Component
Software (TASCS)

6

Software (TASCS)
– Funded by the US DOE SciDAC program
– Core development team for CCA technologies

CCA
Common Component Architecture

Introduction to HPC Component
S ftSoftware

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

t t i l @ ftutorial-wg@cca-forum.org

This work is licensed under a Creative Commons Attribution 2.5 License 7

CCA
Common Component Architecture

Managing Code Complexity

S C Sit tiSome Common Situations:
• Your code is so large and complex it has become fragile and

hard to keep running
• You have a simple code, and you want to extend its capabilitiesYou have a simple code, and you want to extend its capabilities

– rationally
• You want to develop a computational “toolkit”

– Many modules that can be assembled in different ways to perform
different scientific calculationsdifferent scientific calculations

– Gives users w/o programming experience access to a flexible tool
for simulation

– Gives users w/o HPC experience access to HPC-ready software

How CCA Can Help:
• Components help you think about software in manageable

chunks that interact only in well-defined ways
C t id “ l d l ” i t th t ll

8

• Components provide a “plug-and-play” environment that allows
easy, flexible application assembly

CCA
Common Component Architecture

Example: Computational Facility for p p y
Reacting Flow Science (CFRFS)

• A toolkit to perform
simulations of unsteady
flames

• Solve the Navier Stokes• Solve the Navier-Stokes
with detailed chemistry
– Various mechanisms

up to ~50 species, 300
reactions

– Structured adaptive p
mesh refinement

• CFRFS today:
61 components

“Wiring diagram” for a typical CFRFS
simulation, utilizing 12 components.

CCA tools used: Ccaffeine and

9

– 61 components
– 7 external libraries
– 9 contributors

CCA tools used: Ccaffeine, and
ccafe-gui
Languages: C, C++, F77

CCA
Common Component Architecture

Helping Groups Work with SoftwareHelping Groups Work with Software
Some Common Situations:
• Many (geographically distributed) developers creating

l ft ta large software system
– Hard to coordinate, different parts of the software don’t work

together as required
• Groups of developers with different specialties• Groups of developers with different specialties
• Forming communities to standardize interfaces or

share code
How CCA Can Help:
• Components are natural units for

– Expressing software architecturep g
– Individuals or small groups to develop
– Encapsulating particular expertise

• Some component models (including CCA) provide

10

p (g) p
tools to help you think about the interface separately
from the implementation

CCA
Common Component Architecture

E l Q t Ch i tExample: Quantum Chemistry
• Integrated state-of-the-art

i i i h loptimization technology
into two quantum
chemistry packages to

ff
Schematic of CCA-based molecular
structure determination quantum

explore effectiveness in
chemistry applications

• Geographically distributed q
chemistry application.

Components based on: MPQC,

g p y
expertise:
– California - chemistry
– Illinois - optimization

W hi t h i t NWChem (quantum chem.), TAO
(optimization), Global Arrays, PETSc
(parallel linear algebra)
CCA t l d B b l C ff i

– Washington – chemistry,
parallel data management

• Effective collaboration
ith i i l f t f

11

CCA tools used: Babel, Ccaffeine,
and ccafe-gui
Languages: C, C++, F77, Python

with minimal face-to-face
interaction

CCA
Common Component Architecture

Language Interoperability

S C Sit tiSome Common Situations:
• Need to use existing code or libraries written in

multiple languages in the same application?
• Want to allow others to access your library from

multiple languages?
• Technical or sociological reasons for wanting to use• Technical or sociological reasons for wanting to use

multiple languages in your application?

How CCA Can Help:
• Some component models (including CCA) allow

transparent mixing of languages
• Babel (CCA’s language interop tool) can be used

12

• Babel (CCA s language interop. tool) can be used
separately from other component concepts

CCA
Common Component Architecture

ExamplesExamples

hypre LAPACK07
U d t t LAPACK li• High performance

preconditioners and linear
solvers

• Update to LAPACK linear
algebra library
– To be released 2007

Lib itt i F77 F95solvers
• Library written in C
• Babel-generated object-

– Library written in F77, F95
• Will use Babel-generated

interfaces for: C, C++,
F77 F95 Java PythonBabel generated object

oriented interfaces
provided in C, C++, Fortran

F77, F95, Java, Python
• Possibly also ScaLAPACK

(distributed version)
“I implemented a Babel-based interface for the hypre library of linear
equation solvers. The Babel interface was straightforward to write and
gave us interfaces to several languages for less effort than it would take

f

13CCA tools used: Babel, Chasm

to interface to a single language.”
-- Jeff Painter, LLNL. 2 June 2003

CCA
Common Component Architecture

Coupling Codes
Some Common Situations:Some Common Situations:
• Your application makes use of numerous third-party libraries

– Some of which interact (version dependencies)
• You want to develop a simulation in which your code is coupledYou want to develop a simulation in which your code is coupled

with others
– They weren’t designed with this coupling in mind
– They must remain usable separately too

Th ll d ti l d l t i di id ll– They are all under continual development, individually
– They’re all parallel and need to exchange data frequently

How CCA Can Help:
• Components are isolated from one another• Components are isolated from one another

– Interactions via well-defined interfaces
– An application can include multiple versions of a component

• Components can be composed flexibly, hierarchicallyp p y, y
– Standalone application as one assembly, coupled simulation as

another
• CCA can be used in SPMD, MPMD, and distributed styles of

parallel computing

14

parallel computing
• CCA is developing technology to facilitate data and functional

coupling of parallel applications

CCA
Common Component Architecture

Example: Integrated Fusion SimulationExample: Integrated Fusion Simulation
• Proof-of-principle of using

CC fCCA for integrated whole-
device modeling needed
for the ITER fusion reactor

• Couples radio frequency
(RF) heating of plasma

ith t t d liwith transport modeling
• Coarse-grain

encapsulation of pre-

“Wiring diagram” for integrated fusion
simulation.

p p
existing programs

• Follow-on plans for RF,
t t d t

Components based on: AORSA,
Houlberg’s transport library
New components: Driver, State
CCA t l d B b l Ch

15

transport, and magneto-
hydrodynamics

CCA tools used: Babel, Chasm,
Ccaffeine, ccafe-gui
Languages: C++, F90, Python

CCA
Common Component Architecture

What are Components?What are Components?

• No universally accepted definition in computer
science research, but key features include…

• A unit of software development/deployment/reuse p p y
– i.e. has interesting functionality
– Ideally, functionality someone else might be able to (re)use
– Can be developed independently of other componentsp p y p

• Interacts with the outside world only through well-
defined interfacesdefined interfaces
– Implementation is opaque to the outside world

• Can be composed with other components

16

• Can be composed with other components
– “Plug and play” model to build applications
– Composition based on interfaces

CCA
Common Component Architecture

What is a Component Architecture?

• A set of standards that allows:
– Multiple groups to write units of software (components)…

And have confidence that their components will work with– And have confidence that their components will work with
other components written in the same architecture

Th t d d d fi• These standards define…
– The rights and responsibilities of a component
– How components express their interfaces
– The environment in which components are composed to

form an application and executed (framework)
– The rights and responsibilities of the framework

17

g p

CCA
Common Component Architecture

•

A Simple Example:
Numerical Integration Components

FunctionPortIntegratorPort

FunctionPort
Interoperable components
(provide same interfaces)

FunctionPort

MidpointIntegrator

IntegratorPort NonlinearFunction

FunctionPort

IntegratorPort

Driver

GoPort LinearFunction

FunctionPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort
RandomGeneratorPort

PiFunction

18

MonteCarloIntegrator

RandomGenerator

CCA
Common Component Architecture

An ApplicationAn Application
Built from the Provided Components

FunctionPortIntegratorPort

FunctionPort

FunctionPort

MidpointIntegrator

IntegratorPort NonlinearFunction

FunctionPort

IntegratorPort

Driver

GoPort LinearFunction

FunctionPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort
RandomGeneratorPort

PiFunctionHides compexity: Driver
doesn’t care that
MonteCarloIntegrator

19

MonteCarloIntegrator

RandomGenerator

MonteCarloIntegrator
needs a random
number generator

CCA
Common Component Architecture

Another Application…

FunctionPortIntegratorPort

FunctionPort

FunctionPort

MidpointIntegrator

IntegratorPort NonlinearFunction

FunctionPort

IntegratorPort

Driver

GoPort LinearFunction

FunctionPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort
RandomGeneratorPort

