
Overview of the Global Arrays
Parallel Software Development Toolkit

Bruce Palmer, Manoj Kumar Krishnan,
Sriram Krishnamoorthy, Ahbinav Vishnu, Daniel Chavarria,
Patrick Nichols, Jeff Daily

Overview

Programming Model
Basic Functions in GA
Advanced Functionality and Applications
Summary

Distributed Data vs Shared Memory

Distributed Data:
Data is explicitly associated with each processor, accessing data

requires specifying the location of the data on the processor and
the processor itself.

(0xf5670,P0)

(0xf32674,P5)

P0 P1 P2

Data locality is explicit
but data access is
complicated.
Distributed computing
is typically
implemented with
message passing
(e.g. MPI)

Distributed Data vs Shared Memory (Cont).

Shared Memory:
Data is in a globally accessible address space, any processor can

access data by specifying its location using a global index

Data is mapped out in
a natural manner
(usually
corresponding to the
original problem) and
access is easy.
Information on data
locality is obscured
and leads to loss of
performance.

(1,1)

(150,200)

(47,95)

(106,171)

Global Arrays

single, shared data structure/
global indexing

e.g., access A(4,3) rather than
buf(7) on task 2

Physically distributed data

Distributed dense arrays that can be accessed through a
shared memory-like style

Global Address Space

One-sided Communication

message passing
MPI

P1P0
receive send

P1P0
put

one-sided communication
SHMEM, ARMCI, MPI-2-1S

Message Passing:
Message requires cooperation
on both sides. The processor
sending the message (P1) and
the processor receiving the
message (P0) must both
participate.

One-sided Communication:
Once message is initiated on
sending processor (P1) the
sending processor can
continue computation.
Receiving processor (P0) is
not involved. Data is copied
directly from switch into
memory on P0.

Global Arrays Approach to Parallel Programming

Uses a one-sided communication model
One-sided communication supports the creation of a
Partitioned Global Address Space (PGAS) programming
model

Allows developers to access data using a global index instead of
supplying index transformations that transform between the
original problem space and the location of individual blocks of
data described in the (processor,local index) space
Simplifies programming enormously in many cases

One-sided vs Message Passing

Message-passing
Communication patterns are regular or at least predictable
Algorithms have a high degree of synchronization
Data consistency is straightforward

One-sided
Communication is irregular

Load balancing
Algorithms are asynchronous
Data consistency must be explicitly managed

Global Arrays

Shared memory model in context of
distributed dense arrays
Much simpler than message-passing for
many applications
Complete environment for parallel code
development
Compatible with MPI
Data locality control similar to distributed
memory/message passing model
Extensible
Scalable

GA Core Capabilities
Distributed array library

dense arrays 1-7 dimensions
four data types: integer, real, double precision, double complex
global rather than per-task view of data structures
user control over data distribution: regular and irregular

Collective and shared-memory style operations
ga_sync, ga_scale, etc
ga_put, ga_get, ga_acc
nonblocking ga_put, ga_get, ga_acc

Interfaces to third party parallel numerical libraries
PeIGS, Scalapack, SUMMA, Tao

example: to solve a linear system using LU factorization
call ga_lu_solve(g_a, g_b)

 instead of
call pdgetrf(n,m, locA, p, q, dA, ind, info)
call pdgetrs(trans, n, mb, locA, p, q, dA,dB,info)

Interoperability and Interfaces

Language interfaces to Fortran, C, C++, Python
Interoperability with MPI and MPI libraries

 e.g., PETSC, CUMULVS
Explicit interfaces to other systems that expand
functionality of GA

ScaLAPACK-scalable linear algebra software
Peigs-parallel eigensolvers
TAO-advanced optimization package

Structure of GA

Message Passing
Global operations

ARMCI
portable 1-sided
communication

put,get, locks, etc

distributed arrays layer
memory management, index translation

system specific interfaces
LAPI, GM/Myrinet, threads, VIA,..

Global Arrays
and MPI are
completely
interoperable.
Code can
contain calls
to both
libraries.

