Overview of the Global Arrays
Parallel Software Development Toolkit

Bruce Palmer, Manoj Kumar Krishnan,
Sriram Krishnamoorthy, Ahbinav Vishnu, Daniel Chavarria,
Patrick Nichols, Jeff Daily

—

—
—
I
—

Pacific Northwest
NATIONAL LABORATORY

Overview

» Programming Model

» Basic Functions in GA

» Advanced Functionality and Applications
» Summary

Pacific Northwest
NATIONAL LABORATORY

Distributed Data vs Shared Memory

Distributed Data:

Data is explicitly associated with each processor, accessing data
requires specifying the location of the data on the processor and
the processor itself.

Data locality is explicit

but data access is (0x15670,P0)

complicated. PP

Distributed computing o

is typically

implemented with

message passing PRSI SE——

(e.g. MPI) S ——

Pacific Northwest
NATIONAL LABORATORY

Distributed Data vs Shared Memory (Cont).

Shared Memory:

Data is in a globally accessible address space, any processor can
access data by specifying its location using a global index

Data is mapped out in
a natural manner
(usually
corresponding to the
original problem) and
access is easy.
Information on data
locality is obscured
and leads to loss of
performance.

Pacific Northwest
NATIONAL LABORATORY

Global Arrays

Distributed dense arrays that can be accessed through a
shared memory-like style

Physically distributed data

single, shared data structure/
global indexing

\. Y——j e.g., access A(4,3) rather than
buf(7) on task 2

Global ace \%/

Pacific Northwest
NATIONAL LABORATORY

One-sided Communication

Message Passing:
D Message requires cooperation

: on both sides. The processor
0 ANy sending the message (P1) and

PO Pl the processor receiving the
message passing message (PO) must both
MPI participate.

One-sided Communication:
Once message is initiated on

—‘ sending processor (P1) the
i] sending processor can
A

continue computation.

Receiving processor (P0) is
not involved. Data is copied
directly from switch j

put Ay
PO P1

-sided communication
1, MPI-2-1S

Pacific Northwest
NATIONAL LABORATORY

Uses a one-sided communication model

One-sided communication supports the creation of a

Partitioned Global Address Space (PGAS) programming

model

m Allows developers to access data using a global index instead of
supplying index transformations that transform between the

original problem space and the location of individual blocks of
data described in the (processor,local index) space

m Simplifies programming enormously in many cases

Pacific Northwest
NATIONAL LABORATORY

One-sided vs Message Passing

» Message-passing
m Communication patterns are regular or at least predictable
m Algorithms have a high degree of synchronization
m Data consistency is straightforward

» One-sided

m Communication is irregular
» Load balancing
m Algorithms are asynchronous
m Data consistency must be explicitly managed

Pacific Northwest
NATIONAL LABORATORY

Shared memory model in context of
distributed dense arrays

Much simpler than message-passing for
many applications

Complete environment for parallel code
development

Compatible with MPI

Data locality control similar to distributed
memory/message passing model

Extensible

Scalable s "
Pacific Northwest
MNATIONAL LABORATORY

GA Core Capabilities

» Distributed array library
m dense arrays 1-7 dimensions
m four data types: integer, real, double precision, double complex
m global rather than per-task view of data structures
m user control over data distribution: regular and irregular
» Collective and shared-memory style operations
B ga_sync, ga_scale, etc
B ga put, ga get, ga acc
® nonblocking ga_put, ga_get, ga_acc
» Interfaces to third party parallel numerical libraries
m PelGS, Scalapack, SUMMA, Tao

e example: to solve a linear system using LU factorization
call ga lu solve(g a, g b)

instead of
call pdgetrf(n,m, locA, p, q, dA, ind, info)
call pdgetrs(trans, n, mb, locA, p, q, dA,dB,info)