PiFunction

20

MonteCarloIntegrator

RandomGenerator

CCA
Common Component Architecture

And Many More…

FunctionPortIntegratorPort

FunctionPortDashed lines
indicate alternate

connections FunctionPort

MidpointIntegrator

IntegratorPort NonlinearFunction

FunctionPort

connections

IntegratorPort

Driver

GoPort LinearFunction

FunctionPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort
RandomGeneratorPort

PiFunction

21

MonteCarloIntegrator

RandomGenerator
Create different applications

in "plug-and-play" fashion

CCA
Common Component Architecture

Comparison of Application
D l t A h

Supplementary material for handouts

Characteristics Monolithic
Simulation

Simulation
Frameworks

Library
-Based

Component
-Based

Development Approaches

Code
Support for specific workflows
and information flows

High High Low Low

Flexibility w.r.t. workflow and
information flow

Low Medium High High

User-level extensibility Low Medium High High
Ease of incorporation of
outside code (code reuse)

Low Low-Medium Medium High

Ease of experimentation Low Medium Medium High
Amount of new code required
to create a complete simulation

Low Medium High High (reuse
can reduce)

Breadth of current “ecosystem” Low Medium High Low (but

22

y
for “plugins”

g (
growing)

Ease of coupling simulations Low Low Medium High

CCA
Common Component Architecture

Be Aware: “Framework” Describes
M Thi

Supplementary material for handouts

Many Things
• Currently in scientific computing, this term means different things to

different people

• Basic software composition environment
– Examples: CCA, CORBA Component Model, …

• An environment facilitating development of applications in a particular• An environment facilitating development of applications in a particular
scientific domain (i.e. fusion, computational chemistry, …)
– Example: Earth System Modeling Framework, http://www.esmf.ucar.edu
– Example: Computational Facility for Reacting Flow Science,

htt // f f dihttp://cfrfs.ca.sandia.gov
• An environment for managing complex workflows needed to carry out

calculations
– Example: Kepler: http://kepler-project.orgp p p p p j g

• Integrated data analysis and visualization environments (IDAVEs)

• Lines are often fuzzy
E ample Cact s http // cact scode org

23

– Example: Cactus, http://www.cactuscode.org
• Others types of frameworks could be built based on a basic software

composition environment

CCA
Common Component Architecture

Relationships:
Components, Objects, and Libraries

• Components are typically discussed as objects or• Components are typically discussed as objects or
collections of objects
– Interfaces generally designed in OO terms, but…
– Component internals need not be OOComponent internals need not be OO
– OO languages are not required

• Component environments can enforce the use of
p blished interfaces (pre ent access to internals)published interfaces (prevent access to internals)
– Libraries can not

• It is possible to load several instances (versions) of a p ()
component in a single application
– Impossible with libraries

• Components must include some code to interface

24

• Components must include some code to interface
with the framework/component environment
– Libraries and objects do not

CCA
Common Component Architecture

What is the CCA?

Component based software engineering has been• Component-based software engineering has been
developed in other areas of computing
– Especially business and internet

CO C CO– Examples: CORBA Component Model, COM, Enterprise
JavaBeans

Man of the needs are similar to those in HPC scientific• Many of the needs are similar to those in HPC scientific
computing

B t i tifi ti i i l i t• But scientific computing imposes special requirements
not common elsewhere

25

• CCA is a component environment specially designed to
meet the needs of HPC scientific computing

CCA
Common Component Architecture

Special Needs of Scientific HPC

• Support for legacy software
– How much change required for component environment?

• Performance is important• Performance is important
– What overheads are imposed by the component

environment?
• Both parallel and distributed computing are important• Both parallel and distributed computing are important

– What approaches does the component model support?
– What constraints are imposed?

Wh t th f t ?– What are the performance costs?
• Support for languages, data types, and platforms

– Fortran?

26

– Complex numbers? Arrays? (as first-class objects)
– Is it available on my parallel computer?

CCA
Common Component Architecture

CCA: Concept and Practice

• In the following slides, we explain important concepts
of component-based software from the CCA
perspectiveperspective

• We also sketch how these concepts are manifested in
code (full details in the Hands-On)

• The CCA Specification is the mapping between
concept and code
– A standard established by the CCA ForumA standard established by the CCA Forum
– Expressed in the Scientific Interface Definition Language

(SIDL) for language neutrality (syntax similar to Java)
– SIDL can be translated into bindings for specific programming

27

g p p g g
languages using, e.g., the Babel language interoperability tool

CCA
Common Component Architecture

CCA Concepts: ComponentsCCA Concepts: Components
FunctionPortFunctionPortIntegratorPort

NonlinearFunctionMidpointIntegrator

• A component encapsulates some computational
functionality

Components provide/use one or more interfaces• Components provide/use one or more interfaces
– A component with no interfaces is formally okay, but isn’t very

interesting or useful

• In SIDL, a component is a class that implements
(inherits from) gov.cca.Component
– This means it must implement the setServices method to

28

p
tell framework what ports this component will provide and use

– gov.cca.Component is defined in the CCA specification

CCA
Common Component Architecture

CCA Concepts: Portsp

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

• Components interact through well-defined interfaces,
or ports

NonlinearFunctionMidpointIntegrator

or ports
– A port expresses some computational functionality
– In Fortran, a port is a bunch of subroutines or a module

I OO l t i b t t l i t f– In OO languages, a port is an abstract class or interface

• Ports and connections between them are a
procedural (caller/callee) relationship not dataflow!procedural (caller/callee) relationship, not dataflow!
– e.g., FunctionPort could contain a method like
evaluate(in Arg, out Result) with data flowing both
ways

29

ways

CCA
Common Component Architecture

CCA Concepts: Provides and Uses Portsp

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

• Components may provide ports – implement the
class or subroutines of the port ()

P idi t i li t i i h it l ti hi

NonlinearFunctionMidpointIntegrator

“Provides” Port

– Providing a port implies certain inheritance relationships
between the component and the abstract definition of the
interface (more details shortly)

– A component can provide multiple portsp p p p
• Different “views” of the same functionality, or
• Related pieces of functionality

• Components may use ports – call methods or p y p
subroutines in the port ()
– Use of ports is just like calling a method normally except for

a little additional work due to the “componentness” (more
details shortly)

“Uses” Port

30

details shortly)
– No inheritance relationship implied between caller and callee
– A component can use multiple ports

CCA
Common Component Architecture

Components and Ports (in SIDL)
•••

p ()
package gov.cca {
interface Component {
void setServices(…);

package gov.cca {
interface Port {

package integrators {
interface IntegratorPort

void setServices(…);
} }

} }

interface IntegratorPort

{
double integrate(…};

extends gov.cca.Port
FunctionPortIntegratorPort

} }

package integrators {
class Midpoint implements

MidpointIntegrator

class Midpoint

{

gov.cca.Component,
integrator.IntegratorPort

implements

I h it

Key:

31
} }

double integrate(…);
void setServices(…);

= Inheritance

SIDL inheritance
keywords

CCA
Common Component Architecture

Components and Ports (in UML)
•••• •Supplementary material for handouts

p ()
A port must extend
the CCA spec’s port

Note that only the provides ports
appear in the component’s inheritance
hierarchy. Uses ports do not.

<<interface>>
gov.cca.Port

<<interface>>
gov.cca.Component

tS i (i S i)

interface
y p

setServices(services: gov.cca.Services)

<<interface>>
integrator.IntegratorPort

A component must
implement the CCA

integrate(lowBound: double,
upBound: double, count: int): double

spec’s component
interface

Midpoint

A component must
implement the
port(s) it provides

FunctionPort

Mid i tI t t

IntegratorPort

32

= Inheritance
Class for Midpoint
Integrator component SIDL keywords

MidpointIntegrator

Key:

CCA
Common Component Architecture

Using Portsg

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

• Calling methods on a port you use requires that you first
obtain a “handle” for the port

NonlinearFunctionMidpointIntegrator

– Done by invoking getPort() on the user’s
gov.cca.Services object

– Free up handle by invoking releasePort() when done with
tport

• Best practice is to bracket actual port usage as closely
as possible without using getPort(), releasePort()as possible without using getPort(), releasePort()
too frequently
– Can be expensive operations, especially in distributed

computing contexts

33

p g
– Performance is in tension with dynamism

• can’t “re-wire” a ports that is “in use”

CCA
Common Component Architecture

Where Do Ports Come From?