Fortran 77 C C++ Babel

F90

Python

JavaApplication
programming
language interface

Building GA

Autoconf/automake/libtool build has been developed
Currently undergoing internal testing with both the GA
and NWChem development teams
Beta release is available

Basic GA Operations

subroutine ga_initialize()
subroutine ga_terminate()

integer function ga_nnodes()
integer function ga_nodeid()

logical function nga_create(type,dim,dims,name,chunk,g_a)
logical function ga_destroy(g_a)

subroutine nga_put(g_a, lo, hi, buf, ld)
subroutine nga_get(g_a, lo, hi, buf, ld)

subroutine ga_sync()

subroutine nga_distribution(g_a, iproc, lo, hi)

GA programming model is very simple.
Most of a parallel program can be written with
these basic calls

GA_Initialize, GA_Terminate
GA_Nnodes, GA_Nodeid
GA_Create, GA_Destroy
GA_Put, GA_Get
GA_Sync
GA_Distribution

Creating Global Arrays

g_a = NGA_Create(type, ndim, dims, name, chunk)

float, double, int, etc.

dimension

array of dimensions

character string
minimum block size
on each processor

integer array
handle

P3

Remote Data Access in GA

Message Passing:

identify size and location of data
blocks

loop over processors:
if (me = P_N) then

pack data in local message
buffer
send block of data to
message buffer on P0

else if (me = P0) then
receive block of data from
P_N in message buffer
unpack data from message
buffer to local buffer

endif
end loop

copy local data on P0 to local buffer

Global Arrays:

 NGA_Get(g_a, lo, hi, buffer, ld);

Global Array
handle

}

Global upper
and lower
indices of data
patch

Local buffer
and array of
strides

}

P0

P1

P2P2

Data Locality

What data does a processor own?

 NGA_Distribution(g_a, iproc, lo, hi);

Where is the data?

 NGA_Access(g_a, lo, hi, ptr, ld);

Use this information to organize calculation so that
maximum use is made of locally held data

Global Array Model of Computations

local memory

Shared Object

copy to local m
em

ory

get

compute/update

local memory

Shared Object

 co
py

 to
 sh

ar
ed

 o
bj

ec
t

local memory

put

Sync

GA_Sync is a collective operation

It acts as a barrier, which synchronizes all the processes
and also ensures that all outstanding communication
operations are completed

sync

Example: Matrix Multiply

local buffers on the
processor

global arrays
representing
matrices

•

•

=

=

nga_getnga_put

dgemm

Matrix Multiply
(a better version)

local buffers on the
processor

more scalable!
(less memory,
higher parallelism)•

•

=

=

getatomic accumulate

dgemm

Example: 1-D Transpose

Example: 1-D Transpose (cont.)

#define NDIM 1
#define TOTALELEMS 197
#define MAXPROC 128
 program main
 implicit none
#include "mafdecls.fh"
#include "global.fh"

 integer dims(3), chunk(3), nprocs, me, i, lo(3), hi(3), lo1(3)
 integer hi1(3), lo2(3), hi2(3), ld(3), nelem
 integer g_a, g_b, a(MAXPROC*TOTALELEMS), b(MAXPROC*TOTALELEMS)
 integer heap, stack, ichk, ierr
 logical status
 heap = 300000
 stack = 300000

Example: 1-D Transpose (cont.)
c initialize communication library
 call mpi_init(ierr)
c initialize ga library
 call ga_initialize()
 me = ga_nodeid()
 nprocs = ga_nnodes()
 dims(1) = nprocs*TOTALELEMS + nprocs/2 ! Unequal data distribution
 ld(1) = MAXPROC*TOTALELEMS
 chunk(1) = TOTALELEMS ! Minimum amount of data on each processor
 status = ma_init(MT_F_DBL, stack/nprocs, heap/nprocs)

c create a global array
 status = nga_create(MT_F_INT, NDIM, dims, "array A", chunk, g_a)
 status = ga_duplicate(g_a, g_b, "array B")

c initialize data in GA
 do i=1, dims(1)
 a(i) = i
 end do
 lo1(1) = 1
 hi1(1) = dims(1)
 if (me.eq.0) call nga_put(g_a,lo1,hi1,a,ld)
 call ga_sync() ! Make sure data is distributed before continuing

Example: 1-D Transpose (cont.)

c invert data locally
 call nga_distribution(g_a, me, lo, hi)
 call nga_get(g_a, lo, hi, a, ld) ! Use locality
 nelem = hi(1)-lo(1)+1
 do i = 1, nelem
 b(i) = a(nelem - i + 1)
 end do

c invert data globally
 lo2(1) = dims(1) - hi(1) + 1
 hi2(1) = dims(1) - lo(1) + 1
 call nga_put(g_b,lo2,hi2,b,ld)
 call ga_sync() ! Make sure inversion is complete