Pacific Northwest
NATIONAL LABORATORY

Interoperability and Interfaces

» Language interfaces to Fortran, C, C++, Python

» Interoperability with MPIl and MPI libraries
m e.g., PETSC, CUMULVS
» EXxplicit interfaces to other systems that expand
functionality of GA
m ScalLAPACK-scalable linear algebra software
m Peigs-parallel eigensolvers
m TAO-advanced optimization package

o

Pacific Northwest
NATIONAL LABORATORY

Structure of GA

Application F90| | Java

programming

language interface | Fortran 77 || C | | C++ || Python Babel
and MPI are
completely ARMCI
interoperable. :
ol Ean » Message Passing portable 1-sided

. Global operations communication

contain calls t aet. locks. et
to both put,get, 10CKs, etc
libraries. —_———

system specific interfaces -
LAPI, GM/Myrinet, threads, VIA,.. =

NATIONAL LABORATORY

Building GA

» Autoconf/automake/libtool build has been developed

» Currently undergoing internal testing with both the GA
and NWChem development teams

» Beta release is available

o

Pacific Northwest
NATIONAL LABORATORY

Basic GA Operations

» GA programming model is very simple.
» Most of a parallel program can be written with

these basic calls

GA _Initialize, GA_Terminate
GA_Nnodes, GA Nodeid
GA_Create, GA_Destroy

GA_Put, GA_Get
GA_Sync
GA_Distribution

stiamso U t 1 RERTE s i €151 1 2%}
subroiiEliE” ga termimgate ()

iilgegcr functiChgga nnodcefRy
nfegec function ga GugdcSESN!)

logical funCtilgm, nga SRt e (CYEE,dim, dimsin diemnchunk, g

logical function GERSIEERroy (g &)

sUbDE@EicGime nga pudiaEEl 1o, <l buf, 1d)
subroutTHucHig= g, 1o, hi, DEiEjmeld)

subroutine ga 4EEERE

Smbroutine MEEREEENS- DUt ion OSse— TDroC,

lo,

n

Pacific Northwest
NATIONAL LABORATORY

Creating Global Arrays

integer array _ minimum block size
handle character string on each processor

x N

g_a = NGA_Create(type, ndim, dims, name, chunk)

il T

float, double, int, etc. array of dimensions

dimension

Pacific Northwest
NATIONAL LABORATORY

Remote Data Access in GA

Message Passing:

identify size and location of data
blocks

loop over processors:
if (me = P_N) then
pack data in local message
buffer
send block of data to
message buffer on PO
else if (me = PO) then
receive block of data from
P_N in message buffer
unpack data from message
buffer to local buffer
endif
end loop

copy local local buffer

Global Arrays:

NGA_Get(g_a, lo, hi, buffer, Id);

oo

Global Array Global upper Local buffer

handle and lower and array of
indices of data strides
patch

Pacific Northwest
NATIONAL LABORATORY

Data Locality

What data does a processor own?

NGA Distribution(g_a, iproc, lo, hi);
Where is the data?

NGA Access(g_a, lo, hi, ptr, Id);

Use this information to organize calculation so that
maximum use is made of locally held data

Pacific Northwest
NATIONAL LABORATORY

Global Array Model of Computations

Shared Object

Shared Object
D

Y~
(@) O
3 2
Z —> g S
) S
) 5
3 5
?L @
g compute/update §;
O

s
=N

o

Pacific Northwest
NATIONAL LABORATORY

Sync

» GA _Sync is a collective operation

» |t acts as a barrier, which synchronizes all the processes
and also ensures that all outstanding communication
operations are completed

—_— |—
—_—
—_—

—> —_—
—_— f—p
— | —)

Pacific Northwest
MNATIONAL LABORATORY

Example: Matrix Multiply

. _ global arrays
= . representing
matrices
nga put nga_get
E-n E — — Y . w

dgemm

local buffers on the
processor

e

Pacific Northwest
NATIONAL LABORATORY

Matrix Multiply
(a better version)

more scalable!
(less memory,

higher parallelism)
atomic accumulate get
B = B 3 il
dgemm
local buffers on the
processor -

Pacific Northwest
NATIONAL LABORATORY

Example: 1-D Transpose

e / \ N

RS S S 2

o

o

Pacific Northwest
NATIONAL LABORATORY

Example: 1-D Transpose (cont.)

