
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Tutorial: The Zoltan Toolkit

Karen Devine
Erik Boman, Cedric Chevalier, Vitus Leung, Lee Ann Riesen

Sandia National Laboratories, NM

Umit Çatalyürek, Doruk Bozdag
Ohio State University

ACTS Workshop, August 2008

Slide 2

Outline
• High-level view of Zoltan
• Requirements, data models, and interface
• Dynamic Load Balancing and Partitioning
• Matrix Ordering
• Graph Coloring
• Utilities
• Alternate Interfaces
• Future Directions

Slide 3

The Zoltan Toolkit

Unstructured Communication

Data Migration Matrix Ordering

Dynamic Load
Balancing

Distributed Data Directories

A B C
0 1 0

D E F
2 1 0

G H I
1 2 1

• Library of data management services for unstructured, dynamic
and/or adaptive computations.

Graph Coloring

Slide 4

Zoltan System Assumptions
• Assume distributed memory model.
• Data decomposition + “Owner computes”:

– The data is distributed among the processors.
– The owner performs all computation on its data.
– Data distribution defines work assignment.
– Data dependencies among data items owned by different

processors incur communication.

• Requirements:
– MPI
– C compiler
– GNU Make (gmake)

Slide 5Zoltan Supports
Many Applications

• Different applications, requirements, data structures.

Multiphysics simulations

x bA

=

Linear solvers &
preconditioners

Adaptive mesh refinement

Crash simulations

Particle methods

Parallel electronics networks

1
2

Vs
SOURCE_VOLTAGE

1
2

Rs
R

1
2 Cm012

C

1
2

Rg02
R

1
2

Rg01
R

1
2 C01

C

1
2 C02

C
12

L2

INDUCTOR

12
L1

INDUCTOR

12
R1

R

12
R2

R

1
2

Rl
R

1
2

Rg1
R

1
2

Rg2
R

1
2 C2

C

1
2 C1

C

1
2 Cm12

C

Slide 6

Zoltan Interface Design
• Common interface to each class of tools.
• Tool/method specified with user parameters.

• Data-structure neutral design.
– Supports wide range of applications and data structures.
– Imposes no restrictions on application’s data structures.
– Application does not have to build Zoltan’s data

structures.

Slide 7

Zoltan Interface
• Simple, easy-to-use interface.

– Small number of callable Zoltan functions.
– Callable from C, C++, Fortran.

• Requirement: Unique global IDs for objects to
be partitioned/ordered/colored. For example:

– Global element number.
– Global matrix row number.
– (Processor number, local element number)
– (Processor number, local particle number)

Slide 8

Zoltan Application Interface
• Application interface:

– Zoltan queries the application for needed info.
• IDs of objects, coordinates, relationships to other objects.

– Application provides simple functions to answer queries.
– Small extra costs in memory and function-call overhead.

• Query mechanism supports…
– Geometric algorithms

• Queries for dimensions, coordinates, etc.
– Hypergraph- and graph-based algorithms

• Queries for edge lists, edge weights, etc.
– Tree-based algorithms

• Queries for parent/child relationships, etc.
• Once query functions are implemented, application can

access all Zoltan functionality.
– Can switch between algorithms by setting parameters.

Slide 9

Zoltan Application Interface

Initialize Zoltan
(Zoltan_Initialize,
Zoltan_Create)

Select Method and
Parameters

(Zoltan_Set_Params)

Register
query functions
(Zoltan_Set_Fn)

Re-partition
(Zoltan_LB_Partition)

COMPUTE

Move data
(Zoltan_Migrate)

Clean up
(Zoltan_Destroy)

APPLICATION

Zoltan_LB_Partition:
• Call query functions.
• Build data structures.
• Compute new

decomposition.
• Return import/export

lists.

Zoltan_Migrate:
• Call packing query

functions for exports.
• Send exports.
• Receive imports.
• Call unpacking query

functions for imports.

ZOLTAN

Slide 10

Zoltan Query Functions

List of graph edges and weights. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 11

Using Zoltan in Your Application

1. Decide what your objects are.
 Elements? Grid points? Matrix rows? Particles?

2. Decide which tools (partitioning/ordering/coloring/utilities)
and class of method (geometric/graph/hypergraph) to use.

3. Download Zoltan.
 http://www.cs.sandia.gov/Zoltan

4. Write required query functions for your application.
 Required functions are listed with each method in Zoltan

User’s Guide.
5. Call Zoltan from your application.
6. #include “zoltan.h” in files calling Zoltan.
7. Edit Zoltan configuration file and build Zoltan.
8. Compile application; link with libzoltan.a.

 mpicc application.c -lzoltan

Slide 12

Partitioning and Load Balancing
• Assignment of application data to processors for parallel

computation.
• Applied to grid points, elements, matrix rows, particles, ….