Example: 1-D Transpose (cont.)

c check inversion
 call nga_get(g_a,lo1,hi1,a,ld)
 call nga_get(g_b,lo1,hi1,b,ld)
 ichk = 0
 do i= 1, dims(1)
 if (a(i).ne.b(dims(1)-i+1).and.me.eq.0) then
 write(6,*) "Mismatch at ",i
 ichk = ichk + 1
 endif
 end do
 if (ichk.eq.0.and.me.eq.0) write(6,*) "Transpose OK"

 status = ga_destroy(g_a) ! Deallocate memory for arrays
 status = ga_destroy(g_b)
 call ga_terminate()
 call mpi_finalize(ierr)
 stop
 end

Non-Blocking Communication

Allows overlapping of data transfers and computations
Technique for latency hiding

Nonblocking operations initiate a communication call and then
return control to the application immediately
operation completed locally by making a call to the wait routine

NGA_Nbget(g_a, lo, hi, buf, ld, nbhandle)
NGA_Nbwait(nbhandle)

SUMMA Matrix Multiplication

A B C=A.B

Computation

Comm.
(Overlap)

Issue NB Get A and B blocks
dodo (until last chunk)
 issue NB Get to the next blocks
 wait for previous issued call
 compute A*B (sequential dgemm)
 NB atomic accumulate into “C”
 matrix
donedone

Advantages:Advantages:
 - Minimum memory
 - Highly parallel
 - Overlaps computation and communication
 - latency hiding
 - exploits data locality
 - patch matrix multiplication (easy to use)
 - dynamic load balancingpatch matrix multiplication

=

SUMMA Matrix Multiplication:
Improvement over PBLAS/ScaLAPACK

Parallel Matrix Multiplication on the HP/Quadrics Cluster at PNNL
Matrix size: 40000x40000

Efficiency 92.9% w.r t. serial algorithm and 88.2% w.r.t. machine peak on 1849 CPUs

0

2

4

6

8

10

12

0 512 1024 1536 2048
Processors

Te
ra

FL
OP

s

SRUMMA

PBLAS/ScaLAPACK pdgemm

Theoretical Peak

Perfect Scaling

Application Areas

hydrology

electronic structure chemistry
GA is the standard programming model

material sciences molecular dynamics

Others: financial security forecasting, astrophysics, climate analysis

bioinformatics smoothed particle
hydrodynamics

visual analytics

fluid dynamics

Read and Increment

nga_read_inc: remotely updates a particular element in
an integer global array and returns the original value:

Applies to integer arrays only
Can be used as a global counter for dynamic load balancing

c Create task counter
 call nga_create(MT_F_INT,one,one,chunk,g_counter)
 call ga_zero(g_counter)
 :
 itask = nga_read_inc(g_counter,one,one)

 ... Translate itask into task ...
Global Lock

(access to data
is serialized)

NGA_Read_inc
(Read and Increment)

Global Array

Hartree-Fock SCF

Ψ=Ψ EH

∑=
µ

µµχφ)()(rr ii C

Obtain variational solutions to the electronic
Schrödinger equation

within the approximation of a single Slater determinant.

Assuming the one electron orbitals are expanded as

the calculation reduces to the self-consistent eigenvalue problem

() ()[] ωλ
ωλ

µνµν

νµµν

νµννµν

νλµωωλµν

ε

DhF

CCD

CDCF

k
k

k

kk

∑

∑

−+=

=

=

||2
2
1

Parallelizing the Fock Matrix

The bulk of the work involves computing the 4-index elements (__|__).
This is done by decomposing the quadruple loop into evenly sized
blocks and assigning blocks to each processor using a global counter.
After each processor completes a block it increments the counter to
get the next block

467

Read and
increment
counter

do i
do j
do k
do l
 F(i,j)=..

Evaluate
block

Accumulate
results

Gorden Bell finalist at SC09 - GA Crosses the
Petaflop Barrier

GA-based parallel
implementation of coupled
cluster calculation
performed at 1.39
petaflops using over
223,000 processes on
ORNL's Jaguar petaflop
system

Apra et. al., “Liquid
water: obtaining the right
answer for the right
reasons”, SC 2009.