#define NDIM il
#define TOTALELEMS 197
#define MAXPROC 1868
program main
1 mplEEsE s 1\ On e
#include "mafdecls.fh"
#include "global.fh"

integer<dms (3) , MMEPRLS), Npro®s, My~ 1o0 (3)7~I8 (37 7~Lo 3
integer hilv\Eipgi@rr(3) , hT(3), 1d (M nelem

integer g ad g_b, a (MAXPROC*TOTALELEMS), b (MAXPROC*TOTALELEMS)
integer heap, stack, ichk, ierr

INelople = | == LfS

heap = 300000

stack = 300000

Pacific Northwest
NATIONAL LABORATORY

Example: 1-D Transpose (cont.)

@ inithglizeNgommun | Chaletin@R S 5 s 17
call mpi_ init(ierr)
C IinTwializeNga library

call ga_initialize()
me = ga_nodeid()
nprocs = ga_nnodes ()

dims (il e PNproCed TOTALBREMS PNaPToes/2 ! Uitgtal dalta disfribution
IR RRNE=" 2 XRROC* TOTABRSLEMS
chunk (1) = TOTALELEMS ! Minimum amount of data on each processor

status = ma_init(MT_F DBL, stack/nprocs, heap/nprocs)

C create a globaliganiteay
status = nga create (MT F INT, NDIM, dims, "array A", chunk, g a)

statlss gagfiipliigate (W, g b, "arraumg')
@ init iASNZEETEE N GA
o iESEENGINNE (1)
ERERRNEY |
end do
I@akial) ==
hil(l) = dims (1) .

iF (me.CORUIRTENEEENGa put (GRS hil a lEy
B €05 ta is distrib

ore continuiggeggfz/

Pacific Northwest
NATIONAL LABORATORY

Example: 1-D Transpose (cont.)

€ invery date local li
@all ngandistEdbution (gha, me, 40, hi)
calengaliges(g a, ~No, hi, ayMld) T UseHocality
EENRE” — N (1) —Tey1) +T
dogpl. = 1, meakem

o (G a (nelchmy— JfEF k)
end do
o invert data globally
1o2 (1) SEEGREIE (1) — hi (Wt 1
hi2 (GBS mSS@py,. - 1o (1) +°9
call nga put(g _b,lo2,hi2,b,1d)
echliilga, sync () ! Make “Sinel/crsion Mmmgcornjiictc

o

Pacific Northwest
NATIONAL LABORATORY

Example: 1-D Transpose (cont.)

c check inversion
call nga _get(g_a,lol, hil,a,ld)
call nga get(g_b,lol,hil,b,1d)
ek = O
do TSl , dimsy)
if (a@py..ne.b (dEASH(Ll) —194) . and>gl eqd~d) tlrem
write (6, ghdllEFSmMaTely at "™

jinc h k G]
endi’®
end dg
nf AERGIEFcq. 0. andhne .eqg.0) wEESE(6, *) "Trdmafose OK"™
Seasiicislga destroy (g a) Sl | locate melfSugllifor arrays

status = ga_destroy(g_b)
fall ga terminage)

call mpi_ finalize (ierr)
stop

end

o

Pacific Northwest
NATIONAL LABORATORY

Non-Blocking Communication

» Allows overlapping of data transfers and computations
m Technique for latency hiding

» Nonblocking operations initiate a communication call and then
return control to the application immediately

» operation completed locally by making a call to the wait routine

NGAN@Bet (g a, LGNS, bufl,“wd, @Emsgdle])
NGA Nbwait (nbhandle)