Slide 13

Partitioning Interface

Zoltan computes the difference (Δ) from current distribution
Choose between:
a) Import lists (data to import from other procs)
b) Export lists (data to export to other procs)
c) Both (the default)

err = Zoltan_LB_Partition(zz,
&changes, /* Flag indicating whether partition changed */
&numGidEntries, &numLidEntries,
&numImport, /* objects to be imported to new part */
&importGlobalGids, &importLocalGids, &importProcs, &importToPart,
&numExport, /* # objects to be exported from old part */
&exportGlobalGids, &exportLocalGids, &exportProcs, &exportToPart);

Slide 14

Static Partitioning

• Static partitioning in an application:
– Data partition is computed.
– Data are distributed according to partition map.
– Application computes.

• Ideal partition:
– Processor idle time is minimized.
– Inter-processor communication costs are kept low.

• Zoltan_Set_Param(zz, “LB_APPROACH”, “PARTITION”);

Initialize
Application

Partition
Data

Distribute
Data

Compute
Solutions

Output
& End

Slide 15Dynamic Repartitioning
(a.k.a. Dynamic Load Balancing)

Initialize
Application

Partition
Data

Redistribute
Data

Compute
Solutions
& Adapt

Output
& End

• Dynamic repartitioning (load balancing) in an application:
– Data partition is computed.
– Data are distributed according to partition map.
– Application computes and, perhaps, adapts.
– Process repeats until the application is done.

• Ideal partition:
– Processor idle time is minimized.
– Inter-processor communication costs are kept low.
– Cost to redistribute data is also kept low.

• Zoltan_Set_Param(zz, “LB_APPROACH”, “REPARTITION”);

Slide 16Zoltan Toolkit:
Suite of Partitioners

• No single partitioner works best for all applications.
– Trade-offs:

• Quality vs. speed.
• Geometric locality vs. data dependencies.
• High-data movement costs vs. tolerance for remapping.

• Application developers may not know which partitioner
is best for application.

• Zoltan contains suite of partitioning methods.
– Application changes only one parameter to switch

methods.
• Zoltan_Set_Param(zz, “LB_METHOD”, “new_method_name”);

– Allows experimentation/comparisons to find most
effective partitioner for application.

Slide 17Partitioning Algorithms
in the Zoltan Toolkit

Recursive Coordinate Bisection (Berger, Bokhari)
Recursive Inertial Bisection (Taylor, Nour-Omid)

Zoltan Graph Partitioning
ParMETIS (U. Minnesota)

Jostle (U. Greenwich)

Hypergraph Partitioning
Hypergraph Repartitioning
PaToH (Catalyurek & Aykanat)

Geometric (coordinate-based) methods

Combinatorial (topology-based) methods

Space Filling Curve Partitioning
 (Warren&Salmon, et al.)

Refinement-tree Partitioning (Mitchell)

Slide 18

Geometric Partitioning
• Zoltan_Set_Param(zz, “LB_METHOD”, “RCB”);

Zoltan_Set_Param(zz, “LB_METHOD”, “RIB”);
Zoltan_Set_Param(zz, “LB_METHOD”, “HSFC”);

• Partition based on geometric locality.
– Assign physically close objects to the same processor.

Recursive Coordinate Bisection (RCB)
Berger & Bokhari, 1987

Space Filling Curve Partitioning (HSFC)
Warren & Salmon, 1993;

Pilkington & Baden, 1994; Patra & Oden, 1995

Slide 19

Geometric Repartitioning
• No explicit control of migration costs, but…
• Implicitly achieves low data redistribution costs.
• For small changes in data, cuts move only slightly,

resulting in little data redistribution.

Recursive Coordinate Bisection (RCB) Space Filling Curve Partitioning (HSFC)

Slide 20Applications of
Geometric Partitioners

Parallel Volume Rendering

Crash Simulations
and Contact Detection

Adaptive Mesh Refinement
Particle Simulations

Slide 21Geometric Methods:
 Advantages and Disadvantages

• Advantages:
– Easiest partitioners to use.
– Conceptually simple; fast and inexpensive.
– All processors can inexpensively know entire partition (e.g., for

global search in contact detection).
– No connectivity info needed (e.g., particle methods).
– Good on specialized geometries.

• Disadvantages:
– No explicit control of communication costs.
– Mediocre partition quality.
– Can generate disconnected subdomains for complex geometries.
– Need coordinate information.

SLAC’S 55-cell Linear Accelerator with couplers:
One-dimensional RCB partition reduced runtime up
to 68% on 512 processor IBM SP3. (Wolf, Ko)

Slide 22Auxiliary Capabilities for
Geometric Methods

• Zoltan can store cuts from RCB, RIB, and HSFC
inexpensively in each processor.
– Zoltan_Set_Param(zz, “KEEP_CUTS”, “1”);

• Enables parallel geometric search without communication.
– Useful for contact detection, particle methods, rendering.

1st cut

2nd

2nd

3rd

3rd3rd

3rd

*
Determine the part/processor

owning region with a given point.
Zoltan_LB_Point_PP_Assign

1st cut

2nd

2nd

3rd

3rd3rd

3rd

Determine all parts/processors
overlapping a given region.
Zoltan_LB_Box_PP_Assign

Slide 23For geometric partitioning
(RCB, RIB, HSFC), use …

List of graph edges and weights. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 24

Graph Partitioning

• Represent problem as a weighted graph.
– Vertices = objects to be partitioned.
– Edges = dependencies between two

objects.
– Weights = work load or amount of

dependency.
• Partition graph so that …

– Parts have equal vertex weight.
– Weight of edges cut by part boundaries is

small.