Global Arrays is one of
two programming models
that have achieved this
level of performance

Global Array Processor Groups

Many parallel applications can potentially make use of groups. These
include

• Numerical evaluation of gradients
• Monte Carlo sampling over initial conditions or uncertain
parameter sets
• Free energy perturbation calculations (chemistry)
• Nudged elastic band calculations (chemistry and materials
science)
• Sparse matrix-vector operations (NAS CG benchmark)
• Data layout for partially structured grids
• Multi-physics applications

Global Array Processor Groups

If the individual calculations are small enough then each
processor can be used to execute one of the tasks
(embarrassingly parallel algorithms).

If the individual tasks are large enough that they must be
distributed amongst several processors then the only option
(usually) is to run each task sequentially on multiple processors.
This limits the total number of processors that can be applied to
the problem since parallel efficiency degrades as the number of
processors increases.
Sp

ee
du

p

Processors

Multiple Tasks with Groups

10
9
8
7
6
5
4
3
2
1

Tasks
6

5

4

3

2

1

Processors Results

Multiple Tasks with Groups

10
9
8
7
6
5
4
3
2
1

Tasks

5

4

3

2

1

Processors Results

Global Array Processor Groups

Alternatively the collection of processors can be decomposed
into processor groups. These processor groups can be used to
execute parallel algorithms independently of one another. This
requires

• global operations that are restricted in scope to a particular
group instead of over the entire domain of processors (world
group)

• distributed data structures that are restricted to a particular
group

Processor Groups (Schematic)

world group

group A group B

group C

Multiple Tasks with Groups

10
9
8
7
6
5
4
3
2
1

Tasks
6

5

4

3

2

1

Processors
Results

Creating Processor Groups

integer function ga_pgroup_create(list, count)

 Returns a handle to a group of processors. The total number
 of processors is count, the individual processor IDs are located
 in the array list.

subroutine ga_pgroup_set_default(p_grp)

 Set the default processor to p_grp. All arrays created after this
 point are created on the default processor group, all global
 operations are restricted to the default processor group unless
 explicit directives are used. Initial value of the default processor
 group is the world group.

Explicit Operations on Groups

Explicit Global Operations on Groups

ga_pgroup_sync(p_grp)
ga_pgroup_brdcst(p_grp,type,buf,lenbuf,root)
ga_pgroup_igop(p_grp,type,buf,lenbuf,op)
ga_pgroup_dgop(p_grp,type,buf,lenbuf,op)

Query Operations on Groups

ga_pgroup_nnodes(p_grp)
ga_pgroup_nodeid(p_grp)

Access Functions

integer function ga_pgroup_get_default()
integer function ga_pgroup_get_world()

Communication between Groups

Copy and copy_patch operations are supported for global arrays that
are created on different groups. One of the groups must be
completely contained in the other (nested).

The copy or copy_patch operation must be executed by all processors
on the nested group (group B in illustration)

Group A

Group B

MD Example

P0 P1 P2 P3

P4 P5 P6 P7

Spatial Decomposition Algorithm:

• Partition particles among processors

• Update coordinates at every step

• Update partitioning after fixed
 number of steps

MD Parallel Scaling

0

5

10

15

20

0 5 10 15 20

Scaling of Single Parallel Task

Speedup
Ideal

S
p
e
e
d
u
p

Number of Processors

MD Performance on Groups

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

Scaling of Parallel MD Tasks on Groups

Speedup
Ideal

S
p
e
e
d
u
p

Number of Processors

Sparse Data Manipulation

ga_scan_add

ga_scan_copy

g_mask: 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0
g_src: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
g_dest: 1 3 6 10 15 21 7 15 9 19 30 12 25 39 15 16 33

g_mask: 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0
g_src: 5 8 7 3 2 6 9 7 3 4 8 2 3 6 9 10 7
g_dest: 5 5 5 5 5 6 6 7 7 7 8 8 8 8 9 10 10

Sparse Data Manipulation

ga_pack

ga_unpack

g_mask: 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0
g_src: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
g_dest: 1 6 8 11 15

g_mask: 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0
g_src: 1 6 8 11 15
g_dest: 1 0 0 0 0 6 0 8 0 0 11 0 0 0 15 0 0