Pacific Northwest
NATIONAL LABORATORY

SUMMA Matrix Multiplication

) N do (until last chunk)

issue NB Get to the next blocks
| \‘| | | ﬁ wait for previous issued call
compute A*B (sequential dgemm)

| |
| | | | % @ Comm.
(Overlap)
| | | | | matrix

NB atomic accumulate into “C”
A B C=A.B done

—N
/ N Issue NB Get A and B blocks
r| | | % Computation
|

Advantages:

- Minimum memory

- Highly parallel

- Overlaps computation and communication
—-r-7 ! == - latency hiding

r-C=T11
r- C=T171

- patch matrix multiplication (easy to use)
- dynamic load balancing

h matrix multiplication

i 4

Pacific Northwest
NATIONAL LABORATORY

(T A P - exploits data locality e

SUMMA Matrix Multiplication:
Improvement over PBLAS/ScaLAPACK

Parallel Matrix Multiplication on the HP/Quadrics Cluster at PNNL
Matrix size: 40000x40000
Efficiency 92.9% w.r t. serial algorithm and 88.2% w.r.t. machine peak on 1849 CPUs

12 .| —*—SRUMMA
—— = PBLAS/ScaLAPACK pdgemm
10 +— —-—-- Theoretical Peak
------- Perfect Scaling
8

TeraFLOPs
)

4
2 =
0 T T T
0 512 1024 1536 2048
Processors

Pacific Northwest
NATIONAL LABORATORY

Application Areas

bioinformatics electronic structure chemistry smoothed particle
GA is the standard programming model hydrodynamics

hydrology

visual analytics material sciences molecular dynamics

Others: financial security forecasting, astrophysics, climate analysis

Pacific Northwest
NATIONAL LABORATORY

Read and Increment

» nga_read inc: remotely updates a particular element in
an integer global array and returns the original value:

m Applies to integer arrays only
m Can be used as a global counter for dynamic load balancing

NGA_Read _inc
(Read and Increment)

c Create task counter
call nga create (MT_F INT, one,one,chunk,g counter) *

call ga zero(g counter) yY
: - * Global Array

itask = nga_read inc(g_counter,one, one)

(access to data
is serialized)

. . Global Lock
. Translate itask into task ...

LLIL] L] LIL"LIL et

T OCITTG TYOTCTTYY
NATIONAL LABORATORY

Hartree-Fock SCF

Obtain variational solutions to the electronic
Schrodinger equation

HY = EWY
within the approximation of a single Slater determinant.

Assuming the one electron orbitals are expanded as
§:(r) =3 Gy (1)
u
the calculation reduces to the self-consistent eigenvalue problem
FuyCiryv = €Dy Cry
Duv = 2 Cukcvk
k

1
Fyy = huv ol 5 2[2(!“’ | (U)")_ (M(U |V)“):ba))»
WA

Pacific Northwest
NATIONAL LABORATORY

Parallelizing the Fock Matrix

The bulk of the work involves computing the 4-index elements (__|).
This is done by decomposing the quadruple loop into evenly sized
blocks and assigning blocks to each processor using a global counter.
After each processor completes a block it increments the counter to
get the next block

Gy 1
de
- N >

do ™
Read and F (1,40 Accumulate
increment results
counter Evaluate

block

Pacific Northwest
NATIONAL LABORATORY

Gorden Bell finalist at SC09 - GA Crosses the
Petaflop Barrier

» GA-based parallel
implementation of coupled
cluster calculation
performed at 1.39
petaflops using over

30000 ——

25000 Floating-Point perforntance

223,000 processes on) at 223K cores:
ORNL's Jaguar petaflop § I 1.39 PetaFLOP/s
System f’i 20000 i =
= Apra et. al., “Liquid E (00
water: obtaining the right 3 - 79 atoms
answer for the right = 150001 1224 basis functions
reasons”, SC 2009. Ce-putz(-f) basis

