
GA Hands-on
ACTS Workshop 2010

Manoj Kumar Krishnan, Bruce Palmer,
Sriram Krishnamoorthy, Abhinav Vishnu,

Daniel Chavarria, Jeff Daily, Patrick Nichols

GA Hands-on
• Download Hands-on guide from here:
– http://acts.nersc.gov/ga/hands-on/

GA_hands_on.pdf
• Copy GA tutorial source codes from here:
– cp /usr/common/acts/GA/ga-tutorial.tgz ./
– tar zxf ga-tutorial.tgz
– cd ga-tutorial/

• module load ga/4.3.2i8
• Compile: For example, make transp1D.x
• Modify the included job script file

(tutorial.job) and submit the job as follows:

Tutorial Programs
• TUTORIAL Programs: C and Fortran options

available
– The tutorial source codes are as follows:

• transp1D.tutorial.F transp1D-c.tutorial.c
• matrix.tutorial.F matrix-c.tutorial.c

– NOTE: For above tutorial codes, complete working
codes are also available for reference
• transp1D.F transp1D-c.c
• matrix.F matrix-c

• Tutorial programs are incomplete. All you
have to do is search file for comments marked
with ###, and using the text as hints, replace
the comments with subroutines or functions
from the GA library to create a working code

• Pick any problem as explained on the hands-
on guide, and complete the tutorial programs

Useful GA Functions (Fortran)
subroutine ga_initialize()
subroutine ga_terminate()

integer function ga_nnodes()
integer function ga_nodeid()

logical function nga_create(type,dim,dims,name,chunk,g_a)
 integer type (MT_F_INT, MT_F_DBL, etc.)
 integer dim
 integer dims(dim)
 character*(*) name
 integer chunk(dim)
 integer g_a
logical function ga_duplicate(g_a,g_b,name)
 integer g_a
 integer g_b
 character*(*) name
logical function ga_destroy(g_a)
 integer g_a

subroutine ga_sync()

Use GA Functions (Fortran)
subroutine nga_distribution(g_a, node_id, lo, hi)
 integer g_a
 integer node_id
 integer lo(dim)
 integer hi(dim)
subroutine nga_put(g_a, lo, hi, buf, ld)
 integer g_a
 integer lo(dim)
 integer hi(dim)
 fortran array buf
 integer ld(dim-1)
subroutine nga_get(g_a, lo, hi, buf, ld)
 integer g_a
 integer lo(dim)
 integer hi(dim)
 fortran array buf
 integer ld(dim-1)

Useful GA Functions (C)
void GA_Initialize()
void GA_Terminate()

int GA_Nnodes()
int GA_Nodeid()

int NGA_Create(type,dim,dims,name,chunk) Returns GA handle g_a
 int type (C_INT, C_DBL, etc.)
 int dim
 int dims[dim]
 char* name
 int chunk[dim]
int GA_Duplicate(g_a,name) Returns GA handle g_b
 int g_a
char* name
void GA_Destroy(g_a)
 int g_a

void GA_Sync()

Useful GA Functions (C)
void NGA_Distribution(g_a, node_id, lo, hi)
 int g_a
 int node_id
 int lo[dim]
 int hi[dim]
void NGA_Put(g_a, lo, hi, buf, ld)
 int g_a
 int lo[dim]
 int hi[dim]
 void* buf
 int ld[dim-1]
void NGA_Get(g_a, lo, hi, buf, ld)
 int g_a
 int lo[dim]
 int hi[dim]
 void* buf
 int ld[dim-1]

Problem 1 (1D Transpose)*
• Transpose a distributed 1D vector

containing N elements in the order
1,2,...,N into a distributed vector
containing N elements in the order
N,N-1,...,2,1

• Fortran version of this problem is in
the file transp1D.F.tutorial

• C version is in transp1D.c.tutorial
• Working versions of these codes are in

* From Global Arrays hands-on guide

Problem 2 (Matrix
• A simple matrix multiply algorithm

that initializes two large matrices as
GAs. It then multiplies a block of
columns by a block or rows from the
GAs locally on each processor and
copies the result into a third global
array

• Fortran version of this problem is in
the file matrix.F.tutorial

* From Global Arrays hands-on guide

Problem 3*
• Both the codes in problems 1 & 2 initialize the data by initializing a

local array on processor 0 with all the data and then copying it to a
distributed global array. For real problems it is usually undesirable to
have all the data located on one processor at any point in the
calculation. Can you modify these codes (problem 1 and 2) so that
each processor only initializes the data owned by that processor?

• 1D transpose (Problem 1)
– Modify code so that each processor only initializes the local array a() with

the data owned by that processor and then copy that data to the global
array g_a

– Hint: Use nga_distribution and nga_put
– You will also need to modify the result checking part of the code as well so

that it also only uses smaller portions of the total GA
– Hint: copy locally held part of result GA into local array b and

corresponding part of original vector into local array a and compare (use
arrays lo, hi, lo2, hi2 to get this data).

• Matrix Multiply (Problem 2)
– Modify code so that each processor only initializes the local arrays a and b

with the data held locally by that processor. Then copy that data to the
global arrays g_a and g_b.

– Hint: Use nga_distribution and nga_put

* From Global Arrays hands-on guide