• Zoltan_Set_Param(zz, “LB_METHOD”, “GRAPH”);
• Zoltan_Set_Param(zz, “GRAPH_PACKAGE”, “ZOLTAN”); or
 Zoltan_Set_Param(zz, “GRAPH_PACKAGE”, “PARMETIS”);

• Kernighan, Lin, Schweikert, Fiduccia, Mattheyes, Simon,
Hendrickson, Leland, Kumar, Karypis, et al.

Slide 25Applications using Graph
Partitioning

x bA

=

Linear solvers & preconditioners
(square, structurally symmetric systems)

Finite Element
Analysis

Multiphysics and
multiphase simulations

Slide 26Graph Partitioning:
Advantages and Disadvantages

• Advantages:
– Highly successful model for mesh-based PDE problems.
– Explicit control of communication volume gives higher

partition quality than geometric methods.
– Excellent software available.

• Serial: Chaco (SNL)
Jostle (U. Greenwich)
METIS (U. Minn.)
Party (U. Paderborn)
Scotch (U. Bordeaux)

• Parallel: Zoltan (SNL)
ParMETIS (U. Minn.)
PJostle (U. Greenwich)
PTScotch (U. Bordeaux)

• Disadvantages:
– More expensive than geometric methods.
– Edge-cut model only approximates communication volume.

Slide 27For graph partitioning,
coloring & ordering, use …

List of graph edges and weights. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 28

A

Graph Partitioning Model

A

Hypergraph Partitioning Model

Hypergraph Partitioning
• Zoltan_Set_Param(zz, “LB_METHOD”, “HYPERGRAPH”);
• Zoltan_Set_Param(zz, “HYPERGRAPH_PACKAGE”, “ZOLTAN”); or

Zoltan_Set_Param(zz, “HYPERGRAPH_PACKAGE”, “PATOH”);

• Alpert, Kahng, Hauck, Borriello, Çatalyürek, Aykanat, Karypis, et al.
• Hypergraph model:

– Vertices = objects to be partitioned.
– Hyperedges = dependencies between two or more objects.

• Partitioning goal: Assign equal vertex weight while minimizing
hyperedge cut weight.

Slide 29

Best Algorithms Paper Award at IPDPS07
“Hypergraph-based Dynamic Load Balancing for Adaptive Scientific Computations”

Çatalyürek, Boman, Devine, Bozdag, Heaphy, & Riesen

Hypergraph Repartitioning
• Augment hypergraph with data redistribution costs.

– Account for data’s current processor assignments.
– Weight dependencies by their size and frequency of use.

• Partitioning then tries to minimize total communication volume:
 Data redistribution volume
 + Application communication volume
 Total communication volume

• Data redistribution volume: callback returns data sizes.
– Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_MULTI_FN_TYPE,

myObjSizeFn, 0);
• Application communication volume = Hyperedge cuts * Number

of times the communication is done between repartitionings.
– Zoltan_Set_Param(zz, “PHG_REPART_MULTIPLIER”, “100”);

Slide 30

Hypergraph Applications

Circuit Simulations

1

2

Vs
SOURCE_VOLTAGE

1
2

Rs
R

1
2 Cm012

C

1
2

Rg02
R

1

2

Rg01
R

1
2 C01

C

1
2 C02

C
12

L2

INDUCTOR

12
L1

INDUCTOR

12
R1

R

12
R2

R

1

2

Rl
R

1

2

Rg1
R

1
2

Rg2
R

1
2 C2

C

1
2 C1

C

1
2 Cm12

C

Linear programming
 for sensor placement

x bA

=

Linear solvers & preconditioners
(no restrictions on matrix structure)

Finite Element
Analysis

Multiphysics and
multiphase simulations

Data Mining

Slide 31Hypergraph Partitioning:
Advantages and Disadvantages

• Advantages:
– Communication volume reduced 30-38% on average

over graph partitioning (Catalyurek & Aykanat).
• 5-15% reduction for mesh-based applications.

– More accurate communication model than graph
partitioning.

• Better representation of highly connected and/or
non-homogeneous systems.

– Greater applicability than graph model.
• Can represent rectangular systems and non-symmetric

dependencies.
• Disadvantages:

– Usually more expensive than graph partitioning.

Slide 32For hypergraph partitioning
and repartitioning, use …

List of graph edges and weights. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 33Or can use graph queries
to build hypergraph.

List of graph edges and weights. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 34

Computation
Memory

Multi-criteria Load-balancing
• Multiple constraints or objectives

– Compute a single partition that is good
with respect to multiple factors.

• Balance both computation and memory.
• Balance meshes in loosely coupled physics.
• Balance multi-phase simulations.

– Extend algorithms to multiple weights
• Difficult. No guarantee good solution exists.

