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Outline
• High-level view of Zoltan
• Requirements, data models, and interface
• Dynamic Load Balancing and Partitioning
• Matrix Ordering
• Graph Coloring
• Utilities
• Alternate Interfaces
• Future Directions



Slide 3

The Zoltan Toolkit

Unstructured Communication

Data Migration Matrix Ordering

Dynamic Load 
Balancing

Distributed Data Directories

A B C
0 1 0

D E F
2 1 0
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1 2 1

• Library of data management services for unstructured, dynamic
and/or adaptive computations.

Graph Coloring
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Zoltan System Assumptions
• Assume distributed memory model.
• Data decomposition + “Owner computes”:

– The data is distributed among the processors.
– The owner performs all computation on its data.
– Data distribution defines work assignment.
– Data dependencies among data items owned by different

processors incur communication.

• Requirements:
– MPI
– C compiler
– GNU Make (gmake)
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Many Applications

• Different applications, requirements, data structures.

Multiphysics simulations

x bA

=

Linear solvers & 
preconditioners

Adaptive mesh refinement

Crash simulations

Particle methods

Parallel electronics networks
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Zoltan Interface Design
• Common interface to each class of tools.
• Tool/method specified with user parameters.

• Data-structure neutral design.
– Supports wide range of applications and data structures.
– Imposes no restrictions on application’s data structures.
– Application does not have to build Zoltan’s data

structures.
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Zoltan Interface
• Simple, easy-to-use interface.

– Small number of callable Zoltan functions.
– Callable from C, C++, Fortran.

• Requirement: Unique global IDs for objects to
be partitioned/ordered/colored. For example:

– Global element number.
– Global matrix row number.
– (Processor number, local element number)
– (Processor number, local particle number)
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Zoltan Application Interface
• Application interface:

– Zoltan queries the application for needed info.
• IDs of objects, coordinates, relationships to other objects.

– Application provides simple functions to answer queries.
– Small extra costs in memory and function-call overhead.

• Query mechanism supports…
– Geometric algorithms

• Queries for dimensions, coordinates, etc.
– Hypergraph- and graph-based algorithms

• Queries for edge lists, edge weights, etc.
– Tree-based algorithms

• Queries for parent/child relationships, etc.
• Once query functions are implemented, application can

access all Zoltan functionality.
– Can switch between algorithms by setting parameters.
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Zoltan Application Interface

Initialize Zoltan
(Zoltan_Initialize,
Zoltan_Create)

Select Method and
Parameters

(Zoltan_Set_Params)

Register
query functions
(Zoltan_Set_Fn)

Re-partition
(Zoltan_LB_Partition)

COMPUTE

Move data
(Zoltan_Migrate)

Clean up
(Zoltan_Destroy)

APPLICATION

Zoltan_LB_Partition:
• Call query functions.
• Build data structures.
• Compute new

decomposition.
• Return import/export

lists.

Zoltan_Migrate:
• Call packing query

functions for exports.
• Send exports.
• Receive imports.
• Call unpacking query

functions for imports.

ZOLTAN
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Zoltan Query Functions

List of graph edges and weights.  ZOLTAN_EDGE_LIST_FN

Number of graph edges.  ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights.  ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights.  ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins.  ZOLTAN_HG_CS_FN

Number of hyperedge pins.  ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items.  ZOLTAN_GEOM_FN

Dimensionality of domain.  ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights.  ZOLTAN_OBJ_LIST_FN

Number of items on processor  ZOLTAN_NUM_OBJ_FN

General Query Functions
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Using Zoltan in Your Application

1. Decide what your objects are.
 Elements?  Grid points?  Matrix rows?  Particles?

2. Decide which tools (partitioning/ordering/coloring/utilities)
and class of method (geometric/graph/hypergraph) to use.

3. Download Zoltan.
 http://www.cs.sandia.gov/Zoltan

4. Write required query functions for your application.
 Required functions are listed with each method in Zoltan

User’s Guide.
5. Call Zoltan from your application.
6. #include “zoltan.h” in files calling Zoltan.
7. Edit Zoltan configuration file and build Zoltan.
8. Compile application; link with libzoltan.a.

 mpicc application.c -lzoltan



Slide 12

Partitioning and Load Balancing
• Assignment of application data to processors for parallel

computation.
• Applied to grid points, elements, matrix rows, particles, ….
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Partitioning Interface

Zoltan computes the difference (Δ) from current distribution
Choose between:
a) Import lists (data to import from other procs)
b) Export lists (data to export to other procs)
c) Both (the default)

err = Zoltan_LB_Partition(zz,
&changes, /* Flag indicating whether partition changed */
&numGidEntries, &numLidEntries,
&numImport, /* objects to be imported to new part */
&importGlobalGids, &importLocalGids, &importProcs, &importToPart,
&numExport, /* # objects to be exported from old part */
&exportGlobalGids, &exportLocalGids, &exportProcs, &exportToPart);
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Static Partitioning

• Static partitioning in an application:
– Data partition is computed.
– Data are distributed according to partition map.
– Application computes.