» Global Arrays is one of
two programming models
that have achieved this oAk 00

10000

|\IIIIII\IIIIII‘IIIIIIJII
100000 125000 150000 175000 200000 225000

level of pe rformance ERIDGE no. of processors

‘.\.llil\\l.l\. Laboratory

O

Pacific Northwest
NATIONAL LABORATORY

Many parallel applications can potentially make use of groups. These
include

e Numerical evaluation of gradients

e Monte Carlo sampling over initial conditions or uncertain
parameter sets

e Free energy perturbation calculations (chemistry)

e Nudged elastic band calculations (chemistry and materials
science)

e Sparse matrix-vector operations (NAS CG benchmark)

e Data layout for partially structured grids

e Multi-physics applications

I

Pacific Northwest
NATIONAL LABORATORY

If the individual calculations are small enough then each
processor can be used to execute one of the tasks
(embarrassingly parallel algorithms).

If the individual tasks are large enough that they must be
distributed amongst several processors then the only option
(usually) is to run each task sequentially on multiple processors.
This limits the total humber of processors that can be applied to
the problem since parallel efficiency degrades as the number of

Processors increases.
/; Pacific Northwest

Multiple Tasks with Groups

Tasks

10
9

8
/

Results

Pacific Northwest
NATIONAL LABORATORY

Multiple Tasks with Groups

Tasks
10

(=)

Processors Results

[@)]pN](0e] o

o

Pacific Northwest
NATIONAL LABORATORY

Global Array Processor Groups

Alternatively the collection of processors can be decomposed
into processor groups. These processor groups can be used to

execute parallel algorithms independently of one another. This
requires

e global operations that are restricted in scope to a particular
group instead of over the entire domain of processors (world

group)

e distributed data structures that are restricted to a particular
group

o

Pacific Northwest
NATIONAL LABORATORY

Processor Groups (Schematic)

group A group B

>
>+

e

world group

o

AAAAAAAAAAAAAAAAAA

Multiple Tasks with Groups

Tasks Processors ‘ 4ot
esults
10
g /
7 /

\

"

o

Pacific Northwest
NATIONAL LABORATORY

Creating Processor Groups

integer function ga pgroup create(list, count)

Returns a handle to a group of processors. The total number

of processors is count, the individual processor IDs are located
in the array list.

subroutine ga pgroup set default(p grp)

Set the default processor to p_grp. All arrays created after this
point are created on the default processor group, all global
operations are restricted to the default processor group unless
explicit directives are used. Initial value of the default processor

group is the world group.

Pacific Northwest
NATIONAL LABORATORY

Explicit Operations on Groups

Explicit Global Operations on Groups
ga_pgroup_sync (p_grp)

ga_pgroup brdcst(p grp, type,buf, lenbuf, root)
ga pgroup igop (p_grp, type,buf, lenbuf, op)

ga pgroup dgop (p _grp, type,buf, lenbuf, op)
Query Operations on Groups

ga pgroup nnodes (p _grp)
ga pgroup nodeid(p grp)

Access Functions

teger function ga pgroup get def
ction ga pgrou ~_world()

Pacific Northwest
NATIONAL LABORATORY

Communication between Groups

Copy and copy_patch operations are supported for global arrays that
are created on different groups. One of the groups must be
completely contained in the other (nested).

The copy or copy_patch operation must be executed by all processors
on the nested group (group B in illustration)

o

Pacific Northwest
NATIONAL LABORATORY

MD Example

Spatial Decomposition Algorithm:

e Partition particles among processors 3

e Update coordinates at every step

e Update partitioning after fixed
number of steps e

o

Pacific Northwest
NATIONAL LABORATORY

MD Parallel Scaling

Scaling of Single Parallel Task

—s— Speedup
—=— |ldeal

20 T
p
u 15 |
d
e
s 10 |
p
S
5 L
0 1
0] 5

10

15

Number of Processors

20

Pacific Northwest
NATIONAL LABORATORY

MD Performance on Groups

Scaling of Parallel MD Tasks on Groups

1200
1000 .
—s— Speedup
800 —=— |ldeal _

600

N OOQCTDT

400

200

0 200 400 600 800 1000 1200

Number of Processors

o

Pacific Northwest
NATIONAL LABORATORY

Sparse Data Manipulation

» ga_scan_add

Qa sk : N AEPR0 0N NN OgRlL SN0 G a0 O 10
g SIEE NG 4 N 6 NP0 ST ISR 2 SR 4 oo TR
g ClasiEs L 3 6 W, 15 21N 1 ON0 [@iN2 25 85—l oc S5

