ADIC2 : A component source transformation system for the differentiation of C/C++

Sri Hari Krishna Narayanan in collaboration with
Paul Hovland
Andrew Lyons (past member)
Boyana Norris
Jean Utke
Beata Winnicka (past member)
Mathematics & Computer Science Division
Argonne National Laboratory
AD in a Nutshell

- Technique for computing analytic derivatives of programs (millions of loc)
- Derivatives used in optimization, nonlinear PDEs, sensitivity analysis, inverse problems, etc.
- AD = analytic differentiation of elementary functions + propagation by chain rule
 - Every programming language provides a limited number of elementary mathematical functions
 - Thus, every function computed by a program may be viewed as the composition of these so-called intrinsic functions
 - Derivatives for the intrinsic functions are known and can be combined using the chain rule of differential calculus
- Associativity of the chain rule leads to two main modes: forward and reverse
- Can be implemented using source transformation or operator overloading
Modes of AD

- Forward Mode
 - Propagates derivative vectors, often denoted ∇u or g_u
 - Derivative vector ∇u contains derivatives of u with respect to independent variables
 - Time and storage proportional to vector length (# indeps)

- Reverse Mode
 - Propagates adjoints, denoted \bar{u} or u_{bar}
 - Adjoint \bar{u} contains derivatives of dependent variables with respect to u
 - Propagation starts with dependent variables—must reverse flow of computation
 - Time proportional to adjoint vector length (# dependents)
 - Storage proportional to number of operations
 - Because of this limitation, often applied to subprograms
Which mode to use?

- Use forward mode when
 - # independents is very small
 - Only a directional derivative (Jv) is needed
 - Reverse mode is not tractable

- Use reverse mode when
 - # dependents is very small
 - Only J^Tv is needed
Ways of Implementing AD

› Operator Overloading
 • Use language features to implement differentiation rules or to generate trace ("tape") of computation
 • Implementation can be very simple
 • Difficult to go beyond one operation/statement at a time in doing AD
 • Potential overhead due to compiler-generated temporaries, e.g. \(w = x*y*z \rightarrow \text{tmp} = x*y; w = \text{tmp}*z. \)
 • Examples: ADOL-C, ADMAT, SACADO

› Source Transformation
 • Requires significant (compiler) infrastructure
 • More flexibility in exploiting chain rule associativity
 • Examples: ADIFOR, ADIC, OpenAD, TAF, TAPENADE
Operator Overloading: simple example (implementation)

class a_double{
private:
 double value, grad;
public:
 /* constructors */
a_double(double v=0.0, double g=0.0){value=v; grad = g;}

 /* operators */
friend a_double operator+(const a_double &g1, const a_double &g2) {
 return a_double(g1.value+g2.value,g1.grad+g2.grad);
}
friend a_double operator-(const a_double &g1, const a_double &g2) {
 return a_double(g1.value-g2.value,g1.grad-g2.grad);
}
friend a_double operator*(const a_double &g1, const a_double &g2) {
 return a_double(g1.value*g2.value,g2.value*g1.grad+g1.value*g2.grad);
}
friend a_double sin(const a_double &g1) {
 return a_double(sin(g1.value),cos(g1.value)*g1.grad);
}
friend a_double cos(const a_double &g1) {
 return a_double(cos(g1.value),-sin(g1.value)*g1.grad);
}

// ...

Operator Overloading: simple example (use)

```c
#include <math.h>

void func(double *f, double x, double y)
{
    double a,b;

    if (x > y) {
        a = cos(x);
        b = sin(y)*y*y;
    } else {
        a = x*sin(x)/y;
        b = exp(y);
    }
    *f = exp(a*b);
}
```

```c
#include <math.h>
#include "adouble.hxx"

void func(a_double *f, a_double x, a_double y)
{
    a_double a,b;

    if (x > y) {
        a = cos(x);
        b = sin(y)*y*y;
    } else {
        a = x*sin(x)/y;
        b = exp(y);
    }
    *f = exp(a*b);
}
```
Source Transformation: simple example