• Ideal partition:
– Processor idle time is minimized.
– Inter-processor communication costs are kept low.

• Zoltan_Set_Param(zz, “LB_APPROACH”, “PARTITION”);

Initialize
Application

Partition
Data

Distribute
Data

Compute
Solutions

Output
& End
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(a.k.a. Dynamic Load Balancing)

Initialize
Application

Partition
Data

Redistribute
Data

Compute
Solutions
& Adapt

Output
& End

• Dynamic repartitioning (load balancing) in an application:
– Data partition is computed.
– Data are distributed according to partition map.
– Application computes and, perhaps, adapts.
– Process repeats until the application is done.

• Ideal partition:
– Processor idle time is minimized.
– Inter-processor communication costs are kept low.
– Cost to redistribute data is also kept low.

• Zoltan_Set_Param(zz, “LB_APPROACH”, “REPARTITION”);
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Suite of Partitioners

• No single partitioner works best for all applications.
– Trade-offs:

• Quality vs. speed.
• Geometric locality vs. data dependencies.
• High-data movement costs vs. tolerance for remapping.

• Application developers may not know which partitioner
is best for application.

• Zoltan contains suite of partitioning methods.
– Application changes only one parameter to switch

methods.
• Zoltan_Set_Param(zz, “LB_METHOD”, “new_method_name”);

– Allows experimentation/comparisons to find most
effective partitioner for application.



Slide 17Partitioning Algorithms
in the Zoltan Toolkit

Recursive Coordinate Bisection (Berger, Bokhari)
Recursive Inertial Bisection (Taylor, Nour-Omid)

Zoltan Graph Partitioning
ParMETIS  (U. Minnesota)

Jostle (U. Greenwich)

Hypergraph Partitioning
Hypergraph Repartitioning 
PaToH (Catalyurek & Aykanat)

Geometric (coordinate-based) methods

Combinatorial (topology-based) methods

Space Filling Curve Partitioning
 (Warren&Salmon, et al.)

Refinement-tree Partitioning (Mitchell)
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Geometric Partitioning
• Zoltan_Set_Param(zz, “LB_METHOD”, “RCB”);

Zoltan_Set_Param(zz, “LB_METHOD”, “RIB”);
Zoltan_Set_Param(zz, “LB_METHOD”, “HSFC”);

• Partition based on geometric locality.
– Assign physically close objects to the same processor.

Recursive Coordinate Bisection (RCB)
Berger & Bokhari, 1987 

Space Filling Curve Partitioning (HSFC)
Warren & Salmon, 1993; 

Pilkington & Baden, 1994; Patra & Oden, 1995
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Geometric Repartitioning
• No explicit control of migration costs, but…
• Implicitly achieves low data redistribution costs.
• For small changes in data, cuts move only slightly,

resulting in little data redistribution.

Recursive Coordinate Bisection (RCB) Space Filling Curve Partitioning (HSFC)
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Geometric Partitioners

Parallel Volume Rendering

Crash Simulations
and Contact Detection

Adaptive Mesh Refinement
Particle Simulations
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• Advantages:
– Easiest partitioners to use.
– Conceptually simple; fast and inexpensive.
– All processors can inexpensively know entire partition (e.g., for

global search in contact detection).
– No connectivity info needed (e.g., particle methods).
– Good on specialized geometries.

• Disadvantages:
– No explicit control of communication costs.
– Mediocre partition quality.
– Can generate disconnected subdomains for complex geometries.
– Need coordinate information.

SLAC’S 55-cell Linear Accelerator with couplers:
One-dimensional RCB partition reduced runtime up
to 68% on 512 processor IBM SP3. (Wolf, Ko)
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Geometric Methods

• Zoltan can store cuts from RCB, RIB, and HSFC
inexpensively in each processor.
– Zoltan_Set_Param(zz, “KEEP_CUTS”, “1”);

• Enables parallel geometric search without communication.
– Useful for contact detection, particle methods, rendering.

1st cut

2nd

2nd

3rd

3rd3rd

3rd

*
Determine the part/processor 

owning region with a given point.
Zoltan_LB_Point_PP_Assign

1st cut

2nd

2nd

3rd

3rd3rd

3rd

Determine all parts/processors 
overlapping a given region.
Zoltan_LB_Box_PP_Assign
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(RCB, RIB, HSFC), use …

List of graph edges and weights.  ZOLTAN_EDGE_LIST_FN

Number of graph edges.  ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights.  ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights.  ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins.  ZOLTAN_HG_CS_FN

Number of hyperedge pins.  ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items.  ZOLTAN_GEOM_FN

Dimensionality of domain.  ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights.  ZOLTAN_OBJ_LIST_FN

Number of items on processor  ZOLTAN_NUM_OBJ_FN

General Query Functions
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Graph Partitioning

• Represent problem as a weighted graph.
– Vertices = objects to be partitioned.
– Edges = dependencies between two

objects.
– Weights = work load or amount of

dependency.
• Partition graph so that …

– Parts have equal vertex weight.
– Weight of edges cut by part boundaries is

small.