• Zoltan_Set_Param(zz, “OBJ_WEIGHT_DIM”, “2”);
– Available in RCB, RIB and

ParMETIS graph partitioning.
– In progress in Hypergraph

partitioning.

Slide 35

Heterogeneous Architectures
• Clusters may have different types of processors.
• Assign “capacity” weights to processors.

– E.g., Compute power (speed).
– Zoltan_LB_Set_Part_Sizes(…);

• Note: Can use this function to specify part sizes for any purpose.
• Balance with respect to processor capacity.

• Hierarchical partitioning: Allows different partitioners at
different architecture levels.

– Zoltan_Set_Param(zz, “LB_METHOD”, “HIER”);
– Requires three additional callbacks

to describe architecture hierarchy.
• ZOLTAN_HIER_NUM_LEVELS_FN
• ZOLTAN_HIER_PARTITION_FN
• ZOLTAN_HIER_METHOD_FN

Entire System

...Processor Processor

Core Core...Core Core...

Slide 36

Sparse Matrix Ordering
• When solving sparse linear systems with
direct methods, non-zero terms are created
during the factorization process (A→LLT ,
A→LDLT or A→LU) .

• Fill-in depends on the order of the unknowns.
– Need to provide fill-reducing orderings.

Slide 37

Fill Reducing Ordering
• Combinatorial problem, depending on only the
structure of the matrix A:

– Work with the graph associated with A.
– Use Zoltan graph-based callbacks.

• NP-Complete; thus use heuristics.
• Most popular heuristics:

– Minimum Degree algorithms (AMD, MMD, AMF …)
– Nested Dissection

Slide 38

A

S
BA S B

Nested dissection (1)
• Principle [George 1973]

– Find a vertex separator S in graph.
– Order vertices of S with highest available indices.
– Recursively apply the algorithm to the two

separated subgraphs A and B.

Slide 39

Nested dissection (2)
•Advantages:

– Induces high quality block decompositions.
• Suitable for block BLAS 3 computations.

– Increases the concurrency of
computations.

• Compared to minimum degree algorithms.
• Very suitable for parallel factorization.

– It’s the scope here: parallel ordering is for
parallel factorization.

Slide 40

Matrix ordering within Zoltan
• To be released in Zoltan v3.1, September 2008.
• Computed by third party libraries:

– PTScotch (U. Bordeaux)
– ParMETIS (U. Minnesota)
– Easy to add another one.

• Calls to the external ordering library are
transparent for the user.

– Zoltan’s call is a standard way to compute ordering.
User

Zoltan

PTScotch
Ordering

Partitioning (soon)

ParMETIS
Ordering

Graph Partitioning

Others…

Third-Party Library Interface

Slide 41

Ordering interface in Zoltan
•Compute ordering with one function:
Zoltan_Order.

•Output provided:
–New order of the unknowns (direct

permutation), available in two forms:
• The new number in the interval [0,N-1]; or
• The new order with respect to Global IDs.

–Access to elimination tree, “block” view of
the ordering.

Slide 42

Zoltan Graph Coloring
• Parallel distance-1 and distance-2 graph coloring.
• Graph built using same application interface and code

as graph partitioners.
• Generic coloring interface; easy to add new coloring

algorithms.
• Algorithms

– Distance-1 coloring: Bozdag, Gebremedhin, Manne,
Boman, Catalyurek, EuroPar’05, JPDC’08.

– Distance-2 coloring: Bozdag, Catalyurek, Gebremedhin,
Manne, Boman, Ozguner, HPCC’05, SISC’08 (in
submission).

Slide 43

Distance-1 Graph Coloring
• Problem (NP-hard)

Color the vertices of a graph with as few colors as
possible such that no two adjacent vertices
receive the same color.

• Applications
– Iterative solution of sparse linear systems
– Preconditioners
– Sparse tiling
– Eigenvalue computation
– Parallel graph partitioning

Slide 44

Distance-2 Graph Coloring
• Problem (NP-hard)

Color the vertices of a graph with as few colors as possible
such that a pair of vertices connected by a path on two or
less edges receives different colors.

• Applications
– Derivative matrix computation in numerical optimization
– Channel assignment
– Facility location

• Related problems
– Partial distance-2 coloring
– Star coloring

Slide 45

Coloring Interface in Zoltan

• Both distance-1 and distance-2 coloring

routines can be invoked by Zoltan_Color

function.

• The colors assigned to the objects are

returned in an array.

Slide 46For graph partitioning,
coloring & ordering, use …

List of graph edges and weights. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 47

Other Zoltan Functionality
• Tools needed when doing dynamic load balancing:

– Data Migration
– Unstructured Communication Primitives
– Distributed Data Directories

• All functionality described in Zoltan User’s Guide.
– http://www.cs.sandia.gov/Zoltan/ug_html/ug.html

Slide 48

Zoltan Data Migration Tools
• After partition is computed, data must be moved to new

decomposition.
– Depends strongly on application data structures.
– Complicated communication patterns.

• Zoltan can help!
– Application supplies query functions to pack/unpack data.
– Zoltan does all communication to new processors.