C Generated by TAPENADE (INRIA, Tropics team)
C ...
SUBROUTINE FUNC_D(f, fd, x, xd, y, yd)
DOUBLE PRECISION f, fd, x, xd, y, yd
DOUBLE PRECISION a, ad, arg1, arg1d, b, bd
INTRINSIC COS, EXP, SIN
C
IF (x .GT. y) THEN
 ad = -(xd*SIN(x))
 a = COS(x)
 bd = yd*COS(y)*y*y + SIN(y)*(yd*y+y*yd)
 b = SIN(y)*y*y
ELSE
 ad = ((xd*SIN(x)+x*xd*COS(x))*y-x*SIN(x)*yd)/y**2
 a = x*SIN(x)/y
 bd = yd*EXP(y)
 b = EXP(y)
ENDIF
arg1d = ad*b + a*bd
arg1 = a*b
fd = arg1d*EXP(arg1)
f = EXP(arg1)
RETURN
END
TAPENADE reverse mode: simple example

SUBROUTINE FUNC_B(f, fb, x, xb, y, yb)
DOUBLE PRECISION f, fb, x, xb, y, yb
DOUBLE PRECISION a, ab, arg1, arg1b, b, bb
INTEGER branch
INTRINSIC COS, EXP, SIN

IF (x .GT. y) THEN
 a = COS(x)
 b = SIN(y)*y*y
 CALL PUSHINTEGER4(0)
ELSE
 a = x*SIN(x)/y
 b = EXP(y)
 CALL PUSHINTEGER4(1)
END IF
arg1 = a*b
f = EXP(arg1)
arg1b = EXP(arg1)*fb
ab = b*arg1b
bb = a*arg1b
CALL POPINTEGER4(branch)
IF (branch .LT. 1) THEN
 yb = yb + (SIN(y)*y+y*SIN(y)+y*y*COS(y))*bb
 xb = xb - SIN(x)*ab
ELSE
 yb = yb + EXP(y)*bb - x*SIN(x)*ab/y**2
 xb = xb + (x*COS(x)/y+SIN(x)/y)*ab
END IF
fb = 0.D0
END
Tools

- Fortran 95
- C/C++
- Fortran 77
- MATLAB
- Other languages: Ada, Python, ...
- More tools at http://www.autodiff.org/
Tools: Fortran 95

- **TAF (FastOpt)**
 - Commercial tool
 - Support for (almost) all of Fortran 95
 - Used extensively in geophysical sciences applications

- **Tapenade (INRIA)**
 - Support for many Fortran 95 features
 - Developed by a team with extensive compiler experience

- **OpenAD/F (Argonne/UChicago/Rice)**
 - Support for many Fortran 95 features
 - Developed by a team with expertise in combinatorial algorithms, compilers, software engineering, and numerical analysis
 - Development driven by climate model & astrophysics code

- All three: forward and reverse; source transformation
Tools: C/C++

- ADOL-C (Dresden)
 - Mature tool
 - Support for all of C++
 - Operator overloading; forward and reverse modes

- ADIC 2 (Argonne/UChicago)
 - Support for all of C, some C++ : All of C/C++ planned
 - Source transformation; forward mode, reverse mode

- TAPENADE (INRIA)
 - Source transformation; Support for C

- SACADO:
 - Operator overloading; forward and reverse modes

- TAC++ (FastOpt)
 - Commercial tool (under development)
 - Support for much of C/C++
 - Source transformation; forward and reverse modes
Tools: Fortran 77

- ADIFOR (Rice/Argonne)
 - Mature and very robust tool
 - Support for all of Fortran 77
 - Forward and (adequate) reverse modes
 - Hundreds of users; ~150 citations

Tools: MATLAB

- AdiMat (Aachen): source transformation
- MAD (Cranfield/TOMLAB): operator overloading
- Various research prototypes
ADIC Process

1. Application Code

2. Canonicalization

3. Analysis

4. Analysis Results

5. XAIF Generation

6. XAIF Generation

7. transformation Algorithms

Compilation Backend

Derivative Code

ROSE

XAIF Generation

ADIC

XAIF (XML file)

Transformation Algorithms

XAIFBooster

AD XAIF (XML file)

Merge Differentiated Code into AST

ADIC

Compiler Backend

AST

ROSE (SageII)