Supplementary material for handouts

Where Do Ports Come From?
• Most ports are designed and implemented by

users of CCAusers of CCA
– May be specific to an application or used more

broadly (i.e. community-wide)

• The CCA specification defines a small number
of portsp
– Most are services CCA frameworks must provide for

use by components
– Some are intended for users to implement in their

components, and have a special meaning
recognized by the framework

34

recognized by the framework
• E.g. gov.cca.ports.GoPort provides a very simple

protocol to start execution of component-based applications

CCA
Common Component Architecture

Interfaces are an Investment

Supplementary material for handouts

Interfaces are an Investment
• The larger the community, the greater the time &

effort required to obtain agreement
– Equally true in component and non-component

environments
• MPI 1.0 (well understood at the start) took 8 months, meeting

every six weeksy
• MPI 2.0 (not well understood at the start) took 1.5 years,

meeting every six weeks
– Convenient communities are often “project” and “scientific

domain”domain

• Formality of “standards” process varies

Bi t ff’ R l f Th• Biggerstaff’s Rule of Threes
– Must look at at least three systems to understand what is

common (reusable)
– Reusable software requires three times the effort of usable

35

– Reusable software requires three times the effort of usable
software

– Payback only after third release

CCA
Common Component Architecture

CCA Concepts:
FrameworksFrameworks

• The framework provides the means to “hold” components and
compose them into applications

• Frameworks allow connection of ports without exposing
component implementation details

• Frameworks provide a small set of standard services to
components
– Framework services are CCA ports, just like on components

Additional (non standard) services can also be offered– Additional (non-standard) services can also be offered
– Components can register ports as services using the

ServiceProvider port

• Currently: specific frameworks are specialized for specific

36

• Currently: specific frameworks are specialized for specific
computing models (parallel, distributed, etc.)

• Future: better integration and interoperability of frameworks

CCA
Common Component Architecture

Components Must Keep Frameworks Informed

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

• Components must tell the framework about the ports
they are providing and using

NonlinearFunctionMidpointIntegrator

they are providing and using
– Framework will not allow connections to ports it isn’t aware of

• Register them using methods on the component’s
S i objectgov.cca.Services object

– addProvidesPort() and removeProvidesPort()
– registerUsesPort() and unregisterUsesPort()

All are defined in the CCA specification– All are defined in the CCA specification

• Ports are usually registered in the component’s
setServices() method

37

– Can also be added/removed dynamically during execution

CCA
Common Component Architecture

CCA Concepts: Language Interoperability
• Scientific software is increasingly

diverse in use of programming
languages C

f77

f90languages
• In a component environment,

users should not care what
language a component is

C++

f90

Python
g g p

implemented in
• “Point-to-point” solutions to

language interoperability are not
it bl f t

Java

suitable for a component
environment

• The Babel language
interoperability tool provides a

f77

interoperability tool provides a
common solution for all
supported languages

• Scientific Interface Definition

C

C++

f90/95

Python

38

Language provides language-
neutral way of expressing
interfaces Java

More on
Babel later!

CCA
Common Component Architecture

Coding in a CCA Environment

••••Supplementary material for handouts

g

Compiled Components
(object libraries)

Language
compiler & linker

Babel runtime library &
Chasm F90 array library

(j)

Generated
language code

Babel compiler
(SIDL→language)

Port Definitions
(SIDL) Component

Definition (SIDL)

Component
source code

Application
(component assembly)

CCA Framework
Definition (SIDL)

Key: User code

39

More details in the
Primary Tools module

Generated codeCCA Tools

Standard Tools Object libraries

CCA
Common Component Architecture

CCA Supports Parallelism -- by
••••

“Staying Out of the Way” of it
• Single component multiple data P0 P1 P2 P3Single component multiple data

(SCMD) model is component
analog of widely used SPMD
model

P0 P1 P2 P3

• Each process loaded with the
same set of components wired
the same way

•Different components in same
process “talk to each” other via
ports and the framework

y

Components: Blue, Green, Red

Framework: Gray
•Same component in different
processes talk to each other
through their favorite A ll l i

40

through their favorite
communications layer (i.e.
MPI, PVM, GA)

Any parallel programming
environments that can be mixed
outside of CCA can be mixed inside

CCA
Common Component Architecture

“Multiple-Component Multiple-Data”

Supplementary material for handouts

Multiple-Component Multiple-Data
Applications in CCA

• Simulation composed of multiple SCMD sub-tasks

• Usage Scenarios:g
– Model coupling (e.g. Atmosphere/Ocean)
– General multi-physics applications
– Software licensing issues

• i e limited number of instances OceanAtmosphere Land
Driver

• i.e. limited number of instances

• Approaches

OceanAtmosphere Land
Coupler

Processors
– Run single parallel framework

• Driver component that partitions processes and builds rest of
application as appropriate (through BuilderService)

Run multiple parallel frameworks

41

– Run multiple parallel frameworks
• Link through specialized communications components
• Link as components (through AbstractFramework service)

CCA
Common Component Architecture

MCMD Within A Single Framework

••••Supplementary material for handouts

MCMD Within A Single Framework

P0 P1 P2 P3See example in the Using CCA
d l (ltil l ll limodule (multilevel parallelism

in quantum chemistry)

Application driver & MCMD
support component

Framework

Components on all
processes

support component

Components only on
process group A

42

Components only on
process group B Group BGroup A

CCA
Common Component Architecture

Supplementary material for handouts

“Direct Connection” Details

• Directly connected components are in the same
address space
– Data can be passed by reference instead of copyingp y py g
– Just like “traditional” programs
– Framework involved in connecting components, but not

invocations on ports

• Cost of “CCAness” in a direct connect environment is
one level of indirection on calls between components
– Equivalent to a C++ virtual function call: lookup function

location, invoke it
– Overhead is on the invocation only (i.e. latency), not the total

execution time
– Cost equivalent of ~2 8 F77 or C function calls

43

– Cost equivalent of 2.8 F77 or C function calls
– ~48 ns vs 17 ns on 500 MHz Pentium III Linux box

CCA
Common Component Architecture

Maintaining HPC PerformanceMaintaining HPC Performance
• The performance of your

application is as important to
More about

f i tapplication is as important to
us as it is to you

• The CCA is designed to provide maximum
performance

performance in notes

performance
– But the best we can do is to make your code perform no

worse, unless we give easy access to new algorithms.

F t• Facts:
– Measured overheads per function call are low
– Most overheads easily amortized by doing enough work per

callcall
– Other changes made during componentization may also

have performance impacts
– Awareness of costs of abstraction and language

44

g g
interoperability facilitates design for high performance

CCA
Common Component Architecture

Some Performance Results

Supplementary material for handouts

• Lois Curfman McInnes et al Parallel PDE Based

Some Performance Results
and References

• Lois Curfman McInnes,et al. Parallel PDE-Based
Simulations Using the Common Component
Architecture. In Are Magnus Bruaset, Petter Bjorstad,
and Aslak Tveito, editors, Numerical Solution of PDEs
on Parallel Computers Springer Verlag 2005 Invited

Maximum 0.2% overhead for CCA vs
native C++ code for parallel molecularon Parallel Computers. Springer-Verlag, 2005. Invited

chapter, in press.
• S. Benson, et al. Using the GA and TAO Toolkits for

Solving Large-Scale Optimization Problems on
P ll l C t T h i l t ANL/MCS

native C++ code for parallel molecular
dynamics up to 170 CPUs

Parallel Computers. Technical report ANL/MCS-
P1084-0903, Argonne National Laboratory, September
2003.

• Boyana Norris, et al. Parallel Components for PDEs
and Optimization: Some Issues and Experiences.
Parallel Computing, 28:1811--1831, 2002.