• Zoltan_Set_Param(zz, “LB_METHOD”, “GRAPH”);
• Zoltan_Set_Param(zz, “GRAPH_PACKAGE”, “ZOLTAN”); or
   Zoltan_Set_Param(zz, “GRAPH_PACKAGE”, “PARMETIS”);

• Kernighan, Lin, Schweikert, Fiduccia, Mattheyes, Simon,
Hendrickson, Leland, Kumar, Karypis, et al.
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Partitioning

x bA

=

Linear solvers & preconditioners
(square, structurally symmetric systems)

Finite Element 
Analysis

Multiphysics  and
multiphase simulations
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Advantages and Disadvantages

• Advantages:
– Highly successful model for mesh-based PDE problems.
– Explicit control of communication volume gives higher

partition quality than geometric methods.
– Excellent software available.

• Serial:  Chaco (SNL)
Jostle (U. Greenwich)
METIS (U. Minn.)
Party (U. Paderborn)
Scotch (U. Bordeaux)

• Parallel:  Zoltan (SNL)
ParMETIS (U. Minn.)
PJostle (U. Greenwich)
PTScotch (U. Bordeaux)

• Disadvantages:
– More expensive than geometric methods.
– Edge-cut model only approximates communication volume.
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coloring & ordering, use …

List of graph edges and weights.  ZOLTAN_EDGE_LIST_FN

Number of graph edges.  ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights.  ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights.  ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins.  ZOLTAN_HG_CS_FN

Number of hyperedge pins.  ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items.  ZOLTAN_GEOM_FN

Dimensionality of domain.  ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights.  ZOLTAN_OBJ_LIST_FN

Number of items on processor  ZOLTAN_NUM_OBJ_FN

General Query Functions
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A

Graph Partitioning Model

A

Hypergraph Partitioning Model

Hypergraph Partitioning
• Zoltan_Set_Param(zz, “LB_METHOD”, “HYPERGRAPH”);
• Zoltan_Set_Param(zz, “HYPERGRAPH_PACKAGE”, “ZOLTAN”); or

Zoltan_Set_Param(zz, “HYPERGRAPH_PACKAGE”, “PATOH”);

• Alpert, Kahng, Hauck, Borriello, Çatalyürek, Aykanat, Karypis, et al.
• Hypergraph model:

– Vertices = objects to be partitioned.
– Hyperedges = dependencies between two or more objects.

• Partitioning goal: Assign equal vertex weight while minimizing
hyperedge cut weight.
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Best Algorithms Paper Award at IPDPS07
“Hypergraph-based Dynamic Load Balancing for Adaptive Scientific Computations”

Çatalyürek, Boman, Devine, Bozdag, Heaphy, & Riesen

Hypergraph Repartitioning
• Augment hypergraph with data redistribution costs.

– Account for data’s current processor assignments.
– Weight dependencies by their size and frequency of use.

• Partitioning then tries to minimize total communication volume:
       Data redistribution volume
       + Application communication volume
          Total communication volume

• Data redistribution volume: callback returns data sizes.
– Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_MULTI_FN_TYPE,

myObjSizeFn, 0);
• Application communication volume = Hyperedge cuts * Number

of times the communication is done between repartitionings.
– Zoltan_Set_Param(zz, “PHG_REPART_MULTIPLIER”, “100”);
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Hypergraph Applications

Circuit Simulations
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Linear programming
 for sensor placement

x bA

=

Linear solvers & preconditioners
(no restrictions on matrix structure)

Finite Element 
Analysis

Multiphysics  and
multiphase simulations

Data Mining
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Advantages and Disadvantages

• Advantages:
– Communication volume reduced 30-38% on average

over graph partitioning (Catalyurek & Aykanat).
• 5-15% reduction for mesh-based applications.

– More accurate communication model than graph
partitioning.

• Better representation of highly connected and/or
non-homogeneous systems.

– Greater applicability than graph model.
• Can represent rectangular systems and non-symmetric

dependencies.
• Disadvantages:

– Usually more expensive than graph partitioning.
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and repartitioning, use …

List of graph edges and weights.  ZOLTAN_EDGE_LIST_FN

Number of graph edges.  ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights.  ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights.  ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins.  ZOLTAN_HG_CS_FN

Number of hyperedge pins.  ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items.  ZOLTAN_GEOM_FN

Dimensionality of domain.  ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights.  ZOLTAN_OBJ_LIST_FN

Number of items on processor  ZOLTAN_NUM_OBJ_FN

General Query Functions
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to build hypergraph.

List of graph edges and weights.  ZOLTAN_EDGE_LIST_FN

Number of graph edges.  ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights.  ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights.  ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins.  ZOLTAN_HG_CS_FN

Number of hyperedge pins.  ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items.  ZOLTAN_GEOM_FN

Dimensionality of domain.  ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights.  ZOLTAN_OBJ_LIST_FN

Number of items on processor  ZOLTAN_NUM_OBJ_FN

General Query Functions
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Computation
Memory

Multi-criteria Load-balancing
• Multiple constraints or objectives

– Compute a single partition that is good
with respect to multiple factors.