Slide 49Using Zoltan’s
Data Migration Tools

• Required migration query functions:
– ZOLTAN_OBJ_SIZE_MULTI_FN:

• Returns size of data (in bytes) for each object to be exported to a new
processor.

– ZOLTAN_PACK_MULTI_FN:
• Remove data from application data structure on old processor;
• Copy data to Zoltan communication buffer.

– ZOLTAN_UNPACK_MULTI_FN:
• Copy data from Zoltan communication buffer into data structure on new

processor.

• int Zoltan_Migrate(struct Zoltan_Struct *zz,
 int num_import, ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids, int *import_procs,
 int *import_to_part,
 int num_export, ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids, int *export_procs,
 int *export_to_part);

Slide 50

Graph-based
decomposition

RCB
decomposition

Zoltan_Comm_Do

Zoltan_Comm_Do_Reverse

Zoltan Unstructured
Communication Package

• Simple primitives for efficient irregular communication.
– Zoltan_Comm_Create: Generates communication plan.

• Processors and amount of data to send and receive.
– Zoltan_Comm_Do: Send data using plan.

• Can reuse plan. (Same plan, different data.)
– Zoltan_Comm_Do_Reverse: Inverse communication.

• Used for most communication in Zoltan.

Slide 51Example Application:
Crash Simulations

RCB

Graph-based

RCB

RCB mapped to time 0

1.6 ms

RCB

RCB mapped to time 0

3.2 ms

•Multiphase simulation:
– Graph-based decomposition of elements for finite element calculation.
– Dynamic geometric decomposition of surfaces for contact detection.
– Migration tools and Unstructured Communication package map

between decompositions.

Slide 52

• Helps applications locate off-processor data.
• Rendezvous algorithm (Pinar, 2001).

– Directory distributed in known way (hashing) across
processors.

– Requests for object location
sent to processor storing
the object’s directory entry.

A B C
0 1 0

D E F
2 1 0

G H I
1 2 1

Processor 0 Processor 1 Processor 2

Directory Index
 Location

Zoltan Distributed Data Directory

A F

C

B

E

I

G H
D

Processor 0

Processor 1

Processor 2

Slide 53

Alternate Interfaces to Zoltan
• C, C++ and F90 interfaces in Zoltan.

• Matrix-based interface in Trilinos.

• Mesh-based interface in ITAPS.

Slide 54Isorropia:
Trilinos Interface to Zoltan

• Trilinos Toolkit (M. Heroux, SNL, PI): Packages for …
– Parallel matrix and vector classes (Epetra)
– Linear, nonlinear and eigen solvers
– Preconditioners
– Matrix partitioning (Isorropia)
– Time integration, discretizations, inline meshing, ….

• Epetra provides parallel matrix and vector classes.
• Isorropia uses Zoltan to repartition Epetra objects.

– B = Isorropia::Epetra::create_balanced_copy(A, params); or
– Partitioner, redistributor, and cost-evaluator classes.

• Trilinos v9.0 (to be released September 2008) will include:
– Zoltan in the Trilinos distribution and build environment.
– Isorropia interfaces to matrix ordering and coloring.

(Member of SciDAC2 TOPS CET)

Slide 55ITAPS Dynamic Services:
Mesh-based Interface to Zoltan

• Interoperable Technologies for Advanced Petascale
Simulations (L. Diachin, LLNL, PI)

– SciDAC2 CET.
• ITAPS Goals:

– Develop the next generation of meshing and geometry
tools for petascale computing.

• E.g., adaptive mesh refinement, shape optimization.
– Improve applications’ ability to use these tools.

• “Standardization” of mesh interfaces.
• Dynamic Services toolkit:

– ITAPS-compliant mesh interface
 to Zoltan tools.

– Integration with ITAPS iMeshP
parallel mesh interface to be
released FY09.

Image courtesy of M. Shephard, RPI

Slide 56

Current Work
• Two-dimensional matrix partitioning.
• Performance improvements for hypergraph
partitioning.

• Multi-criteria hypergraph partitioning.
• Non-symmetric matrix ordering.

Slide 57

For More Information...
• Zoltan Home Page

– http://www.cs.sandia.gov/Zoltan
– User’s and Developer’s Guides
– Download Zoltan software under GNU LGPL.

• Trilinos Home Page
– http://trilinos.sandia.gov

• ITAP Home Page
– http://www.itaps.org

• CSCAPES Home Page
– http://www.cscapes.org

• Email:
– zoltan-dev@software.sandia.gov
– kddevin@sandia.gov

Slide 58

The End

Slide 59

Extra Slides
• Experimental results: Partitioning

Slide 60

Performance Results
• Experiments on Sandia’s Thunderbird cluster.

– Dual 3.6 GHz Intel EM64T processors with 6 GB RAM.
– Infiniband network.

• Compare RCB, HSFC, graph and hypergraph
methods.

• Measure …
– Amount of communication induced by the partition.
– Partitioning time.