• David E. Bernholdt, et al. A Component Architecture
for High-Performance Computing. In Proceedings of

45

g g g
the Workshop on Performance Optimization via High-
Level Languages and Libraries (POHLL-02), 2002.

Aggregate time for linear solver
component in unconstrained minimization
problem w/ PETSc

CCA
Common Component Architecture

Ad d CCA C

Supplementary material for handouts

Advanced CCA Concepts
Brief introductions only, but more

• Leveraging the component environment to provide

info is available – just ask us!

additional capabilities to software developers

• The Proxy Component pattern (Hands-On, papers)

• Component lifecycle (tutorial notes, Hands-On)

• Components can be dynamic (papers)y ()

• Improving the quality of component software (papers)

• Support for advanced parallel/high-performance

46

Support for advanced parallel/high performance
computing (papers)

CCA
Common Component Architecture

The Proxy Component Pattern
• A “proxy” component can be

inserted between the user and
id f t ith t ith

Performance Monitoring with TAU

Before:
provider of a port without either
being aware of it (non-invasive)

• Proxy can observe or act on all
invocations of the interface

Component2Component1

invocations of the interface
• Similar to aspect-oriented

programming
• For many purposes proxies can

After:
• For many purposes, proxies can

be generated automatically from
SIDL definition of the port

Component1 Component2Proxy for
Component2

Sample uses for proxy components:
• Performance: instrumentation of

method calls MasterMind
(database)

TAU
(measure-

47

• Debugging: execution tracing,
watching data values

• Testing: Capture/replay

ment)

CCA
Common Component Architecture

Component Lifecycle
Additional

t i lComponent Lifecycle

• Composition Phase (assembling application)

material
in notes

p (g pp)
– Component is instantiated in framework
– Component interfaces are connected appropriately

• Execution Phase (running application)
– Code in components uses functions provided by another

componentcomponent

• Decomposition Phase (termination of application)
– Connections between component interfaces may be brokenConnections between component interfaces may be broken
– Component may be destroyed

In an application, individual components may be in

48

a app cat o , d dua co po e ts ay be
different phases at different times

Steps may be under human or software control

CCA
Common Component Architecture

Component’s View of Instantiation
Supplementary material for handouts

• Framework calls component’s
constructor

• Component initializes internal

• Framework calls component’s
setServices
– Passes setServices an object

i hi “ id ”Component initializes internal
data, etc.
– Knows nothing outside itself

representing everything “outside”
– setServices declares ports

component uses and provides
• Component still knows nothing• Component still knows nothing

outside itself
– But Services object provides the

means of communication w/
f k

Framework interaction code
constructor setServices destructor

framework
• Framework now knows how to

“decorate” component and how it
might connect with others

CCA.Services
provides IntegratorPort

uses FunctionPort,
RandomGeneratorPort might connect with others

FunctionPortIntegratorPort

RandomGeneratorPortIntegrator code

RandomGeneratorPort

49

MonteCarloIntegrator
MonteCarloIntegrator

CCA
Common Component Architecture

Component’s ViewFramework interaction code

Supplementary material for handouts

Component s View
of ConnectionCCA.Services

…, uses FunctionPort
(connected to NonlinearFunction

• Framework puts info
about provider into user
component’s ServicesI t t d

(connected to NonlinearFunction
FunctionPort), …

component s Services
object
– MonteCarloIntegrator’sFramework interaction code

MonteCarloIntegrator

Integrator code

Services object is aware
of connection

– NonlinearFunction is not!
CCA.Services

provides FunctionPort

MonteCarloIntegrator

• MCI’s integrator code
cannot yet call functions
on FunctionPort

Function code

50

on FunctionPort

NonlinearFunction

CCA
Common Component Architecture

Supplementary material for handouts

Component’s View of Using a Port

Framework interaction code

• User calls getPort to obtain
(handle for) port from Services
– Finally user code can “see”

id CCA.Services
…, uses FunctionPort

(connected to NonlinearFunction
FunctionPort)

provider
• Cast port to expected type

– OO programming concept
Insures type safety

Integrator code

FunctionPort), …– Insures type safety
– Helps enforce declared

interface
• Call methods on port

MonteCarloIntegrator

gp
– e.g.
sum = sum + function->evaluate(x)

• Call releasePort

51

CCA
Common Component Architecture

Dynamic Component Assemblies

Supplementary material for handouts

Dynamic Component Assemblies

• gov.cca.BuilderService allows programmatic
iti f tcomposition of components

– Components can be instantiated/destroyed, and
connected/disconnected under program control

Sample uses of BuilderService:
• Python “driver” script which can assemble and control

an applicationan application
– i.e. MCMD climate model

• Adaptation to changing conditions
Swap components in and out to give better performance– Swap components in and out to give better performance,
numerical accuracy, convergence rates, etc.

– TASCS project “Computational Quality of Service” activity

52

CCA
Common Component Architecture

Enhancing Software Quality

Supplementary material for handouts

Enhancing Software Quality
• Current component architectures define syntax of
interfaces

k i 1 0 {

interfaces
• Extend interface to include semantics (behavior) for
more complete definition

“D i b t t” package vector version 1.0 {
class Utils { …

static double norm(in array<double> u,
in double tol,
in int badLevel)

–“Design by contract”
–Help ensure

component
performs correctly in int badLevel)

require /* Preconditions */
not_null : u != null;
u_is_1d : dimen(u) == 1;
non_negative_tolerance : tol >= 0.0;

performs correctly
–Help ensure

component
is used correctly _ g _

ensure /* Postconditions */
no_side_effects : is pure;
non_negative_result : result >= 0.0;
nearEqual(result, 0.0, tol)

y
• Selective enforcement
to control impact

• TASCS project

53

iff isZero(u, tol);

… }
}

• TASCS project
“Software Quality and
Verification” activity

CCA
Common Component Architecture

Supporting Emerging HPC Hardware

Supplementary material for handouts

pp g g g
Environments

• CCA does not dictate a specific approach to parallelism
• Different approaches and tools can be provided via components and

custom frameworks
Examples…p
• Uintah Computational Framework (Utah) provides a multi-threaded

parallel execution environment based on task graphs
– Specialized to certain structured adaptive mesh refinement problems

• TASCS developing services to manage groups of parallel
components/tasks (MCMD)

Also…
• TASCS developing support for heterogeneous processor environments

– FPGAs, GP-GPUs, accelerators, and other co-processors
– Accelerator code encapsulated as components, interacting w/ components

on primary processors

54

on primary processors
• Integration of fault tolerance capabilities with CCA under development

(CIFTS-TASCS collaboration)

CCA
Common Component Architecture

Is CCA for You?Is CCA for You?
• Much of what CCA does can be done without such tools if

you have sufficient disciplineyou have sufficient discipline
– The larger a group, the harder it becomes to impose the necessary

discipline
• Projects may use different aspects of the CCAProjects may use different aspects of the CCA

– CCA is not monolithic – use what you need
– Few projects use all features of the CCA… initially

• Evaluate what your project needs against CCA’s• Evaluate what your project needs against CCA s
capabilities
– Other groups’ criteria probably differ from yours

CCA continues to evolve so earlier evaluations may be out of date– CCA continues to evolve, so earlier evaluations may be out of date
• Evaluate CCA against other ways of obtaining the desired

capabilities

55

• Suggested starting point:
– CCA tutorial “hands-on” exercises

CCA
Common Component Architecture

Take an Evolutionary Approach

• The CCA is designed to allow selective use and
incremental adoption

• “SIDLize” interfaces incrementally
– Start with essential interfaces
– Remember only externally exposed interfaces need to beRemember, only externally exposed interfaces need to be

Babelized

• Componentize at successively finer granularitiesComponentize at successively finer granularities
– Start with whole application as one component

• Basic feel for components without “ripping apart” your app.
– Subdivide into finer-grain components as appropriate

56

Subdivide into finer grain components as appropriate
• Code reuse opportunities
• Plans for code evolution

CCA
Common Component Architecture

Supplementary material for handouts

View it as an Investment

• CCA is a long-term investment in your software
– Like most software engineering approaches

• There is a cost to adopt

• The payback is longer term• The payback is longer term

• Remember Biggerstaff’s Rule of Threes
L k t th t i th ti th ff t– Look at three systems, requires three times the effort,
payback after third release

57

CCA
Common Component Architecture

The Primary ToolsThe Primary Tools

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

t t i l @ ftutorial-wg@cca-forum.org

This work is licensed under a Creative Commons Attribution 2.5 License 58

CCA
Common Component Architecture

The tools

• Bocca – project environment
• Ccaffeine – framework
• SIDL – interoperability language
• Babel – HPC language binding generatorg g g g
• CCA – specification for components,

frameworks

59

CCA
Common Component Architecture

Tools Module Overview
CCA/Frameworks

Component A

CCA/Frameworks

Component B

Babel Chasm
CCA IDE

• CCA Development Environment

• Frameworks

60

• Language interoperability tools

CCA
Common Component Architecture

Bocca Development Environment

• Provides a text-based, portable environment
– Create or import SIDL and CCA based codes.
– Automatic build system maintenance– Automatic build system maintenance.
– Easy to adopt or abandon while preserving code, build.