• Balance both computation and memory.
• Balance meshes in loosely coupled physics.
• Balance multi-phase simulations.

– Extend algorithms to multiple weights
• Difficult. No guarantee good solution exists.

• Zoltan_Set_Param(zz, “OBJ_WEIGHT_DIM”, “2”);
– Available in RCB, RIB and

ParMETIS graph partitioning.
– In progress in Hypergraph

partitioning.
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Heterogeneous Architectures
• Clusters may have different types of processors.
• Assign “capacity” weights to processors.

– E.g., Compute power (speed).
– Zoltan_LB_Set_Part_Sizes(…);

• Note:  Can use this function to specify part sizes for any purpose.
• Balance with respect to processor capacity.

• Hierarchical partitioning:  Allows different partitioners at
different architecture levels.

– Zoltan_Set_Param(zz, “LB_METHOD”, “HIER”);
– Requires three additional callbacks

to describe architecture hierarchy.
• ZOLTAN_HIER_NUM_LEVELS_FN
• ZOLTAN_HIER_PARTITION_FN
• ZOLTAN_HIER_METHOD_FN

Entire System

...Processor Processor

Core Core...Core Core...
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Sparse Matrix Ordering
• When solving sparse linear systems with
direct  methods, non-zero terms are created
during the factorization process (A→LLT ,
A→LDLT or A→LU) .

• Fill-in depends on the order of the unknowns.
– Need to provide fill-reducing orderings.
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Fill Reducing Ordering
• Combinatorial problem, depending on only the
structure of the matrix A:

– Work with the graph associated with A.
– Use Zoltan graph-based callbacks.

• NP-Complete; thus use heuristics.
• Most popular heuristics:

– Minimum Degree algorithms (AMD, MMD, AMF …) 
– Nested Dissection
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A

S
BA S B

Nested dissection (1) 
• Principle [George 1973]

– Find a vertex separator S in graph.
– Order vertices of S with highest available indices.
– Recursively apply the algorithm to the two

separated subgraphs A and B.



Slide 39

Nested dissection (2) 
•Advantages:

– Induces high quality block decompositions.
• Suitable for block BLAS 3 computations.

– Increases the concurrency of
computations.

• Compared to minimum degree algorithms.
• Very suitable for parallel factorization.

– It’s the scope here: parallel ordering is for
parallel factorization.
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Matrix ordering within Zoltan
• To be released in Zoltan v3.1, September 2008.
• Computed by third party libraries:

– PTScotch (U. Bordeaux)
– ParMETIS (U. Minnesota)
– Easy to add another one.

• Calls to the external ordering library are
transparent for the user.

– Zoltan’s call is a standard way to compute ordering.
User

Zoltan

PTScotch
Ordering

Partitioning (soon)

ParMETIS
Ordering

Graph Partitioning

Others…

Third-Party Library Interface
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Ordering interface in Zoltan
•Compute ordering with one function:
Zoltan_Order.

•Output provided:
–New order of the unknowns (direct

permutation), available in two forms:
• The new number in the interval [0,N-1]; or
• The new order with respect to Global IDs.

–Access to elimination tree, “block” view of
the ordering.
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Zoltan Graph Coloring
• Parallel distance-1 and distance-2 graph coloring.
• Graph built using same application interface and code

as graph partitioners.
• Generic coloring interface; easy to add new coloring

algorithms.
• Algorithms

– Distance-1 coloring: Bozdag, Gebremedhin, Manne,
Boman, Catalyurek, EuroPar’05, JPDC’08.

– Distance-2 coloring: Bozdag, Catalyurek, Gebremedhin,
Manne, Boman, Ozguner, HPCC’05, SISC’08 (in
submission).
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Distance-1 Graph Coloring
• Problem (NP-hard)

Color the vertices of a graph with as few colors as
possible such that no two adjacent vertices
receive the same color.

• Applications
– Iterative solution of sparse linear systems
– Preconditioners
– Sparse tiling
– Eigenvalue computation
– Parallel graph partitioning
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Distance-2 Graph Coloring
• Problem (NP-hard)

Color the vertices of a graph with as few colors as possible
such that a pair of vertices connected by a path on two or
less edges receives different colors.

• Applications
– Derivative matrix computation in numerical optimization
– Channel assignment
– Facility location

• Related problems
– Partial distance-2 coloring
– Star coloring
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Coloring Interface in Zoltan

• Both distance-1 and distance-2 coloring

routines can be invoked by  Zoltan_Color

function.

• The colors assigned to the objects are

returned in an array.
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coloring & ordering, use …

List of graph edges and weights.  ZOLTAN_EDGE_LIST_FN

Number of graph edges.  ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights.  ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights.  ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins.  ZOLTAN_HG_CS_FN

Number of hyperedge pins.  ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items.  ZOLTAN_GEOM_FN

Dimensionality of domain.  ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights.  ZOLTAN_OBJ_LIST_FN

Number of items on processor  ZOLTAN_NUM_OBJ_FN

General Query Functions
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Other Zoltan Functionality
• Tools needed when doing dynamic load balancing:

– Data Migration
– Unstructured Communication Primitives
– Distributed Data Directories

• All functionality described in Zoltan User’s Guide.
– http://www.cs.sandia.gov/Zoltan/ug_html/ug.html
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Zoltan Data Migration Tools
• After partition is computed, data must be moved to new

decomposition.
– Depends strongly on application data structures.
– Complicated communication patterns.