Slide 61

Test Data

SLAC *LCLS
Radio Frequency Gun

6.0M x 6.0M
23.4M nonzeros

Xyce 680K ASIC Stripped
Circuit Simulation

680K x 680K
2.3M nonzeros

Cage15 DNA
Electrophoresis

5.1M x 5.1M
99M nonzeros

SLAC Linear Accelerator
2.9M x 2.9M

11.4M nonzeros

Slide 62Communication Volume:
Lower is Better

Cage15 5.1M electrophoresis

Xyce 680K circuitSLAC 6.0M LCLS

SLAC 2.9M Linear Accelerator

Number of parts
= number of
processors.

RCB

Graph
Hypergraph

HSFC

Slide 63Partitioning Time:
Lower is better

Cage15 5.1M electrophoresis

Xyce 680K circuitSLAC 6.0M LCLS

SLAC 2.9M Linear Accelerator

1024 parts.
Varying number
of processors.

RCB

Graph
Hypergraph

HSFC

Slide 64

Extra Slides
• Experimental results: Repartitioning

Slide 65

Repartitioning Experiments
• Experiments with 64 parts on 64 processors.
• Dynamically adjust weights in data to simulate,
say, adaptive mesh refinement.

• Repartition.
• Measure repartitioning time and
total communication volume:

 Data redistribution volume
+ Application communication volume

 Total communication volume

Slide 66Repartitioning Results:
Lower is Better

Xyce 680K circuitSLAC 6.0M LCLS

Repartitioning
Time (secs)

Data
Redistribution
Volume

Application
Communication
Volume

Slide 67

Extra Slides
• Experimental results: Ordering

Slide 68

Experimental results (1)
•Metric is OPC, the operation count of Cholesky
factorization.
•Largest matrix ordered by PT-Scotch: 83 millions of
unknowns on 256 processors (CEA/CESTA).
•Some of our largest test graphs.

CEA/CESTA1.29E+147.61756862311423millions

Circuit simulation,
Quimonda8.92E+106.76291438613quimonda07

DNA electrophoresis, UF4.06E+1618.24470225154cage15

3D mechanics mesh,
Parasol5.48E+1281.2838354944audikw1

degree|E||V|
DescriptionOSS

AverageSize (x1000)
Graph

Slide 69

Experimental results (2)

3.825.659.8017.1523.0932.69tPM

18.1624.7433.8345.1953.1973.11tPTS

1.07E+138.91E+128.88E+127.78E+126.37E+125.82E+12OPM

5.45E+125.45E+125.45E+125.54E+125.65E+125.73E+12OPTS

audikw1

643216842case

Number of processesTest

Slide 70

Experimental results (3)

17.8322.5640.30†117.77195.93tPM

380.69351.38340.78371.70427.38540.46tPTS

6.64E+167.03E+167.36E+16†6.64E+164.47E+16OPM

4.50E+164.58E+164.94E+164.64E+165.01E+164.58E+16OPTS

cage15

643216842case

Number of processesTest

Slide 71

Experimental results (4)
•ParMETIS crashes for all other graphs.

103.73147.35211.68295.38416.45671.60tPTS

2.45E+141.94E+142.71E+143.99E+142.91E+141.45E+14OPTS

23millions

16.6217.3022.2334.68--tPTS

7.70E+106.94E+106.38E+105.80E+10--OPTS

quimonda07

643216842case

Number of processesTest

Slide 72

Extra Slides
• Experimental results: Coloring

Slide 73

A Parallel Coloring Framework
• Color vertices iteratively in rounds using a first
fit strategy

• Each round is broken into supersteps
– Color a certain number of vertices
– Exchange recent color information

• Detect conflicts at the end of each round
• Repeat until all vertices receive consistent
colors

Slide 74

Experimental Results

Slide 75

Extra Slides
• More details on callback/query functions.

Slide 76

More Details on Query Functions
• void* data pointer allows user data structures to be used in all

query functions.
– To use, cast the pointer to the application data type.

• Local IDs provided by application are returned by Zoltan to
simplify access of application data.

– E.g. Indices into local arrays of coordinates.
•ZOLTAN_ID_PTR is pointer to array of unsigned integers,

allowing IDs to be more than one integer long.
– E.g., (processor number, local element number) pair.
– numGlobalIds and numLocalIds are lengths of each ID.

• All memory for query-function arguments is allocated in Zoltan.

void ZOLTAN_GET_GEOM_MULTI_FN(void *userDefinedData,
 int numGlobalIds, int numLocalIds, int numObjs,
 ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,
 int numDim, double *pts, int *err)