Compressed Sparse Row Matrix

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

60020
50403
09070
50002
03100

VALUES: 1 3 2 5 7 9 3 4 5 2 6
J-INDEX: 3 4 1 5 2 4 1 3 5 2 5
I-INDEX: 1 3 5 7 10 12

Sparse Matrix-Vector Multiply

nga_access
nga_gather

Sparse Matrix-Vector Multiply

= ga_elem_multiply

ga_scan_add
ga_pack

New Interface for Creating Global Arrays

Developed to handle the proliferating number of
properties that can be assigned to Global Arrays

integer function ga_create_handle()

subroutine ga_set_data(g_a, dim, dims, type)
subroutine ga_set_array_name(g_a, name)
subroutine ga_set_chunk(g_a, chunk)
subroutine ga_set_irreg_distr(g_a, map, nblock)
subroutine ga_set_ghosts(g_a, width)
subroutine ga_set_block_cyclic(g_a, dims)
subroutine ga_set_block_cyclic_proc_grid(g_a, dims,
 proc_grid)
logical function ga_allocate(g_a)

Block-cyclic Data Distributions

Normal Data Distribution Block Cyclic Data Distribution

Block-cyclic Data Distributions

0,00,1
1,01,1

0 6 12 18 24 30
1 7 13 19 25 31
2 8 14 20 26 32
3 9 15 21 27 33
4 10 16 22 28 34
5 11 17 23 29 35

Simple Distribution Scalapack Distribution

0 1 0 1 0 1
0
1

0
1
0
1

Block-cyclic Data Distributions

Most operations work exactly the same, data distribution
is transparent to the user
Some operations (matrix multiplication, non-blocking put,
get) not implemented
Additional operations added to provide access to data
associated with particular sub-blocks
You need to use the new interface for creating Global
Arrays to get create block-cyclic data distributions

Creating Block-cyclic Arrays

integer function ga_create_handle()
subroutine ga_set_data(g_a,ndim,dims,type)
subroutine ga_set_array_name(g_a,name)
subroutine ga_set_block_cyclic(g_a,b_dims)
subroutine ga_set_block_cyclic_proc_grid(g_a,
 dims,proc_grid)
subroutine ga_allocate(g_a)

Block-Cyclic Methods

subroutine ga_get_block_info(g_a,num_blocks,block_dims)
integer function ga_total_blocks(g_a)
subroutine nga_access_block_segment(g_a,
 iproc,index,length)
subroutine nga_access_block(g_a,idx,index,ld)
subroutine nga_access_block_grid(g_a,
 subscript,index,ld)

normal global array
global array with ghost cells

Ghost Cells

Operations:

NGA_Create_ghosts - creates array with ghosts cells
GA_Update_ghosts - updates with data from adjacent processors
NGA_Access_ghosts - provides access to “local” ghost cell elements
NGA_Nbget_ghost_dir - nonblocking call to update ghosts cells

Ghost Cell Update

Automatically update ghost
cells with appropriate data
from neighboring
processors. A multiprotocol
implementation has been
used to optimize the
update operation to match
platform characteristics.

Lattice Boltzmann Simulation

)),(),((1),(),(tftftfttf eq
iiiii rrrer −−=Δ++

τ

Relaxation Stream

Lattice Boltzmann Performance

100

1000

10000

1 10 100 1000

Total

Update

Number of Processors

Disk Resident Arrays

Extend GA model to disk
system similar to Panda (U. Illinois) but higher level

APIs
Provide easy transfer of data between N-dim
arrays stored on disk and distributed arrays
stored in memory
Use when

Arrays too big to store in core
checkpoint/restart
out-of-core solvers

global array

disk resident array

High Bandwidth Read/Write

Disk Resident Array

Disks

Disk Resident Arrays
automatically
decomposed into
multiple files

Related Programming Tools

Co-Array Fortran
Distributed Arrays
One-Sided Communication
No Global View of Data

UPC
Model Similar to GA but only applicable to C programs
Global Shared Pointers could be used to implement GA
functionality

C does not really support multi-dimensional arrays
High level functionality in GA is missing from these
systems

Ongoing/Future Work

Scalability to 100k+ processes
Support for multithreaded execution
Fault Tolerance
Data Decomposition and Load balancing
Support for Hybrid Platforms
Performance tools for GA/ARMCI

Current Release

4.3.2
Optimized Bluegene/P port
Optimized Portals (Cray) port

5.0 Beta
Autoconf/automake/libtool build
Restricted arrays
ARMCI enhancements

On-demand connection management for InfiniBand
Improved scalability for fence

Summary

The idea has proven very successful
efficient on a wide range of architectures

core operations tuned for high performance
library substantially extended but all original (1994) APIs
preserved
increasing number of application areas

Supported and portable tool that works in real
applications

Source Code and More Information

Version 4.3.2 available
Homepage at http://www.emsl.pnl.gov/docs/global/
Platforms (32 and 64 bit)