Analysis Results

OA

Analysis

OA/UseOA-ROSE

Canonization

ADIC

Compiler Frontend: C/C++ Parser

ROSE/EDG

Application Code

Configuration File

ADIC Driver

Wednesday, August 18, 2010
Shared OpenAD/ADIC system architecture
ADIC Usage
ADIC Usage

ANSI-C or C++ Code

Configuration File
ADIC Usage

[INACTIVE_FUNCTIONS]
- exit
- creat
- open
- close

[INTRINSIC_FUNCTIONS]
- log
- sqrt
- cos
- asin

[INACTIVE_TYPES]
- int
ADIC Usage

ANSI-C or C++ Code

Configuration File
ADIC Usage

ANSI-C or C++ Code

Configuration File

ADIC
ADIC Usage

ANSI-C or C++ Code

Configuration File

ADIC

Code with Derivatives
ADIC Usage

- ANSI-C or C++ Code
- Configuration File
- User’s Derivative Driver
- Libraries, e.g., SparsLinC ADIntrinsics
- Code with Derivatives
- Compile & Link

ADIC
ADIC Usage

- ANSI-C or C++ Code
- Configuration File
- Libraries, e.g., SparsLinC ADIntrinsics
- User’s Derivative Driver
- ADIC
- Code with Derivatives
- Compile & Link
- Derivative Program
Forward mode ADIC-Generated Code: Interpretation

```c
void mini1(double *y, double x)
{
    *y = x + sin(x * x);
}
```

- Output will include the original code as well as derivate code
- Types of ‘active’ variable will have changed
- Macros are used to manipulate the derivative values

```
typedef struct {
double val;
double grad[ADIC_GRADVEC_LENGTH];
} DERIV_TYPE;
```

- `DERIV_val(y)`: value of program variable y
- `DERIV_grad(y)`: derivative object associated with y

```
#define ADIC_SetDeriv(__adic_src, __adic_tgt)
#define ADIC_IncDeriv(__adic_src, __adic_tgt)
#define ADIC_Sax(__adic_ca, __adic_src, __adic_tgt)
#define ADIC_Saxpy(__adic_ca, __adic_src, __adic_tgt)
```
Reverse mode ADIC-Generated Code: Interpretation

void mini1(double *y, double x)
{
 *y = x + sin(x * x);
}

- Output will contain 3 cases
 - Original, taping and adjoint
- Taping case pushes values onto the stack which are popped by the adjoint case

void ad_mini1(DERIV_TYPE *y, DERIV_TYPE *x)
{
 if ((our_rev_mode.plain) == 1) {
 // ...Original function code
 }
 else if ((our_rev_mode.tape) == 1) {
 // ...Taping case
 }
 else if ((our_rev_mode.adjoint) == 1) {
 // ... Adjoint case
 }
}
ADIC Driver Creation - Forward

```c
void mini1(double *y, double x)
{
    *y = x + sin(x * x);
}
```

```c
int main()
{
    double x = 0.5, y;
    DERIV_TYPE ad_x, ad_y;
    int i;

    /* Initialization Macro */
    ADIC_Init();

    /* Set the AD mode */
    ADIC_SetForwardMode();

    /* Specify the independent variable */
    ADIC_SetIndep(ad_x);

    /* Specify the dependent variable */
    ADIC_SetDep(ad_y);

    /* Done with specifications*/
    ADIC_SetIndepDone();

    /*Initialize the value of the independent variable ad_x */
    DERIV_val(ad_x) = x;

    /* Invoke AD function */
    ad_mini1(&ad_y, &ad_x);

    /* Extract the gradient */
    double temp_adj;
    temp_adj = 0.0;
    for (i = 0; i < ADIC_GRADVEC_LENGTH; i++) {
        temp_adj += DERIV_grad(ad_y)[i];
    }

    /* Optional output */
    /* End Macro */
    ADIC_Finalize();

    return 0;
}
```
ADIC Driver Creation - Reverse

```c
void mini1(double *y, double x)
{
    *y = x + sin(x * x);
}
```

```c
int main()
{
    double x = 0.5, y;
    DERIV_TYPE ad_x, ad_y;
    int i;

    /* Initialization Macro */
    ADIC_Init();
    __ADIC_TapeInit();

    /* Set the AD mode */
    ADIC_SetReverseMode();

    /* Specify the independent variable */
    ADIC_SetIndep(ad_x);

    /* Specify the dependent variable */
    ADIC_SetDep(ad_y);

    /* Done with specifications*/
    ADIC_SetIndepDone();

    /*Initialize the value of the independent variable ad_x */
    DERIV_val(ad_x) = x;

    /* Invoke AD function in taping mode (forward sweep)*/
    our_rev_mode.tape = 1;
    ad_mini1(&ad_y, &ad_x);

    /* Invoke AD function in the adjoint mode (reverse sweep) */
    our_rev_mode.tape = 0;
    our_rev_mode.adjoint = 1;
    ad_mini1(&ad_y, &ad_x);

    /* Extract the gradient */
    double temp_adj;
    temp_adj = 0.0;
    for (i = 0; i < ADIC_GRADVEC_LENGTH; i++) {
        temp_adj += DERIV_grad(ad_x)[i];
    }

    /* End Macro */
    ADIC_Finalize();
    return 0;
}
```
int main()
{
 double x[ARRAY_SIZE], y[ARRAY_SIZE];
 DERIV_TYPE ad_x[ARRAY_SIZE], ad_y[ARRAY_SIZE];
 int i,j;