» ga_scan_copy

g mask: 1 4SSNUER0 0 1 (G SEy0 [Sg OFE0 el W0
EipsrC: SR Wt 9 5 10 W
gicleciia Y 5 O o Wit Y 7 SNy GBS O Nl

~J
W
D
(@0
N
W
(@)

Pacific Northwest
NATIONAL LABORATORY

Sparse Data Manipulation

» ga_pack

qugask: LR U0 INUO YOS 01 =00 [§0
g _Siaeh i) S 4 5SE 7288 SN0 g 13 p—1 5o
e Ce. W6 8 1Mo

» ga_unpack

g mask: 1 ZUSSRGEES0 0 1 Oyl A0 0 OFU 0 W
B, ST C: di o
giiclei«NEIy 0 (0 Oq@on,C Samsy (O N 0 OFR0 Owhy 0

oo
|_\
I_\
I_\
@)

Pacific Northwest
NATIONAL LABORATORY

Compressed Sparse Row Matrix

U0 KN .SNU
2 (0 G LS
IVRYL. 9 ™0
) 4 U
0 2 Ul
VZIRNE TR 1

3
J= ILINIDIE S & 4
DR X ; 3

Pacific Northwest
NATIONAL LABORATORY

Sparse Matrix-Vector Multiply

nga_ access
nga gather

Pacific Northwest
NATIONAL LABORATORY

Sparse Matrix-Vector Multiply

. = ga elem multiply

ga scan add
ga pack

VoV.V.V V-V NAY V. V. YV V

Pacific Northwest
NATIONAL LABORATORY

New Interface for Creating Global Arrays

» Developed to handle the proliferating number of
properties that can be assigned to Global Arrays

1 niets [N C L 1 OTgga crowmfe badle

subroutine@Qga set EESE(g a, ek, dEmS, TyRc

Slibroutine ga S ray Thegle (g akQame)

subH@glisine galSEw Sipank (g a, “Sigdr:)

subrouTHHEMGERTCt 1rreCUEh Str (IS oo, nb Hesi)

subroudfencaSEmet ghosts (g NN cth)

s U LfEiFENEy 0o Scog@Eieck CycC AN C Clgec1MmS)

SllseeiiEmyTe ga set blIOSIEMZANEEN proc grumgeel, dims,
e c Wi d)

logical function ga allocate(g a)

Pacific Northwest
NATIONAL LABORATORY

Block-cyclic Data Distributions

Normal Data Distribution Block Cyclic Data Distribution

Pacific Northwest
NATIONAL LABORATORY

Block-cyclic Data Distributions

Simple Distribution Scalapack Distribution
O~ 01 70—ji

Pacific Northwest
NATIONAL LABORATORY

Most operations work exactly the same, data distribution
IS transparent to the user

Some operations (matrix multiplication, non-blocking put,
get) not implemented

Additional operations added to provide access to data
associated with particular sub-blocks

You need to use the new interface for creating Global
Arrays to get create block-cyclic data distributions

Pacific Northwest
NATIONAL LABORATORY

Creating Block-cyclic Arrays

integer function ga create handle ()

subroutine ga set data(g _a,ndim,dims, type)

subroutine ga set array name (g _a,name)

subroutine ga set block cyclic(g _a,b dims)

subroutine ga set block cyclic proc grid(g_a,
dims,proc_grid)

subroutine ga allocate(g a)

o

Pacific Northwest
NATIONAL LABORATORY

Block-Cyclic Methods

subroutine ga get block info(g_a,num blocks,block dims)
integer function ga total blocks(g_a)
subroutine nga access_block segment(g_a,
iproc,index, length)
subroutine nga access block(g_a,idx,index, 1d)
subroutine nga_ access block grid(g_a,
subscript, index, 1d)

o

Pacific Northwest
NATIONAL LABORATORY

Ghost Cells

normal global array

global array with ghost cells

Operations:
NGA_Create_ghosts - creates array with ghosts cells
GA_Update_ghosts - updates with data from adjacent processors
NGA_Access_ghosts - provides access to “local” ghost cell elements