• Zoltan can help!
– Application supplies query functions to pack/unpack data.
– Zoltan does all communication to new processors.
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Data Migration Tools

• Required migration query functions:
– ZOLTAN_OBJ_SIZE_MULTI_FN:

• Returns size of data (in bytes) for each object to be exported to a new
processor.

– ZOLTAN_PACK_MULTI_FN:
• Remove data from application data structure on old processor;
• Copy data to Zoltan communication buffer.

– ZOLTAN_UNPACK_MULTI_FN:
• Copy data from Zoltan communication buffer into data structure on new

processor.

• int Zoltan_Migrate(struct Zoltan_Struct *zz,
       int num_import, ZOLTAN_ID_PTR import_global_ids,
       ZOLTAN_ID_PTR import_local_ids, int *import_procs,
       int *import_to_part,
       int num_export, ZOLTAN_ID_PTR export_global_ids,
       ZOLTAN_ID_PTR export_local_ids, int *export_procs,
       int *export_to_part);
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Graph-based
decomposition

RCB
decomposition

Zoltan_Comm_Do

Zoltan_Comm_Do_Reverse

Zoltan Unstructured
Communication Package

• Simple primitives for efficient irregular communication.
– Zoltan_Comm_Create: Generates communication plan.

• Processors and amount of data to send and receive.
– Zoltan_Comm_Do: Send data using plan.

• Can reuse plan. (Same plan, different data.)
– Zoltan_Comm_Do_Reverse:  Inverse communication.

• Used for most communication in Zoltan.
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Crash Simulations

RCB

Graph-based

RCB

RCB mapped to time 0

1.6 ms

RCB

RCB mapped to time 0

3.2 ms

•Multiphase simulation:
– Graph-based decomposition of elements for finite element calculation.
– Dynamic geometric decomposition of surfaces for contact detection.
– Migration tools and Unstructured Communication package map

between decompositions.
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• Helps applications locate off-processor data.
• Rendezvous algorithm (Pinar, 2001).

– Directory distributed in known way (hashing) across
processors.

– Requests for object location
sent to processor storing
the object’s directory entry.

A B C
0 1 0

D E F
2 1 0

G H I
1 2 1

Processor 0 Processor 1 Processor 2

Directory  Index  
                   Location  

Zoltan Distributed Data Directory

A F

C

B

E

I

G H
D

Processor 0

Processor 1

Processor 2
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Alternate Interfaces to Zoltan
• C, C++ and F90 interfaces in Zoltan.

• Matrix-based interface in Trilinos.

• Mesh-based interface in ITAPS.
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Trilinos Interface to Zoltan

• Trilinos Toolkit (M. Heroux, SNL, PI):  Packages for …
– Parallel matrix and vector classes (Epetra)
– Linear, nonlinear and eigen solvers
– Preconditioners
– Matrix partitioning (Isorropia)
– Time integration, discretizations, inline meshing, ….

• Epetra provides parallel matrix and vector classes.
• Isorropia uses Zoltan to repartition Epetra objects.

– B = Isorropia::Epetra::create_balanced_copy(A, params); or
– Partitioner, redistributor, and cost-evaluator classes.

• Trilinos v9.0 (to be released September 2008) will include:
– Zoltan in the Trilinos distribution and build environment.
– Isorropia interfaces to matrix ordering and coloring.

(Member of SciDAC2 TOPS CET)
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Mesh-based Interface to Zoltan

• Interoperable Technologies for Advanced Petascale
Simulations (L. Diachin, LLNL, PI)

– SciDAC2 CET.
• ITAPS Goals:

– Develop the next generation of meshing and geometry
tools for petascale computing.

• E.g., adaptive mesh refinement, shape optimization.
– Improve applications’ ability to use these tools.

• “Standardization” of mesh interfaces.
• Dynamic Services toolkit:

– ITAPS-compliant mesh interface
 to Zoltan tools.

– Integration with ITAPS iMeshP
parallel mesh interface to be
released FY09.

Image courtesy of M. Shephard, RPI
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Current Work
• Two-dimensional matrix partitioning.
• Performance improvements for hypergraph
partitioning.

• Multi-criteria hypergraph partitioning.
• Non-symmetric matrix ordering.
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For More Information...
• Zoltan Home Page

– http://www.cs.sandia.gov/Zoltan
– User’s and Developer’s Guides
– Download Zoltan software under GNU LGPL.

• Trilinos Home Page
– http://trilinos.sandia.gov

• ITAP Home Page
– http://www.itaps.org

• CSCAPES Home Page
– http://www.cscapes.org

• Email:
– zoltan-dev@software.sandia.gov
– kddevin@sandia.gov
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The End
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Extra Slides
• Experimental results:  Partitioning
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Performance Results
• Experiments on Sandia’s Thunderbird cluster.