 for (i = 0; i < ARRAY_SIZE; i++)
 {
 x[i] = 0.5;
 }
 /* Initialization Macro */
 ADIC_Init();
 /* Set the AD mode */
 ADIC_SetForwardMode();

 /* Specify the dependent variable */
 ADIC_SetDepArray(ad_y, ARRAY_SIZE);
 /* Specify the independent variable */
 ADIC_SetIndepArray(ad_x, ARRAY_SIZE);
 /* Done with specifications*/
 ADIC_SetIndepDone();

 // Initialize the value of the independent variable ad_x
 for (i = 0; i < ARRAY_SIZE; i++)
 {
 DERIV_val(ad_x[i])=x[i];
 }

 // Invoke AD function
 ad_mini1(ad_y, ad_x);

 /* Extract the gradient */
 double temp_adj;
 for (i = 0; i < ARRAY_SIZE; i++)
 {
 temp_adj = 0.0;
 for (j = 0; j < ADIC_GRADVEC_LENGTH; j++)
 {
 temp_adj += DERIV_grad(ad_y[i])[j];
 }
 }
 /* Optional output */
 printf("AD result is: \t%f\n", temp_adj);
}

/* End Macro */
ADIC_Finalize();
return 0;
}

void mini1(double *y, double *x)
{
 int i;
 for (i = 0; i < 2; i=i+1) {
 y[i] = x[i] + sin(x[i]*x[i]);
 }
}
int main()
{
 double x[ARRAY_SIZE], y[ARRAY_SIZE];
 DERIV_TYPE ad_x[ARRAY_SIZE], ad_y[ARRAY_SIZE];
 int i, j;

 for (i = 0; i < ARRAY_SIZE; i++) {
 x[i] = 0.5;
 }
/* Initialization Macro */
ADIC_Init();
__ADIC_TapeInit();
/* Set the AD mode */
ADIC_SetReverseMode();
/* Specify the dependent variable */
ADIC_SetDepArray(ad_y, ARRAY_SIZE);
/* Specify the independent variable */
ADIC_SetIndepArray(ad_x, ARRAY_SIZE);
/* Done with specifications*/
ADIC_SetIndepDone();

 // Initialize the value of the independent variable ad_x
 for (i = 0; i < ARRAY_SIZE; i++) {
 DERIV_val(ad_x[i]) = x[i];
 }

 /* Invoke AD function in taping mode (forward sweep)*/
 our_rev_mode.tape = 1;
 ad_mini1(ad_y, ad_x);
 /* Invoke AD function in the adjoint mode (reverse sweep) */
 our_rev_mode.tape = 0;
 our_rev_mode.adjoint = 1;
 ad_mini1(ad_y, ad_x);

 double temp_adj;
 for (i = 0; i <ARRAY_SIZE; i++) {
 temp_adj = 0.0;
 for (j = 0; j <ADIC_GRADVEC_LENGTH; j++) {
 temp_adj += DERIV_grad(ad_x[i])[j];
 }
 printf("AD result is: \t\t\[%lf]\t", temp_adj);
 }