Slide 77Example zoltanSimple.c:
ZOLTAN_OBJ_LIST_FN

void exGetObjectList(void *userDefinedData,
 int numGlobalIds, int numLocalIds,
 ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,
 int wgt_dim, float *obj_wgts,
 int *err)
{
/* ZOLTAN_OBJ_LIST_FN callback function.
** Returns list of objects owned by this processor.
** lids[i] = local index of object in array.
*/
 int i;

 for (i=0; i<NumPoints; i++)
 {
 gids[i] = GlobalIds[i];
 lids[i] = i;
 }

 *err = 0;

 return;
}

Slide 78Example zoltanSimple.c:
ZOLTAN_GEOM_MULTI_FN

void exGetObjectCoords(void *userDefinedData,
 int numGlobalIds, int numLocalIds, int numObjs,
 ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,
 int numDim, double *pts, int *err)
{
/* ZOLTAN_GEOM_MULTI_FN callback.
** Returns coordinates of objects listed in gids and lids.
*/
 int i, id, id3, next = 0;
 if (numDim != 3) {
 *err = 1; return;
 }
 for (i=0; i<numObjs; i++){
 id = lids[i];
 if ((id < 0) || (id >= NumPoints)) {
 *err = 1; return;
 }
 id3 = lids[i] * 3;
 pts[next++] = (double)(Points[id3]);
 pts[next++] = (double)(Points[id3 + 1]);
 pts[next++] = (double)(Points[id3 + 2]);
 }
}

Slide 79

Example Graph Callbacks
void ZOLTAN_NUM_EDGES_MULTI_FN(void *data,
 int num_gid_entries, int num_lid_entries,
 int num_obj, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
 int *num_edges, int *ierr);

Proc 0 Input from Zoltan:
 num_obj = 3
 global_id = {A,C,B}
 local_id = {0,1,2}

Output from Application on Proc 0:
 num_edges = {2,4,3}
 (i.e., degrees of vertices A, C, B)
 ierr = ZOLTAN_OK

A

B C

D E

Proc 0

Proc 1

Slide 80

Example Graph Callbacks
void ZOLTAN_EDGE_LIST_MULTI_FN(void *data,
 int num_gid_entries, int num_lid_entries,
 int num_obj, ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids,
 int *num_edges,
 ZOLTAN_ID_PTR nbor_global_id, int *nbor_procs,
 int wdim, float *nbor_ewgts,
 int *ierr);

Proc 0 Input from Zoltan:
 num_obj = 3
 global_ids = {A, C, B}
 local_ids = {0, 1, 2}
 num_edges = {2, 4, 3}
 wdim = 0 or EDGE_WEIGHT_DIM parameter value

Output from Application on Proc 0:
 nbor_global_id = {B, C, A, B, E, D, A, C, D}
 nbor_procs = {0, 0, 0, 0, 1, 1, 0, 0, 1}
 nbor_ewgts = if wdim then
 {7, 8, 8, 9, 1, 3, 7, 9, 5}
 ierr = ZOLTAN_OK

A

B C

D E

Proc 0

Proc 1

87

9

5 3
1

2

Slide 81Example Hypergraph
Callbacks

void ZOLTAN_HG_SIZE_CS_FN(void *data, int *num_lists, int *num_pins,
 int *format, int *ierr);

Output from Application on Proc 0:
 num_lists = 2
 num_pins = 6
 format = ZOLTAN_COMPRESSED_VERTEX
 (owned non-zeros per vertex)
 ierr = ZOLTAN_OK

OR

Output from Application on Proc 0:
 num_lists = 5
 num_pins = 6
 format = ZOLTAN_COMPRESSED_EDGE
 (owned non-zeros per edge)
 ierr = ZOLTAN_OK

Proc 1Proc 0

f

e

d

c

b

a

Vertices

DCBA

XXXX

XXX

XX

XX

XX

XX

H
yp

er
ed

ge
s

Slide 82Example Hypergraph
Callbacks

 void ZOLTAN_HG_CS_FN(void *data, int num_gid_entries,
 int nvtxedge, int npins, int format,
 ZOLTAN_ID_PTR vtxedge_GID, int *vtxedge_ptr, ZOLTAN_ID_PTR pin_GID,
 int *ierr);

Proc 0 Input from Zoltan:
 nvtxedge = 2 or 5
 npins = 6
 format = ZOLTAN_COMPRESSED_VERTEX or
 ZOLTAN_COMPRESSED_EDGE

Output from Application on Proc 0:
 if (format = ZOLTAN_COMPRESSED_VERTEX)
 vtxedge_GID = {A, B}
 vtxedge_ptr = {0, 3}
 pin_GID = {a, e, f, b, d, f}
 if (format = ZOLTAN_COMPRESSED_EDGE)
 vtxedge_GID = {a, b, d, e, f}
 vtxedge_ptr = {0, 1, 2, 3, 4}
 pin_GID = {A, B, B, A, A, B}
 ierr = ZOLTAN_OK

Proc 1Proc 0

f

e

d

c

b

a

Vertices

DCBA

XXXX

XXX

XX

XX

XX

XX

H
yp

er
ed

ge
s

Slide 83

Extra Slides
• Configuring and building Zoltan

Slide 84

Configuring and Building Zoltan
• Create and enter the Zoltan directory:

– gunzip zoltan_distrib_v3.0.tar.gz
– tar xf zoltan_distrib_v3.0.tar
– cd Zoltan

• Configure and make Zoltan library
– Not autotooled; uses manual configuration file.
– “make zoltan” attempts a generic build;

library libzoltan.a is in directory Obj_generic.
– To customize your build:

• cd Utilities/Config; cp Config.linux Config.your_system
• Edit Config.your_system
• cd ../..
• setenv ZOLTAN_ARCH your_system
• make zoltan
• Library libzoltan.a is in Obj_your_system

Slide 85

Config file
DEFS =
RANLIB = ranlib
AR = ar r

CC = mpicc -Wall
CPPC = mpic++
INCLUDE_PATH =
DBG_FLAGS = -g
OPT_FLAGS = -O
CFLAGS = $(DBG_FLAGS)

F90 = mpif90
LOCAL_F90 = f90
F90CFLAGS = -DFMANGLE=UNDERSCORE -DNO_MPI2
FFLAGS =
SPPR_HEAD = spprinc.most
F90_MODULE_PREFIX = -I
FARG = farg_typical

MPI_LIB =
MPI_LIBPATH =

PARMETIS_LIBPATH = -L/Users/kddevin/code/ParMETIS3_1
PARMETIS_INCPATH = -I/Users/kddevin/code/ParMETIS3_1
#PATOH_LIBPATH = -L/Users/kddevin/code/PaToH
#PATOH_INCPATH = -I/Users/kddevin/code/PaToH

Slide 86

Extra Slides
• Simple example

Slide 87

Simple Example
• Zoltan/examples/C/zoltanSimple.c
• Application data structure:

– int MyNumPts;
• Number of points on processor.

– int *Gids;
• array of Global ID numbers of points on processor.

– float *Pts;
• Array of 3D coordinates of points on processor (in same

order as Gids array).

Slide 88Example zoltanSimple.c:
Initialization

 /* Initialize MPI */
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &me);
 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

 /*
 ** Initialize application data. In this example,
 ** create a small test mesh and divide it across processors
 */

 exSetDivisions(32); /* rectilinear mesh is div X div X div */

 MyNumPts = exInitializePoints(&Pts, &Gids, me, nprocs);

 /* Initialize Zoltan */
 rc = Zoltan_Initialize(argc, argv, &ver);

 if (rc != ZOLTAN_OK){
 printf("sorry...\n");
 free(Pts); free(Gids);
 exit(0);
 }

Slide 89Example zoltanSimple.c:
Prepare for Partitioning

 /* Allocate and initialize memory for Zoltan structure */
 zz = Zoltan_Create(MPI_COMM_WORLD);

 /* Set general parameters */
 Zoltan_Set_Param(zz, "DEBUG_LEVEL", "0");
 Zoltan_Set_Param(zz, "LB_METHOD", "RCB");
 Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");
 Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1");
 Zoltan_Set_Param(zz, "RETURN_LISTS", "ALL");

 /* Set RCB parameters */
 Zoltan_Set_Param(zz, "KEEP_CUTS", "1");
 Zoltan_Set_Param(zz, "RCB_OUTPUT_LEVEL", "0");
 Zoltan_Set_Param(zz, "RCB_RECTILINEAR_BLOCKS", "1");

 /* Register call-back query functions. */
 Zoltan_Set_Num_Obj_Fn(zz, exGetNumberOfAssignedObjects, NULL);
 Zoltan_Set_Obj_List_Fn(zz, exGetObjectList, NULL);
 Zoltan_Set_Num_Geom_Fn(zz, exGetObjectSize, NULL);
 Zoltan_Set_Geom_Multi_Fn(zz, exGetObject, NULL);

Slide 90Example zoltanSimple.c:
Partitioning

Zoltan computes the difference (Δ) from current distribution
Choose between:
a) Import lists (data to import from other procs)
b) Export lists (data to export to other procs)
c) Both (the default)

 /* Perform partitioning */
 rc = Zoltan_LB_Partition(zz,

 &changes, /* Flag indicating whether partition changed */
 &numGidEntries, &numLidEntries,

 &numImport, /* objects to be imported to new part */
 &importGlobalGids, &importLocalGids,
 &importProcs, &importToPart,

 &numExport, /* # objects to be exported from old part */
 &exportGlobalGids, &exportLocalGids,
 &exportProcs, &exportToPart);

Slide 91Example zoltanSimple.c:
Use the Partition

 /* Process partitioning results;
 ** in this case, print information;
 ** in a "real" application, migrate data here.
 */
 if (!rc){
 exPrintGlobalResult("Recursive Coordinate Bisection",
 nprocs, me,
 MyNumPts, numImport, numExport, changes);
 }
 else{
 free(Pts);
 free(Gids);
 Zoltan_Destroy(&zz);
 MPI_Finalize();
 exit(0);
 }

Slide 92Example zoltanSimple.c:
Cleanup

 /* Free Zoltan memory allocated by Zoltan_LB_Partition. */
 Zoltan_LB_Free_Part(&importGlobalGids, &importLocalGids,
 &importProcs, &importToPart);
 Zoltan_LB_Free_Part(&exportGlobalGids, &exportLocalGids,
 &exportProcs, &exportToPart);

 /* Free Zoltan memory allocated by Zoltan_Create. */
 Zoltan_Destroy(&zz);

 /* Free Application memory */
 free(Pts); free(Gids);

 /**********************
 ** all done ***********
 **********************/

 MPI_Finalize();