No GUI required• No GUI required.

• Still in the early beta stage of developmenty g p
– Being tested by managing the tutorial source and a

regression test suite.
– Basis for common CCA toolkit installation.

61

– Manages components in all Babel-supported languages (C,
C++, Fortran, Java, Python).

CCA
Common Component Architecture

Bocca Creates Skeletons for CCA

• Including ports and interfaces
– Give the SIDL name and an empty port or interface is created.

• Including components and classes• Including components and classes
– Give the name and an empty component or class is created.
– Some extra options: the component uses/provides ports,

implemented interfaces or extended classesimplemented interfaces or extended classes
• Including build system

– For all ports/components in the project
I l t d i CCA t d l– Implemented in any CCA supported language

• Create applications with Ccaffeine GUI (today)
• Including application composition (coming soon)

62

g pp p (g)

CCA
Common Component Architecture

Bocca ExampleBocca Example
create an empty but buildable CCA skeleton
bocca create project myprojbocca create project myproj
cd myproj
./configure

bocca create port myJob
bocca create component myWorker –provides=myJob:job1

fill in public functionality
bocca edit port myJob

fill in implementation
bocca edit component –i myWorker

63

compile application
make

CCA
Common Component Architecture

Tools Module Overview
CCA/Frameworks

Component A

CCA/Frameworks

Component B

Babel Chasm
CCA IDE

• CCA Interactive Development Environment

• Frameworks

64

• Language interoperability tools

CCA
Common Component Architecture

Ccaffeine is a Direct ConnectCcaffeine is a Direct-Connect,
Parallel-Friendly Framework

• Supports SIDL/Babel components
– Conforms to latest CCA specification (0.8)
– Also supports legacy CCA specification (0.5)Also supports legacy CCA specification (0.5)

• Any C++ allowed with C and Fortran by C++ wrappers

• Provides command-line and GUI for composition• Provides command-line and GUI for composition
– Scripting supports batch mode for SPMD
– MPMD/SPMD custom drivers in any Babel language

Supported on Linux, AIX, OSX and is portable to modern UNIXes.

65

pp , , p

CCA
Common Component Architecture

Ccaffeine GUI
OptionalOptional

Supplementary material for handouts

Ccaffeine GUI
• Process

– User input is broadcast SPMD-wise from Java– User input is broadcast SPMD-wise from Java.
– Changes occur in GUI after the C++ framework replies.
– If your components are computing, GUI changes are blocked.

• Components interact through port connections
– provide ports implement class or subroutines

use ports call methods or subroutines in the port
“Provides” Port

“Uses” Port– use ports call methods or subroutines in the port.
– Links denote caller/callee relationship not data flow

FunctionPortFunctionPortIntegratorPort

Uses Port

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

66

CCA
Common Component Architecture

User Connects PortsUser Connects Ports

• Can only connect uses &
providesprovides
– Not uses/uses
– Not provides/provides

• Ports connected by type not• Ports connected by type not
name
– Port names must be unique

within a componentp
– Types must match across

components
• Framework puts info about

id f t i t iprovider of port into using
component’s Services object

67

connect Driver IntegratorPort MonteCarloIntegrator IntegratorPort
connect MonteCarloIntegrator FunctionPort LinearFunction FunctionPort
…

CCA
Common Component Architecture

Building an Application (1 of 2)

Supplementary material for handouts

• Components are code + XML metadata
U i t d t P l tt f il bl t i t t d

Building an Application (1 of 2)

• Using metadata, a Palette of available components is constructed.
• Components are instantiated by user action (i.e. by dragging from

Palette into Arena).
• Framework calls

component’s constructor,
then setServices

create Driver Driver

68

create Driver Driver
create LinearFunction LinearFunction
create MonteCarloIntegrator MonteCarloIntegrator

CCA
Common Component Architecture

Building an Application (2 of 2)

Supplementary material for handouts

1. Click Configure port to

Building an Application (2 of 2)

start parameter input
dialogue.

2. For each connection:
click a uses port
th li k id tthen click a provides port
to establish a connection.

3. Click Go port to start
the application.

69

Right-clicking a connection line breaks the connection -- enabling component substitution.

CCA
Common Component Architecture

Tools Module Overview
CCA/Frameworks

Component A

CCA/Frameworks

Component B

Babel Chasm
CCA IDE

• CCA Interactive Development Environment

• Frameworks

70

• Language interoperability tools

CCA
Common Component Architecture

SIDL Facilitates Scientific
P i L I t bilitProgramming Language Interoperability
• Programming language-neutral interface descriptions

N ti t f b i i tifi d t t• Native support for basic scientific data types
– Complex numbers
– Multi-dimensional, multi-strided arrays

• Automatic object-oriented wrapper generation
• Usable standalone or in CCA environment

f77f77

C

f77

f90

vs
C f90

Babel

C++ Python
vs.

C++ Python

J

Babel

71
C (ANSI C), C++ (GCC), F77 (g77, Sun f77), F90 (Intel, Lahey, GNU, Absoft, PGI), Java (1.4)

Supported on Linux, AIX, works on OSX, catamount;
C (ANSI C), C++ (GCC), F77 (g77, Sun f77), F90 (Intel, Lahey, GNU, Absoft, PGI), Java (1.4)

JavaJava

CCA
Common Component Architecture

Clients in any supported language can access

Supplementary material for handouts

Clients in any supported language can access
components in any other language

C
Stubs

C++
Stubs

F77
Stubs

F90
Stubs

Java
Stubs

Python
Stubs

IORs

Skeletons

I l t tiImplementations

Component

72IOR = Intermediate Object Representation

Component
(any supported language)

CCA
Common Component Architecture

The SIDL File that defines theThe SIDL File that defines the
“greetings.English” type

package greetings version 1.0 {

interface Hello {

void setName(in string name);

string sayIt ();

}

class English implements-all Hello { }

}

73

CCA
Common Component Architecture

Supplementary material for handouts

Handout Material: Code Notes

Packages contain user-defined types and are used to reduce
naming collisions. Packages can be nested.
Packages can be versioned. User defined types must be
nested inside a versioned package and gain the same versionnested inside a versioned package and gain the same version
number as the innermost versioned package
SIDL has a inheritance model similar to Java and Objective C.
Classes can inherit multiple interfaces, but at most one
implementation (other class)implementation (other class).
An interface describes an API, but doesn’t name the
implementation.
Note that arguments have mode, type, and name. Mode can ote t at a gu e ts a e ode, type, a d a e ode ca
be one of “in”, “out”, and “inout”. These SIDL modes have
slightly different semantics than Fortran90 “intents”.
This class generates English greetings. One could imagine a
strategy for internationalization that uses the Hello interface

74

strategy for internationalization that uses the Hello interface
everywhere, but loads in English, French, or whatever classes
based on user’s preference.