 ADIC_Finalize();
 return 0;
}
What is feasible & practical

- Jacobian matrices are often sparse
- The forward mode of AD computes $J \times S$, where S is usually an identity matrix or a vector
- Key point: forward mode computes JS at cost proportional to number of columns in S; reverse mode computes J^TW at cost proportional to number of columns in W
- Jacobians of functions with small number (1—1000) of independent variables (forward mode, $S=I$)
- Jacobians of functions with small number (1—100) of dependent variables (reverse/adjoint mode, $S=I$)
- Very (extremely) large, but (very) sparse Jacobians and Hessians (forward mode plus coloring)
- Jacobian-vector products (forward mode)
- Transposed-Jacobian-vector products (adjoint mode)
- Hessian-vector products (forward + adjoint modes)
- Large, dense Jacobian matrices that are effectively sparse or effectively low rank (e.g., see Abdel-Khalik et al., AD2008)
Issues with Black Box Differentiation

- Source code may not be available or may be difficult to work with
- Simulation may not be (chain rule) differentiable
 - Feedback due to adaptive algorithms
 - Nondifferentiable functions
 - Noisy functions
 - Convergence rates
 - Etc.
- Accurate derivatives may not be needed (FD might be cheaper)
- Differentiation and discretization do not commute
Difficulties encountered in application of ADIFOR 2.0

- Dubious programming techniques:
 - Type mismatches in actual & declared parameters
- Bugs:
 - inconsistent number of arguments in subroutine calls
- Not conforming to Fortran77 standard
 - while statement in one subroutine
- ADIFOR2.0 limitations:
 - I/O statements containing function invocations
Points of Nondifferentiability

- Due to intrinsic functions
 - Several intrinsic functions are defined at points where their derivatives are not, e.g.:
 - abs(x), sqrt(x) at x=0
 - max(x,y) at x=y
 - Requirements:
 - Record/report exceptions
 - Optionally, continue computation using some generalized gradient
 - ADIFOR/ADIC approach
 - User-selected reporting mechanism
 - User-defined generalized gradients, e.g.:
 - [1.0,0.0] for max(x,0)
 - [0.5,0.5] for max(x,y)
 - Various ways of handling
 - Verbose reports (file, line, type of exception)
 - Terse summary (like IEEE flags)
 - Ignore

- Due to conditional branches
 - May be able to handle using trust regions
Implicitly Defined Functions

- Implicitly defined functions often computed using iterative methods
- Function and derivatives may converge at different rates
- Derivative may not be “accurate” if iteration halted upon function convergence
- Solutions:
 - Tighten function convergence criteria
 - Add derivative convergence to stopping criteria
 - Compute derivatives directly, e.g. $A \nabla x = \nabla b$
Addressing Limitations in Black Box AD

- Detect points of nondifferentiability
 - proceed with a subgradient
 - currently supported for intrinsic functions, but not conditional statements
- Exploit mathematics to avoid differentiating through an adaptive algorithm
- Modify termination criterion for implicitly defined functions
 - Tighten tolerance
 - Add derivatives to termination test (preferred)
- There are some potential “gotchas” when applying AD in a black box fashion
- Some care should be taken to ensure that the desired quantity is computed
- There are usually workarounds
Conclusions & Future Work

- ADIC2 release expected very shortly.
- Working with several researchers' applications.
- Greater C++ handling will be incrementally added.
- Checkpointing for reverse mode is needed.
- Hessians are not currently handled.
For More Information

- ADIFOR: http://www.mcs.anl.gov/adifor/
- ADIC: http://www.mcs.anl.gov/adic/
- OpenAD: http://www.mcs.anl.gov/openad/
- Other tools: http://www.autodiff.org/
- E-mail: hovland@mcs.anl.gov; snarayan@mcs.anl.gov; norris@mcs.anl.gov; utke@mcs.anl.gov;