IBM SP, BlueGene/L, BlueGene/P
Cray X1, XD1, XT3, XT4
Linux Cluster with Ethernet, Myrinet, Infiniband, or Quadrics
HP
SGI Altix
Solaris
Fujitsu
Windows

Useful GA Functions (Fortran)

subroutine ga_initialize()
subroutine ga_terminate()

integer function ga_nnodes()
integer function ga_nodeid()

logical function nga_create(type,dim,dims,name,chunk,g_a)
 integer type (MT_F_INT, MT_F_DBL, etc.)
 integer dim
 integer dims(dim)
 character*(*) name
 integer chunk(dim)
 integer g_a
logical function ga_duplicate(g_a,g_b,name)
 integer g_a
 integer g_b
 character*(*) name
logical function ga_destroy(g_a)
 integer g_a

subroutine ga_sync()

Useful GA Functions (Fortran)

subroutine nga_distribution(g_a, node_id, lo, hi)
 integer g_a
 integer node_id
 integer lo(dim)
 integer hi(dim)
subroutine nga_put(g_a, lo, hi, buf, ld)
 integer g_a
 integer lo(dim)
 integer hi(dim)
 fortran array buf
 integer ld(dim-1)
subroutine nga_get(g_a, lo, hi, buf, ld)
 integer g_a
 integer lo(dim)
 integer hi(dim)
 fortran array buf
 integer ld(dim-1)

Useful GA Functions (C)

void GA_Initialize()
void GA_Terminate()

int GA_Nnodes()
int GA_Nodeid()

int NGA_Create(type,dim,dims,name,chunk) Returns GA handle g_a
 int type (C_INT, C_DBL, etc.)
 int dim
 int dims[dim]
 char* name
 int chunk[dim]
int GA_Duplicate(g_a,name) Returns GA handle g_b
 int g_a
char* name
void GA_Destroy(g_a)
 int g_a

void GA_Sync()

Useful GA Functions (C)

void NGA_Distribution(g_a, node_id, lo, hi)
 int g_a
 int node_id
 int lo[dim]
 int hi[dim]
void NGA_Put(g_a, lo, hi, buf, ld)
 int g_a
 int lo[dim]
 int hi[dim]
 void* buf
 int ld[dim-1]
void NGA_Get(g_a, lo, hi, buf, ld)
 int g_a
 int lo[dim]
 int hi[dim]
 void* buf
 int ld[dim-1]

Problems 1 and 2

Chose Fortran or C version of problems (whichever
language you prefer)

Xxxx.c or xxx.F
Search file for comments marked with ###
Using the text as hints, replace the comments with
subroutines or functions from the GA library to create a
working code
Compile and run

Problem 1 (1D Transpose)

Transpose a distributed 1D vector containing N elements
in the order 1,2,...,N into a distributed vector containing N
elements in the order N,N-1,...,2,1
Fortran version of this problem is in the file
transp1D.F.tutorial
C version is in transp1D.c.tutorial
Working versions of these codes are in transp1D.F and
transp1D.c

Problem 2 (Matrix Multiplication)

A simple matrix multiply algorithm that initializes two large
matrices as GAs. It then multiplies a block of columns by
a block or rows from the GAs locally on each processor
and copies the result into a third global array
Fortran version of this problem is in the file
matrix.F.tutorial
C version is in matrix.c.tutorial
Working versions are in matrix.F and matrix.c

Problem 3

Both the codes in problems 1 & 2 initialize the data by initializing a local array on
processor 0 with all the data and then copying it to a distributed global array. For real
problems it is usually undesirable to have all the data located on one processor at any
point in the calculation. Can you modify these codes (problem 1 and 2) so that each
processor only initializes the data owned by that processor?
1D transpose (Problem 1)

Modify code so that each processor only initializes the local array a() with the data owned by
that processor and then copy that data to the global array g_a
Hint: Use nga_distribution and nga_put
You will also need to modify the result checking part of the code as well so that it also only
uses smaller portions of the total GA
Hint: copy locally held part of result GA into local array b and corresponding part of original
vector into local array a and compare (use arrays lo, hi, lo2, hi2 to get this data).

Matrix Multiply (Problem 2)
Modify code so that each processor only initializes the local arrays a and b with the data held
locally by that processor. Then copy that data to the global arrays g_a and g_b.
Hint: Use nga_distribution and nga_put