NGA_Nbget_ghost_dir - nonblocking call-to update gho

o

Pacific Northwest
NATIONAL LABORATORY

Ghost Cell Update

Automatically update ghost
cells with appropriate data
from neighboring

processors. A multiprotocol '
implementation has been N

used to optimize the
update operation to match
platform characteristics.

Pacific Northwest
NATIONAL LABORATORY

Lattice Boltzmann Simulation

f,-(r+e,-,r+Ar>=f,-<r,t>—%(ﬁ(r,ﬂ—ﬁ“f’(r,r))

Relaxation Stream
Wl A D
A
A — b -
Y e

Pacific Northwest
NATIONAL LABORATORY

Lattice Boltzmann Performance

10000 |

T T a0 | Ny S|

—®— Total

—l— Update

N \ |
L TR

100

Time (sec)

1 10 100 1000

Number of Processors

Pacific Northwest
NATIONAL LABORATORY

Disk Resident Arrays

» Extend GA model to disk

msystem similar to Panda (U. lllinois) but higher level
APIs

» Provide easy transfer of data between N-dim
arrays stored on disk and distributed arrays
stored in memory

» Use when
mArrays too big to store in core
mcheckpoint/restart |
mout-of-core solvers —~

o

Pacific Northwest
NATIONAL LABORATORY

Disk Resident Array

Disks

Disk Resident Arrays
automatically
decomposed into
multi Hes

Pacific Northwest
NATIONAL LABORATORY

Related Programming Tools

» Co-Array Fortran
m Distributed Arrays
m One-Sided Communication
m No Global View of Data

» UPC

m Model Similar to GA but only applicable to C programs

m Global Shared Pointers could be used to implement GA
functionality

o C does not really support multi-dimensional arrays

» High level functionality in GA is missing from these
systems

o

Pacific Northwest
NATIONAL LABORATORY

Ongoing/Future Work

» Scalability to 100k+ processes

» Support for multithreaded execution

» Fault Tolerance

» Data Decomposition and Load balancing
» Support for Hybrid Platforms

» Performance tools for GA/ARMCI

Pacific Northwest
NATIONAL LABORATORY

Current Release

> 4.3.2

m Optimized Bluegene/P port
m Optimized Portals (Cray) port

» 5.0 Beta

m Autoconf/automake/libtool build

m Restricted arrays

m ARMCI enhancements
» On-demand connection management for InfiniBand
» Improved scalability for fence

Pacific Northwest
NATIONAL LABORATORY

Summary

» The idea has proven very successful
m efficient on a wide range of architectures
e core operations tuned for high performance

m library substantially extended but all original (1994) APIs
preserved

m increasing number of application areas

» Supported and portable tool that works in real
applications

Pacific Northwest
NATIONAL LABORATORY

Source Code and More Information

» Version 4.3.2 available
» Homepage at http://www.emsl.pnl.gov/docs/global/

» Platforms (32 and 64 bit)

IBM SP, BlueGene/L, BlueGene/P

Cray X1, XD1, XT3, XT4

Linux Cluster with Ethernet, Myrinet, Infiniband, or Quadrics
HP

SGI Altix

Solaris

Fujitsu

Windows

Pacific Northwest
NATIONAL LABORATORY

Useful GA Functions (Fortran)

EEIgEOUTIine g inithalize
subrOfgine ga Serminatef()

imteger funcijion gag@igelcs ()
imsgeer fupcislERERGT node TWSh()