CCA
Common Component Architecture

Working Code: “Hello World” in F90

••

Working Code: Hello World in F90
Using a Babel Type

program helloclientprogram helloclient

use greetings_English

use sidl_BaseInterface

implicit noneimplicit none

type(greetings_English_t) :: obj

type(sidl_BaseInterface_t):: exc

character (len=80) :: msgcharacter (len=80) :: msg

character (len=20) :: name

name=’World’

call new(obj exc)call new(obj, exc)

call setName(obj, name, exc)

call sayIt(obj, msg, exc)

call deleteRef(obj exc)

75

call deleteRef(obj, exc)
print *, msg

end program helloclient

CCA
Common Component Architecture

Supplementary material for handouts

Handout Material: Code Notes

Use statement for the greetings.English type
Use statement for the sidl.BaseInterface type
Obj is a F90 derived type we get from the using statement, note the
“ t” extension that prevents it from colliding with the using statement_t extension that prevents it from colliding with the using statement.
Exc is used to hold exceptions thrown by methods
In C/C++ examples, this variable would be initialized by a the
command-line variable “argv[1]”, but its trickier to do portably in F90
and too long so I just initialize the name to “World”and too long, so I just initialize the name to World .
Obj is not yet initialized. The Babel idiom in F90 is to call new() to
initialize the Babel type. In other languages its _create(). NOTE:
good code would add error checking.
setName() puts data into the obj It sets its statesetName() puts data into the obj. It sets its state.
sayIt() returns the entire greeting including the aforementioned name.
deleteRef() is a subroutine that all Babel types inherit from a parent
class. All Babel objects are reference counted. When there are no
more outstanding references the object is told to clean up after itself

76

more outstanding references, the object is told to clean up after itself.

CCA
Common Component Architecture

Working Code: “Hello World” in F90

••

Working Code: Hello World in F90
Using a Babel Type

program helloclientprogram helloclient

use greetings_English

use sidl_BaseInterface

implicit none

Looks like a native
F90 derived type

implicit none

type(greetings_English_t) :: obj

type(sidl_BaseInterface_t):: exc

character (len=80) :: msg These subroutinescharacter (len=80) :: msg

character (len=20) :: name

name=’World’

call new(obj exc)

These subroutines
were specified in the
SIDL.

call new(obj, exc)

call setName(obj, name, exc)

call sayIt(obj, msg, exc)

call deleteRef(obj exc)

Other basic subroutines
are “built in” to all Babel

77

call deleteRef(obj, exc)
print *, msg

end program helloclient

are built in to all Babel
types.

CCA
Common Component Architecture

Question: What language is “obj” really

••

program helloclient

Question: What language is obj really
implemented in?

program helloclient

use greetings_English

use sidl_BaseInterface

implicit noneimplicit none

type(greetings_English_t) :: obj

type(sidl_BaseInterface_t):: exc

character (len=80) :: msgcharacter (len=80) :: msg

character (len=20) :: name

name=’World’

call new(obj exc)

Answer: Can’t Know!

With Babel, it could be C,
C++ Python Java Fortran77 call new(obj, exc)

call setName(obj, name, exc)

call sayIt(obj, msg, exc)

call deleteRef(obj exc)

C++, Python, Java, Fortran77,
or Fortran90/95

In fact, it could change on
diff t ith t

78

call deleteRef(obj, exc)
print *, msg

end program helloclient

different runs without
recompiling this code!

CCA
Common Component Architecture

CCA uses Babel for high-performanceCCA uses Babel for high-performance
n-way language interoperabilty

Each one of these red lines, is
potentially a bridge between two
languages. No telling which

79

languages. No telling which
language your component will be
connected to when you write it.

CCA
Common Component Architecture

Implementation Details Must be Filled inImplementation Details Must be Filled in
Between Splicer Blocks

namespace greetings {
class English_impl {

private:
// DO-NOT-DELETE splicer.begin(greetings.English._impl)
string d name;

string

string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._impl)

greetings::English_impl::sayIt()

throw ()

{

// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)

string msg(“Hello “);

return msg + d_name + “!”;

80

// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

CCA
Common Component Architecture

CCA uses SIDL to specify APIs and Type
Hierarchy for Frameworks, Services,

Components, & Ports

• A CCA framework must
– implement gov.cca.AbstractFramework,
– provide a gov.cca.ports.BuilderService,
– etc.

• A CCA port must
– be a SIDL interface extending gov.cca.Port

CC• A CCA component must
– be a SIDL class implementing
gov cca Component

81

gov.cca.Component

The CCA Specification is a SIDL file.

CCA
Common Component Architecture

How to write aHow to write a
Babelized CCA Component (1/2)

1. Define “Ports” in SIDL
– CCA Port =

• a SIDL Interface
• extends gov.cca.Port

package functions version 1.0 {
interface Function extends gov.cca.Port {

double evaluate(in double x);
}

}

82

CCA
Common Component Architecture

How to write aHow to write a
Babelized CCA Component (2/2)

2 D fi “C t ” th t i l t th P t2. Define “Components” that implement those Ports
– CCA Component =

• SIDL Class• SIDL Class
• implements gov.cca.Component (and any provided ports)

class LinearFunction implements functions Functionclass LinearFunction implements functions.Function,
gov.cca.Component {

double evaluate(in double x);
void setServices(in cca Services svcs);void setServices(in cca.Services svcs);

}

class LinearFunction implements-all

83

class LinearFunction implements all
functions.Function, gov.cca.Component { }

CCA
Common Component Architecture

U i bUsing bocca:
Approaches & ExperienceApproaches & Experience

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

t t i l @ ftutorial-wg@cca-forum.org

This work is licensed under a Creative Commons Attribution 2.5 License 84

CCA
Common Component Architecture

Components in the Small:
Impacts within a Project

Benefits include:
• Rapid testing, debugging, and benchmarking
• Wrapped legacy portions need not be reimplemented or

reverifiedreverified
• Interface change effects across components are clear

and usually automatically found by compilers if
overlooked

• Object-orientation made simpler for C and Fortran
Support for implementation hiding discipline• Support for implementation-hiding discipline

• Coordination of independent workers while separating
concerns (scientific specialty, development style, etc.)

85

(p y, p y ,)
• Work of transient contributors remains as well-defined,

lasting components

CCA
Common Component Architecture

Components in the Large:Components in the Large:
Connecting Multiple Projects

Benefits include:
• SIDL can be used to facilitate the interface consensus

processesprocesses
• Different sub-projects do not have to agree on one

implementation language
• Developers who never meet in person have an excellent

chance of code integration working on the first try
Costs include:Costs include:
• Consensus can be expensive to obtain
• Writing code for others to use is more difficult than writing

86

• Writing code for others to use is more difficult than writing
it just for yourself

CCA
Common Component Architecture

Application Decomposition StrategiesApplication Decomposition Strategies
• Conceptually decompose the

application into
• Many components will encapsulate

algorithmic logic only, with little orapplication into
– cutting-edge areas (less stable)

and
– areas that can employ existing

t b d lib i

algorithmic logic only, with little or
no private data

• Most HPC applications will have a
central data abstraction thatcomponent-based libraries

(more stable)
• Decompose each area into

components for

central data abstraction that
provides data memory management
and parallel communication

• In a multilanguage application, all components for
– physics
– mathematics
– data management

g g pp ,
I/O may need to be isolated into
components written in a single
common language (file based I/O

as dictated by the application;
sketch a typical component
layout

should not be affected)
• Component boundaries (and port

interfaces) may be set to isolate

87

proprietary code or difficult
contributors

CCA
Common Component Architecture

Interface Design: Technical Factors

• Do we make a single large port look like the underlying
library or divide functions into groups on separate ports?

Sh ld f ti ith ti l t b lit• Should a function with many optional arguments be split
into several alternative functions with simpler usage?

• Do we make the ports more general than the existing code?• Do we make the ports more general than the existing code?

• Do we require the ports to work across languages?
Across networks?Across networks?
– If not, gains in efficiency or coding ease might be had
– If so, memory management and I/O challenges may arise

88

CCA
Common Component Architecture

Interface Design: Social FactorsInterface Design: Social Factors
(Defining Ports to Wrap Existing Code)

• Will the port hide just one implementation, or will there
need to be plug compatibility with other implementations?

?From other teams?

• Who defines the interface and maintains it?
1 P j t di t t ? (F t)1. Project dictator? (Fast…)
2. The owner of the legacy functionality? (Slow, if not you…)
3. A standards committee? (Really slow…)

• How many iterations of redefining the ports will the
customers tolerate?

89

CCA
Common Component Architecture

Implementation Issues in Wrapping

Supplementary material for handouts

Implementation Issues in Wrapping

• Do we split large libraries into several components?
S li i i diffi l d if l b l i bl bl k– Splitting is difficult to do if global variables or common blocks are
widely used.