– Dual 3.6 GHz Intel EM64T processors with 6 GB RAM.
– Infiniband network.

• Compare RCB, HSFC, graph and hypergraph
methods.

• Measure …
– Amount of communication induced by the partition.
– Partitioning time.
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Test Data

SLAC *LCLS 
Radio Frequency Gun

6.0M x 6.0M
23.4M nonzeros 

Xyce 680K ASIC Stripped
Circuit Simulation

680K x 680K
2.3M nonzeros

Cage15 DNA
Electrophoresis

5.1M x 5.1M
99M nonzeros

SLAC Linear Accelerator
2.9M x 2.9M

11.4M nonzeros 
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Lower is Better

Cage15 5.1M electrophoresis

Xyce 680K circuitSLAC 6.0M LCLS

SLAC 2.9M Linear Accelerator

Number of parts 
= number of 
processors.

RCB

Graph
Hypergraph

HSFC
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Lower is better

Cage15 5.1M electrophoresis

Xyce 680K circuitSLAC 6.0M LCLS

SLAC 2.9M Linear Accelerator

1024 parts.
Varying number
of processors.

RCB

Graph
Hypergraph

HSFC
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Extra Slides
• Experimental results:  Repartitioning
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Repartitioning Experiments
• Experiments with 64 parts on 64 processors.
• Dynamically adjust weights in data to simulate,
say, adaptive mesh refinement.

• Repartition.
• Measure repartitioning time and
total communication volume:

   Data redistribution volume
+ Application communication volume

      Total communication volume



Slide 66Repartitioning Results:
Lower is Better

Xyce 680K circuitSLAC 6.0M LCLS

Repartitioning
Time (secs)

Data
Redistribution
Volume

Application
Communication
Volume
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Extra Slides
• Experimental results:  Ordering
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Experimental results (1)
•Metric is OPC, the operation count of Cholesky
factorization.
•Largest matrix ordered by PT-Scotch: 83 millions of
unknowns on 256 processors (CEA/CESTA).
•Some of our largest test graphs.

CEA/CESTA1.29E+147.61756862311423millions

Circuit simulation,
Quimonda8.92E+106.76291438613quimonda07

DNA electrophoresis, UF4.06E+1618.24470225154cage15

3D mechanics mesh,
Parasol5.48E+1281.2838354944audikw1

degree|E||V|
DescriptionOSS

AverageSize (x1000)
Graph
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Experimental results (2)

3.825.659.8017.1523.0932.69tPM

18.1624.7433.8345.1953.1973.11tPTS

1.07E+138.91E+128.88E+127.78E+126.37E+125.82E+12OPM

5.45E+125.45E+125.45E+125.54E+125.65E+125.73E+12OPTS

audikw1

643216842case

Number of processesTest
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Experimental results (3)

17.8322.5640.30†117.77195.93tPM

380.69351.38340.78371.70427.38540.46tPTS

6.64E+167.03E+167.36E+16†6.64E+164.47E+16OPM

4.50E+164.58E+164.94E+164.64E+165.01E+164.58E+16OPTS

cage15

643216842case

Number of processesTest
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Experimental results (4)
•ParMETIS crashes for all other graphs.

103.73147.35211.68295.38416.45671.60tPTS

2.45E+141.94E+142.71E+143.99E+142.91E+141.45E+14OPTS

23millions

16.6217.3022.2334.68--tPTS

7.70E+106.94E+106.38E+105.80E+10--OPTS

quimonda07

643216842case

Number of processesTest
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Extra Slides
• Experimental results:  Coloring
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A Parallel Coloring Framework
• Color vertices iteratively in rounds using a first
fit strategy

• Each round is broken into supersteps
– Color a certain number of vertices
– Exchange recent color information

• Detect conflicts at the end of each round
• Repeat until all vertices receive consistent
colors
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Experimental Results
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Extra Slides
• More details on callback/query functions.
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More Details on Query Functions
• void* data pointer allows user data structures to be used in all

query functions.
– To use, cast the pointer to the application data type.

• Local IDs provided by application are returned by Zoltan to
simplify access of application data.

– E.g.  Indices into local arrays of coordinates.
•ZOLTAN_ID_PTR is pointer to array of unsigned integers,

allowing IDs to be more than one integer long.
– E.g., (processor number, local element number) pair.
– numGlobalIds and numLocalIds are lengths of each ID.