BOGIEMFT M@t ion nga create (type @iy, dimSwpame , SRulfk, o~a)
Tnteger tyPe@miMT F INT, NG GESET , “Sic.)
integer dim
integer dims (dim)
character* (*) name
integer chunk (dim)
intege i i

logical fungiREERNSERGIANCote (g a, g b, nms
D) T i
gl s o iek Gfle
character* (*) name

ke RGNS destroy (g a)

LT E e aer F

L Ce syme (]

o

Pacific Northwest
NATIONAL LABORATORY

Useful GA Functions (Fortran)

subroutine
integer
integer
integer
integer
subroutine
integer
integer
integer
T i
integer
subroutine
integer
integer
integer
fortran
integer

Mg disTwibutso g@el node "id,

el 2l

Wefer=>
)

hi (dI™
nga_put (g_a,
gia

lo(dim)

hi (dim)
array buf

1 (ditm=il)
LEERCEEEs 2,
o A

lo(dim)

hi (dim)
sfaia=n70 loiblie
RNl - 1)

1@,

e

hi,

hi,

T £,

Joull i -

1d)

1dj

Loy

i)

Pacific Northwest

o

NATIONAL LABORATORY

Useful GA Functions (C)

ol GA InTNyjalizewWw
VoidN@A Termirage ()

it GA NnodSepl)
1TegEA Node sl

NN EEPCTEeate (type, dimagims , namSp@itink) “ReturnS~Gl¥ endle gila
int type (GBI, C DBL, “Ggcd
R atEwie] i
iiiieeel i mS [dim]
char* name
int chulNEs,]
int GA DuplicalERiGEEREne) Returns SEiphandiASm O
algle . o] cl
char* name
woael ©a Dast roy (kY
e Sl

woniel GE Sy ()

o

Pacific Northwest
NATIONAL LABORATORY

Pacific Northwest
NATIONAL LABORATORY

- Chose Fortran or C version of problems (whichever
language you prefer)
B XXxXxX.c or xxx.F

- Search file for comments marked with ###

- Using the text as hints, replace the comments with
subroutines or functions from the GA library to create a
working code

- Compile and run

Pacific Northwest
NATIONAL LABORATORY

Transpose a distributed 1D vector containing N elements
in the order 1,2,...,N into a distributed vector containing N
elements in the order N,N-1,...,2.1

Fortran version of this problem is in the file
transp1D.F.tutorial

C version is in transp1D.c.tutorial

Working versions of these codes are in transp1D.F and
transp1D.c

>\/ Pacific Northwest
NATIONAL LABORATORY

A simple matrix multiply algorithm that initializes two large
matrices as GAs. It then multiplies a block of columns by
a block or rows from the GAs locally on each processor
and copies the result into a third global array

Fortran version of this problem is in the file
matrix.F.tutorial

C version is in matrix.c.tutorial
Working versions are in matrix.F and matrix.c

Pacific Northwest
NATIONAL LABORATORY

Both the codes in problems 1 & 2 initialize the data by initializing a local array on
processor 0 with all the data and then copying it to a distributed global array. For real
problems it is usually undesirable to have all the data located on one processor at any
point in the calculation. Can you modify these codes (problem 1 and 2) so that each
processor only initializes the data owned by that processor?

1D transpose (Problem 1)

m Modify code so that each processor only initializes the local array a() with the data owned by
that processor and then copy that data to the global array g_a

m Hint: Use nga_distribution and nga_put

m You will also need to modify the result checking part of the code as well so that it also only
uses smaller portions of the total GA

m Hint: copy locally held part of result GA into local array b and corresponding part of original
vector into local array a and compare (use arrays lo, hi, 02, hi2 to get this data).

Matrix Multiply (Problem 2)

m Modify code so that each processor only initializes the local arrays a and b with the data held
locally by that processor. Then copy that data to the global arrays g a and g_b.

m Hint: Use nga_distribution and nga_put

Pacific Northwest
NATIONAL LABORATORY