• Do we expect more than one implementation instance ofDo we expect more than one implementation instance of
a port in a single run-time?
– If not, interface contracts may include global side effects

• Do we integrate the wrapper code in the existing code’s
development and build processes?
– If not, how do we ensure build consistency and on-going , y g g

wrapper support?

• Code bases with large interfaces need automated
i l

90

wrapping tools
– E.g., see Chasm info in the Tools module of the tutorial

CCA
Common Component Architecture

B fit f W i C d U i CCA

Supplementary material for handouts

Benefits of Wrapping Code Using CCA

• Setting a language-neutral interface definition (SIDL)Setting a language neutral interface definition (SIDL)
can greatly clarify design discussions

• Provides a chance to reorganize the interface and hide
globals

• Allows testing of alternate versions if doing performance
studiesstudies

• Allows easy “experimentation” with new algorithms

Soft are discipline is enforced not optional• Software discipline is enforced, not optional

• Implementation decisions (to split libraries, etc) can be
easily revised over time if interfaces remain constant

91

easily revised over time if interfaces remain constant
(possibly with the addition of new interfaces)

CCA
Common Component Architecture

Interface Design for New Code

Supplementary material for handouts

Interface Design for New Code
• Write SIDL for each connection (port) in the sketched

component la o tcomponent layout

• If two ports must always be used together, consider
merging themmerging them

• Review SIDL drafts for near-duplication of ports

• Avoid creating interface contracts that require usingAvoid creating interface contracts that require using
hidden global data

• Consider exporting tuning and/or configuration
parameter inputs as a port

• All the design issues from wrapping existing code
apply also

92

apply, also

• Interfaces will change.

CCA
Common Component Architecture

Recommended Implementation Patterns

• Expect to decompose initial components further as work• Expect to decompose initial components further as work
progresses and requirements expand

• Build systems (i.e. make) should be kept as simple as y () p p
possible
– Keep a subdirectory for port definitions and any implementation-

independent glue code derived from the portsindependent glue code derived from the ports

– Keep each component (and any wrapped code) in its own
subdirectory

K li ti id fl i fi i t i l d fil– Keep application-wide flags in a configure script or an include file
common to all components and ports

– Consistency is key. Extract build flags from cca-spec-babel-
fi d if ibl il & li k ith b b l lib l

93

config and if possible compile & link with babel-libtool

CCA
Common Component Architecture

Case Study: Combustion Modeling
• Computational Facility for Reacting Flow Science (CFRFS)

– http://cfrfs.ca.sandia.gov
– Funded via SciDAC initiative (PI: H Najm)

Case Study: Combustion Modeling

– Funded via SciDAC initiative (PI: H. Najm)

• Focus: A toolkit to perform simulations
of lab-sized unsteady flames

Solve the Navier Stokes w/detailed chemistry– Solve the Navier-Stokes w/detailed chemistry
– Various mechanisms up to ~50 species,

300 reactions

• Consequently:Consequently:
– Disparity of length scales :

• use structured adaptively refined meshes
– Disparity of time scales (transport versus chemistry) :

use an operator split construction and solve chemistry implicitly• use an operator-split construction and solve chemistry implicitly
• adaptive chemistry: use computational singular perturbation to find and follow low

dimensional chemical manifolds
J. Ray, S. Lefantzi, J. Lee, C. Kennedy, W. Ashurst, K. Smith, M. Liu, N. Trebon, J. Ortega, C.

Safta S Chandra H Johansson

94

Safta, S. Chandra, H. Johansson

CCA
Common Component Architecture

Why Use CCA in the CFRFS Toolkit?

• Separate clearly the physics models numerical algorithms• Separate clearly the physics models, numerical algorithms,
and the “CS” parts of the toolkit
– Strictly functional!

• Realize the separation in software

• Tame software complexity

• Separate contributions by transient contributors
– Form the bulk of the developers

• Create “chunks” of well-defined functionality that can be
developed by experts (usually numerical analysts and
combustion researchers)

95

combustion researchers)

CCA
Common Component Architecture

D i P i i l f th T lkit / 1Design Principles of the Toolkit / 1

• Principal Aim: Reduce software complexityPrincipal Aim: Reduce software complexity
– We can deal with the rest

F ti l d iti i t t• Functional decomposition into components
– “Data Object” and Mesh components

– (Large) set of numerical algorithmic components
(integrators, linear/nonlinear solvers, etc.)

(Large) set of ph sical models components (gas phase– (Large) set of physical models components (gas-phase
combustion chemistry, thermodynamics, fluid dynamic
quantities, e.g. viscous stress tensor)

96

– Handful of adaptors

CCA
Common Component Architecture

Design Principles of the Toolkit / 2Design Principles of the Toolkit / 2
• Decomposition reflected in the port design and

implementationimplementation
– Most re-implemented port is the one

that exchanges a rectangular g g
sub-domain’s data for processing
by components

• Sparse connectivity between components
– i.e., components communicate with a few others
– Large apps (component assemblies) are composed by

assembling smaller, largely independent sub-
assemblies

97

• Sub-assemblies usually deal with a certain physics
– Intuitive way to assemble a multiphysics code

CCA
Common Component Architecture

The CodeThe Code Transport subassembly

Diffusion
coefficients

Chemistry
reactionreaction
subassembly

Separate component subsystems for transport (black) and for

98

Separate component subsystems for transport (black) and for
reaction (orange) in a reaction-diffusion code. They two are
coupled at a relatively high level.

CCA
Common Component Architecture

CFRFS Toolkit StatusCFRFS Toolkit Status
• Started in 2001

100+ t t d ll

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

• 100+ components today, all
peers, independent, mixed and
matched for combustion andmatched for combustion and
shock hydrodynamics

• 8 external libraries
• Contributors: 13 in all, including

3 summer students
• Only 3 of the 13 contributors

are at SNL today

99

A Fitzhugh-Nagumo equation being solved on a block-structured adaptively refined mesh. The top image illustrates
Runge phenomena at coarse-fine interfaces (dashed ovals) when using high-order schemes (6th order interpolations
with 4th order discretizations). Filtering them with an 8th order filter removes them (bottom).

CCA
Common Component Architecture

Has the Toolkit Approach HelpedHas the Toolkit Approach Helped
Tame Software Complexity?

H h th d l d?• How has the code evolved?
– How often have new ports been added?
– How many rewrites have been done?How many rewrites have been done?

• How large are the components?
• How many ports do they have? y p y

– How large are the ports?

• How many ports exist?
– i.e., Is the design general enough to support many

implementations?

• What is the connectivity of components in

100

What is the connectivity of components in
application codes?

CCA
Common Component Architecture

Scalability: Capability GrowthScalability: Capability Growth
without Rewrites

• Port designs typically occur
in spurts followed by long
component development

Components and ports created

70

times.

• Ports may have multiple
implementations; hence the40

50

60

be
r implementations; hence the

number of ports is typically
less than the number of
components.20

30N
um

b

• As the toolkit has matured,
the number of ports is seen
to be asymptoting to a slow

0

10

Ja
n-

01

A
pr

-0
1

Ju
l-0

1

N
ov

-0
1

Fe
b-

02

M
ay

-0
2

S
ep

-0
2

D
ec

-0
2

M
ar

-0
3

Ju
n-

03

O
ct

-0
3

Ja
n-

04

A
pr

-0
4

Au
g-

04

N
ov

-0
4

Fe
b-

05

time

101

to be asymptoting to a slow
growth rate.Components Ports

CCA
Common Component Architecture

T i C l it Li f C dTaming Complexity: Lines of Code

• Most components are < 1000
lines, i.e., they are easily
maintainablemaintainable

• Components based on GrACE
(M. Parashar, Rutgers) and
Ch b (P C l ll LBNL)Chombo (P. Colella, LBNL) are
the largest in size: parallel mesh
libraries with load-balancers

102

CCA
Common Component Architecture

Taming Complexity: Code Size

Supplementary material for handouts

Taming Complexity: Code Size

• Most components are < 250 kB
• The larger the binary, the more

complexity is being hidden in
underlying (externallyunderlying (externally
contributed) libraries