• All memory for query-function arguments is allocated in Zoltan.

void ZOLTAN_GET_GEOM_MULTI_FN(void *userDefinedData,
                       int numGlobalIds, int numLocalIds, int numObjs,
                       ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,
                       int numDim, double *pts, int *err)
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ZOLTAN_OBJ_LIST_FN

void exGetObjectList(void *userDefinedData,
                     int numGlobalIds, int numLocalIds,
                     ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,
                     int wgt_dim, float *obj_wgts,
                     int *err)
{
/* ZOLTAN_OBJ_LIST_FN callback function.
** Returns list of objects owned by this processor.
** lids[i] = local index of object in array.
*/
  int i;

  for (i=0; i<NumPoints; i++)
  {
    gids[i] = GlobalIds[i];
    lids[i] = i;
  }

  *err = 0;

  return;
}
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ZOLTAN_GEOM_MULTI_FN

void exGetObjectCoords(void *userDefinedData,
                       int numGlobalIds, int numLocalIds, int numObjs,
                       ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,
                       int numDim, double *pts, int *err)
{
/* ZOLTAN_GEOM_MULTI_FN callback.
** Returns coordinates of objects listed in gids and lids.
*/
  int i, id, id3, next = 0;
  if (numDim != 3) {
    *err = 1; return;
  }
  for (i=0; i<numObjs; i++){
    id = lids[i];
    if ((id < 0) || (id >= NumPoints)) {
      *err = 1; return;
    }
    id3 = lids[i] * 3;
    pts[next++] = (double)(Points[id3]);
    pts[next++] = (double)(Points[id3 + 1]);
    pts[next++] = (double)(Points[id3 + 2]);
  }
}
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Example Graph Callbacks
void ZOLTAN_NUM_EDGES_MULTI_FN(void *data,
  int num_gid_entries, int num_lid_entries,
  int num_obj, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
  int *num_edges, int *ierr);

Proc 0 Input from Zoltan:
    num_obj = 3
  global_id = {A,C,B}
  local_id  = {0,1,2}

Output from Application on Proc 0:
  num_edges = {2,4,3}
              (i.e., degrees of vertices A, C, B)
  ierr = ZOLTAN_OK

A

B C

D E

Proc 0

Proc 1
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Example Graph Callbacks
void ZOLTAN_EDGE_LIST_MULTI_FN(void *data,
  int num_gid_entries, int num_lid_entries,
  int num_obj, ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids,
  int *num_edges,
  ZOLTAN_ID_PTR nbor_global_id, int *nbor_procs,
  int wdim, float *nbor_ewgts,
  int *ierr);

Proc 0 Input from Zoltan:
    num_obj = 3
  global_ids = {A, C, B}
  local_ids  = {0, 1, 2}
  num_edges  = {2, 4, 3}
  wdim = 0 or EDGE_WEIGHT_DIM parameter value 

Output from Application on Proc 0:
  nbor_global_id = {B, C, A, B, E, D, A, C, D}
  nbor_procs     = {0, 0, 0, 0, 1, 1, 0, 0, 1}
  nbor_ewgts   = if wdim then
                   {7, 8, 8, 9, 1, 3, 7, 9, 5}
  ierr = ZOLTAN_OK

A

B C

D E

Proc 0

Proc 1

87

9

5 3
1

2
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Callbacks

void ZOLTAN_HG_SIZE_CS_FN(void *data, int *num_lists, int *num_pins,
  int *format, int *ierr);

Output from Application on Proc 0:
  num_lists = 2
  num_pins = 6
  format = ZOLTAN_COMPRESSED_VERTEX
           (owned non-zeros per vertex)
  ierr = ZOLTAN_OK

OR

Output from Application on Proc 0:
  num_lists = 5
  num_pins = 6
  format = ZOLTAN_COMPRESSED_EDGE
           (owned non-zeros per edge)
  ierr = ZOLTAN_OK

Proc 1Proc 0

f

e

d

c

b

a

Vertices

DCBA

XXXX

XXX

XX

XX

XX

XX

H
yp

er
ed

ge
s
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Callbacks

 void ZOLTAN_HG_CS_FN(void *data, int num_gid_entries,
  int nvtxedge, int npins, int format,
  ZOLTAN_ID_PTR vtxedge_GID, int *vtxedge_ptr, ZOLTAN_ID_PTR pin_GID,
  int *ierr);

Proc 0 Input from Zoltan:
  nvtxedge = 2 or 5
  npins = 6
  format = ZOLTAN_COMPRESSED_VERTEX or
           ZOLTAN_COMPRESSED_EDGE

Output from Application on Proc 0:
  if (format = ZOLTAN_COMPRESSED_VERTEX)
      vtxedge_GID = {A, B}
      vtxedge_ptr = {0, 3}
      pin_GID = {a, e, f, b, d, f}
  if (format = ZOLTAN_COMPRESSED_EDGE)
      vtxedge_GID = {a, b, d, e, f}
      vtxedge_ptr = {0, 1, 2, 3, 4}
      pin_GID = {A, B, B, A, A, B}
  ierr = ZOLTAN_OK

Proc 1Proc 0

f

e

d

c

b

a

Vertices

DCBA

XXXX

XXX

XX

XX

XX

XX

H
yp

er
ed

ge
s
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Extra Slides
• Configuring and building Zoltan



Slide 84

Configuring and Building Zoltan
• Create and enter the Zoltan directory:

– gunzip zoltan_distrib_v3.0.tar.gz
– tar xf zoltan_distrib_v3.0.tar
– cd Zoltan

• Configure and make Zoltan library
– Not autotooled; uses manual configuration file.
– “make zoltan” attempts a generic build;

library libzoltan.a is in directory Obj_generic.
– To customize your build:

• cd Utilities/Config; cp Config.linux Config.your_system
• Edit Config.your_system
• cd ../..
• setenv ZOLTAN_ARCH your_system
• make zoltan
• Library libzoltan.a is in Obj_your_system
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Config file
DEFS                    =
RANLIB                  = ranlib
AR                      = ar r

CC                      = mpicc -Wall
CPPC                    = mpic++
INCLUDE_PATH            =
DBG_FLAGS               = -g
OPT_FLAGS               = -O
CFLAGS                  = $(DBG_FLAGS)

F90                     = mpif90
LOCAL_F90               = f90
F90CFLAGS               = -DFMANGLE=UNDERSCORE -DNO_MPI2
FFLAGS                  =
SPPR_HEAD               = spprinc.most
F90_MODULE_PREFIX       = -I
FARG                    = farg_typical

MPI_LIB                 =
MPI_LIBPATH             =

PARMETIS_LIBPATH        = -L/Users/kddevin/code/ParMETIS3_1
PARMETIS_INCPATH        = -I/Users/kddevin/code/ParMETIS3_1
#PATOH_LIBPATH           = -L/Users/kddevin/code/PaToH
#PATOH_INCPATH           = -I/Users/kddevin/code/PaToH
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Extra Slides
• Simple example
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Simple Example
• Zoltan/examples/C/zoltanSimple.c
• Application data structure:

– int MyNumPts;
• Number of points on processor.

– int *Gids;
• array of Global ID numbers of points on processor.

– float *Pts;
• Array of 3D coordinates of points on processor (in same

order as Gids array).
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Initialization

  /* Initialize MPI */
  MPI_Init(&argc, &argv);
  MPI_Comm_rank(MPI_COMM_WORLD, &me);
  MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

  /*
  ** Initialize application data.  In this example,
  ** create a small test mesh and divide it across processors
  */

  exSetDivisions(32);    /* rectilinear mesh is div X div X div */

  MyNumPts = exInitializePoints(&Pts, &Gids, me, nprocs);

  /*  Initialize Zoltan */
  rc = Zoltan_Initialize(argc, argv, &ver);

  if (rc != ZOLTAN_OK){
    printf("sorry...\n");
    free(Pts); free(Gids);
    exit(0);
  }
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Prepare for Partitioning

  /* Allocate and initialize memory for Zoltan structure */
  zz = Zoltan_Create(MPI_COMM_WORLD);

  /* Set general parameters */
  Zoltan_Set_Param(zz, "DEBUG_LEVEL", "0");
  Zoltan_Set_Param(zz, "LB_METHOD", "RCB");
  Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");
  Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1");
  Zoltan_Set_Param(zz, "RETURN_LISTS", "ALL");

  /* Set RCB parameters */
  Zoltan_Set_Param(zz, "KEEP_CUTS", "1");
  Zoltan_Set_Param(zz, "RCB_OUTPUT_LEVEL", "0");
  Zoltan_Set_Param(zz, "RCB_RECTILINEAR_BLOCKS", "1");

  /* Register call-back query functions. */
  Zoltan_Set_Num_Obj_Fn(zz, exGetNumberOfAssignedObjects, NULL);
  Zoltan_Set_Obj_List_Fn(zz, exGetObjectList, NULL);
  Zoltan_Set_Num_Geom_Fn(zz, exGetObjectSize, NULL);
  Zoltan_Set_Geom_Multi_Fn(zz, exGetObject, NULL);
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Partitioning

Zoltan computes the difference (Δ) from current distribution
Choose between:
a) Import lists (data to import from other procs)
b) Export lists (data to export to other procs)
c) Both (the default)

 /* Perform partitioning */
 rc = Zoltan_LB_Partition(zz,

         &changes, /* Flag indicating whether partition changed */
         &numGidEntries, &numLidEntries,

             &numImport, /* objects to be imported to new part */
         &importGlobalGids, &importLocalGids,
         &importProcs, &importToPart,

             &numExport, /* # objects to be exported from old part */
          &exportGlobalGids, &exportLocalGids,
         &exportProcs, &exportToPart);
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Use the Partition

  /* Process partitioning results;
  ** in this case, print information;
  ** in a "real" application, migrate data here.
  */
  if (!rc){
    exPrintGlobalResult("Recursive Coordinate Bisection",
                         nprocs, me,
                         MyNumPts, numImport, numExport, changes);
  }
  else{
    free(Pts);
    free(Gids);
    Zoltan_Destroy(&zz);
    MPI_Finalize();
    exit(0);
  }
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Cleanup

  /* Free Zoltan memory allocated by Zoltan_LB_Partition. */
  Zoltan_LB_Free_Part(&importGlobalGids, &importLocalGids,
                      &importProcs, &importToPart);
  Zoltan_LB_Free_Part(&exportGlobalGids, &exportLocalGids,
                      &exportProcs, &exportToPart);

  /* Free Zoltan memory allocated by Zoltan_Create. */
  Zoltan_Destroy(&zz);

  /* Free Application memory */
  free(Pts); free(Gids);

  /**********************
  ** all done ***********
  **********************/

  MPI_Finalize();