103

CCA
Common Component Architecture

Taming Complexity: Interface Size

Supplementary material for handouts

Taming Complexity: Interface Size

• A CCA port is a unit of task
exchange and generally also a unit
f th htof thought

• In CFRFS code, this is typically in
the range of 5-10 functionsthe range of 5 10 functions

• Exception : SAMR mesh data port

104

CCA
Common Component Architecture

Taming Complexity: Implementations

Supplementary material for handouts

Taming Complexity: Implementations

• CFRFS ports mayCFRFS ports may
have just one or
many imple-
mentations, as
needed, but ...
Most ports have 1• Most ports have 1
or 2 implementations

• High-utility portsHigh utility ports
exist, e.g., for
exchanging a patch’s

105

worth of data

CCA
Common Component Architecture

Taming Complexity: Callers

Supplementary material for handouts

Taming Complexity: Callers

• Most CFRFS
ports are used
by only a fewby only a few
clients, but …

• Key ports are y p
used by many
components

106

CCA
Common Component Architecture

Scientific ProductivityScientific Productivity
• Conventional Measures (May 2008)

– 5 journal papers in CFD/Numerics5 journal papers in CFD/Numerics
– 4 software-oriented journal papers, 1 book chapter
– Over 15 conference papers, including best paper

award
– Over 60 presentations
– 1 MS and 2 PhD theses
– 6 test applications

S t htt // f f di– See papers at: http://cfrfs.ca.sandia.gov

• Unconventional Measures
– Did the toolkit spawn new research in app-focusedp pp

CS (e.g., performance
evaluation/enhancement/modeling?)

– Can the design accommodate software which were
themselves designed to be frameworks and not

H2O2 chemical subspecies
profile and associated
AMR mesh

107

themselves designed to be frameworks and not
components ?

CCA
Common Component Architecture

Using CCA: SummaryUsing CCA: Summary
• Review of guidelines for developing high-performance

scientific components (both new code and wrappers forscientific components (both new code and wrappers for
existing code)

• CCA is an enabling technology for scientific applications
– Has enabled mathematicians, chemists, combustion scientists, and computer

scientists to contribute new strategies that are shrink-wrapped for easy re-use
– Apart from science research, also spawned new research directions in CS

H bl d h i ti t t i ti t ti l h f– Has enabled research scientists to investigate unconventional approaches, for
example multilevel parallelism and dynamic adaptivity

• For more info on the CCA applications/case studies, see:
– Chemistry: http://www.cca-forum.org/~cca-chem
– Combustion: http://cfrfs.ca.sandia.gov

• Different facets of CCA components may be useful within

108

Different facets of CCA components may be useful within
different projects … What are your needs and priorities?

CCA
Common Component Architecture

A Few Notes in ClosingA Few Notes in Closing

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

t t i l @ ftutorial-wg@cca-forum.org

This work is licensed under a Creative Commons Attribution 2.5 License 109

CCA
Common Component Architecture

Resources: Its All OnlineResources: Its All Online
• Information about all CCA tutorials, past, present, and

f tfuture:
http://www.cca-forum.org/tutorials/

• Specifically…
– Latest versions of hands-on materials and code:

http://www.cca-forum.org/tutorials/#sources
• Hands-On designed for self-study as well as use in an organized tutorial
• Should work on most Linux distributions, less tested on other unixen
• Still evolving, so please contact us if you have questions or problems

– Archives of all tutorial presentations:Archives of all tutorial presentations:
http://www.cca-forum.org/tutorials/archives/

• Questions…

110

Questions…
help@cca-forum.org or cca-tutorial@cca-forum.org

CCA
Common Component Architecture

Getting HelpGetting Help
• We want to help insure you have a good experience

with CCA, so let us know if you’re having problems!, y g p
• Tutorial or “start-up” questions

– help@cca-forum.org or cca-tutorial@cca-forum.org

• Problems with specific tools
– check documentation for updated contact info

cca tools bundle (includes Chasm Babel Ccaffeine): Rob– cca-tools bundle (includes Chasm, Babel, Ccaffeine): Rob
Armstrong, cca-tools@cca-forum.org

– Bocca: bocca-dev@cca-forum.org
Ch M tt S ttil tt@ d– Chasm: Matt Sottile matt@cs.oregon.edu

– Babel: babel-users@llnl.gov
– Ccaffeine: ccafe-users@cca-forum.org

111

@ g

• General questions, or not sure who to ask?
– help@cca-forum.org

CCA
Common Component Architecture

CCA is Interactive
• Collectively, CCA developers and users span a broad

range of scientific interests.
There’s a good chance we can put you in touch with others– There’s a good chance we can put you in touch with others
with relevant experience with CCA

• CCA Forum Quarterly Meetings
M t CCA d l d– Meet many CCA developers and users

– http://www.cca-forum.org/meetings/

• “Coding Camps”g p
– Bring together CCA users & developers for a concentrated

session of coding
– Held as needed, typically 3-5 days

M f ti l th b t ll t ll– May focus on a particular theme, but generally open to all
interested participants

– If you’re interested in having one, speak up (to individuals or
cca-forum@cca-forum.org)

112

@ g)

• Visits, Internships, etc.

CCA
Common Component Architecture

Acknowledgements:
Supplementary material for handouts

Tutorial Working Group
• People: Benjamin A. Allan, Rob Armstrong, David E. Bernholdt,

Randy Bramley Tamara L Dahlgren Lori Freitag Diachin TonyRandy Bramley, Tamara L. Dahlgren, Lori Freitag Diachin, Tony
Drummond, Wael Elwasif, Tom Epperly, Madhusudhan
Govindaraju, Ragib Hasan, Jim Kohl, Gary Kumfert, Lois Curfman
McInnes, Alan Morris, Stefan Muszala, Boyana Norris, Craig
Rasmussen Jaideep Ray Sameer ShendeRasmussen, Jaideep Ray, Sameer Shende

• Institutions: ANL, Binghamton U, Indiana U, JPL, LANL, LLNL,
NASA/Goddard, ORNL, SNL, U Illinois, U Oregon

• Computer facilities provided by the Computer Science• Computer facilities provided by the Computer Science
Department and University Information Technology Services of
Indiana University, supported in part by NSF grants CDA-9601632
and EIA-0202048

• Supported in part by the Scientific Discovery through Advanced
Computing (SciDAC) program of the U.S. Dept. of Energy Office
of Science, Office of Advanced Scientific Computing Research

113

CCA
Common Component Architecture

Acknowledgements: The CCA

Supplementary material for handouts

Acknowledgements: The CCA
• Ames Lab – Masha Sosonkina, …
• ANL –Steve Benson, Jay Larson, Ray Loy, Lois Curfman McInnes,

Boyana Norris Everest Ong Jason SarichBoyana Norris, Everest Ong, Jason Sarich…
• Binghamton University - Madhu Govindaraju, Michael Lewis, …
• Indiana University - Randall Bramley, Dennis Gannon, …
• Iowa State University - Theresa Windus, …
• LANL Craig Rasmussen• LANL - Craig Rasmussen, …
• LLNL – Tammy Dahlgren, Lori Freitag Diachin, Tom Epperly, Scott

Kohn, Gary Kumfert, …
• Louisiana State University – Dan Katz, …
• NASA/Goddard Shujia Zhou• NASA/Goddard – Shujia Zhou
• ORNL - David Bernholdt, Wael Elwasif, Jim Kohl, Torsten Wilde, …
• PNNL – Manoj Krishnan, Jarek Nieplocha, Bruce Palmer, …
• SNL - Rob Armstrong, Ben Allan, Lori Freitag Diachin, Curt

Janssen Jaideep RayJanssen, Jaideep Ray, …
• Tech-X Corp. – Johan Carlsson, Svetlana Shasharina, Ovsei

Volberg, Nanbor Wang
• University of Oregon – Allen Malony, Sameer Shende, Matt

Sottile

114

Sottile…
• University of Utah – Koasta Damevski, Steve Parker, …
and many more… without whom we wouldn’t have much to talk about!

CCA
Common Component Architecture

Thank You!

Thanks for attending this tutorial

We welcome feedback and questionsWe welcome feedback and questions

115

CCA
Common Component Architecture

116

