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LLNL has a long history of R&D in ODE/DAE methods 
and software

 Fortran solvers written at LLNL:
• VODE: stiff/nonstiff ODE systems with direct linear solvers• VODE: stiff/nonstiff ODE systems, with direct linear solvers
• VODPK: with Krylov linear solver (GMRES) 
• NKSOL: Newton-Krylov solver - nonlinear algebraic systems 
• DASPK: DAE system solver (from DASSL)

 Recent focus has been on parallel solution of large-scale problems 
and on sensitivity analysis

May 2009
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Push to solve large, parallel systems motivated rewrites 
in C

 CVODE: rewrite of VODE/VODPK [Cohen, Hindmarsh, 94]
PVODE ll l CVODE [B d Hi d h 98] PVODE: parallel CVODE [Byrne and Hindmarsh, 98]

 KINSOL: rewrite of NKSOL [Taylor and Hindmarsh, 98]
 IDA: rewrite of DASPK [Hindmarsh and Taylor, 99]
 Sensitivity variants: SensPVODE, SensIDA, SensKINSOL [Brown, 

Grant, Hindmarsh, Lee, 00-01]
 New sensitivity-capable solvers:y p

• CVODES [Hindmarsh and Serban, 02]
• IDAS [Serban, Petra, and Hindmarsh, 09]

 Organized into a single suite, SUNDIALS, including CVODE and 
CVODES, IDA, IDAS, and KINSOL 
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The SUNDIALS package offers Newton solvers, time 
integration, and sensitivity solvers
 CVODE: implicit ODE solver, y’ = f(y, t)

— Variable-order, variable step BDF (stiff) or implicit Adams (nonstiff)
Nonlinear systems solved by Newton or functional iteration— Nonlinear systems solved by Newton or functional iteration

— Linear systems by direct (dense or band) or iterative solvers
 IDA: implicit DAE solver, F(t, y, y’) = 0

— Variable-order, variable step BDF
— Nonlinear system solved by Newton iteration
— Linear systems by direct (dense or band) or iterative solvers

 KINSOL: Newton solver, F(u) = 0
— Inexact and Modified (with dense solve) Newton
— Linear systems by iterative or dense direct solversLinear systems by iterative or dense direct solvers

 CVODES: sensitivity-capable (forward & adjoint) CVODE 
 IDAS: sensitivity-capable (forward & adjoint) IDA 
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 Iterative linear Krylov solvers: GMRES, BiCGStab, TFQMR



SUNDIALS was designed to easily interface with legacy 
codes

 Philosophy: Keep codes simple to use
 Written in C

—Fortran interfaces: FCVODE, FIDA, and FKINSOL
—Matlab interfaces: sundialsTB (CVODES, IDA, & KINSOL)

 Written in a data structure neutral manner
—No specific assumptions about data
—Application-specific data representations can be used

 Modular implementation
Vector modules—Vector modules

—Linear solver modules
 Require minimal problem information, but offer user control over 
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Initial value problems (IVPs) come in the form of ODEs 
and DAEs

 The general form of an IVP is given by

00 x)t(x
0)x,x,t(F




00 )(

 If              is invertible, we solve for    to obtain an ordinary 
diff ti l ti (ODE) b t thi i t l th b t

x/F  x
differential equation (ODE), but this is not always the best 
approach

 Else, the IVP is a differential algebraic equation (DAE), g q ( )

 A DAE has differentiation index i if i is the minimal number of 
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analytical differentiations needed to extract an explicit ODE



Stiffness of an equation can significantly impact 
whether implicit methods are needed

 (Ascher and Petzold, 1998): If the system has widely varying time 
scales, and the phenomena that change on fast scales are stable,scales, and the phenomena that change on fast scales are stable, 
then the problem is stiff

 Stiffness depends on
• Jacobian eigenvalues • Jacobian eigenvalues, j

• System dimension
• Accuracy requirements
• Length of simulation

 In general a problem is stiff on [t0, t1] if

101  )(min)tt( jj
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Dalquist test problem shows impact of stability on step 
sizes for explicit and implicit methods

Dalquist test equation: 
Exact solution:

,yy  0y)0(y 
ntey)t(y Exact solution: 

Absolute stability requirement 

n
n ey)t(y 0

If Re()<0, then |y(tn)| decays exponentially, and we cannot tolerate 

,...,n,yy nn 211  

n
growth in yn

Region of absolute stability of an integrator written as: eg o o abso ute stab ty o a teg ato tte as
yn = R(z)yn-1, with time step z = h

 1 )z(R;CzS

9
Lawrence Livermore National Laboratory

 



Forward and backward Euler show different stability 
restrictions

 Forward Euler:    h1)z(Ryhyy 1n1nn  

So, if  < 0, FE has the step size restriction:

2h 

 Backward Euler:  



h1

1)z(Ryhyy n1nn 
 

So, if  < 0, BE has the step size restriction: 0h
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Curtiss and Hirchfelder example
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Curtiss and Hirchfelder example
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h=0.5 for BEForward Euler 



SUNDIALS has implementations of Linear Multistep 
Methods (LMM)

General form of LMM:    
1 2

0
K K

ini,nnini,n yhy 

 Two methods:
• Adams-Moulton (nonstiff); K1 = 1, K2 = k, k = 1,…,12

 0 0i i

Adams Moulton (nonstiff); K1  1, K2  k, k  1,…,12
• BDF (stiff); K1 = k, K2 = 0, k = 1,…,5

 Nonlinear systems (BDF) Nonlinear systems (BDF)
• ODE: 

    0yy,tfhyyG
k

ininnn0nn    yfy 

• DAE: 

    yy,yy
1i

ini,nnn0nn 


 yfy

  0yyF      0y,yh,tFyG
k

ii
1

0 
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Stability is very restricted for higher orders of BDF 
methods
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CVODE solves )y,t(fy 

 Variable order and variable step size methods:
BDF (b k d diff ti ti f l ) f tiff t• BDF (backward differentiation formulas) for stiff systems

• Implicit Adams for nonstiff systems
 (Stiff case) Solves time step for the system )y,t(fy 

• applies an explicit predictor to give yn(0)

 
q

p
j

p
j)( ytyy 110 

• applies an implicit corrector with yn(0) as the initial guess
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Time steps are chosen to minimize the local truncation 
error

 Time steps are chosen by:
• Estimate the error: E(t ) = C(y y )• Estimate the error: E(t ) = C(yn - yn(0))

 Accept step if ||E(t)||WRMS < 1
 Reject step otherwise

• Estimate error at the next step, t’, as

)t(E)tt()t(E q  1

• Choose next step so that ||E(t’)|| WRMS < 1
 Choose method order by:

• Estimate error for next higher and lower orders• Estimate error for next higher and lower orders
• Choose the order that gives the largest time step meeting the 

error condition
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Computations weighted so no component 
disproportionally impacts convergence

 An absolute tolerance is specified for each solution component, 
ATOLiATOLi

 A relative tolerance is specified for all solution components, RTOL 

 Norm calculations are weighted by:Norm calculations are weighted by:

ii
i

ATOLyRTOL
1ewt


    yewt1  y
1

2i
WRMS 




N

i

i

N

 Bound time integration error with:

1y y

The 1/6 factor tries to account for estimation errors

6
1y 0n  )(ny
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Nonlinear system will require nonlinear solves

 Use predicted value as the initial iterate for the nonlinear solver
 Nonstiff systems: Functional iteration Nonstiff systems: Functional iteration

  


 
q

1i
ini,n)m(nn0)1m(n yyfhy 

 Stiff systems: Newton iteration

   )m(n)m(n)m(n yGyyM 1

• ODE: nh,yfIM 0 

• DAE:  nh,yFyFM 01   
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SUNDIALS provides many options for linear solvers

 Iterative linear solvers
• Result in inexact Newton solver• Result in inexact Newton solver
• Scaled preconditioned solvers: GMRES, Bi-CGStab, TFQMR
• Only require matrix-vector products
• Require preconditioner for the Newton matrix, M

 Jacobian information (matrix or matrix-vector product) can be 
supplied by the user or estimated with finite difference quotients

 Two options require serial environments and some pre-defined 
structure to the data
• Direct dense 
• Direct band
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An inexact Newton-Krylov method can be used to solve 
the implicit systems

 Krylov iterative methods find the linear system solution in a 
2Krylov subspace:

 Only require matrix-vector products

 Difference approximations to the matrix vector product are used

}...,rJ,Jr,r{)r,J(K 2

 Difference approximations to the matrix-vector product are used,


 )x(F)vx(Fv)x(J 



 Matrix entries need never be formed, and memory savings can 
be used for a better preconditioner
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IDA solves F(t, y, y’) = 0

 C rewrite of DASPK [Brown, Hindmarsh, Petzold]
 Variable order / variable coefficient form of BDF Variable order / variable coefficient form of BDF
 Targets: implicit ODEs, index-1 DAEs, and Hessenberg index-2 

DAEs
O ti l ti l f i t t l f d ’ Optional routine solves for consistent values of y0 and y0’ 
• Semi-explicit index-1 DAEs, differential components known, 

algebraic unknown OR all of y0’ specified, y0 unknown
 Nonlinear systems solved by Newton-Krylov method

 Optional constraints: yi > 0, yi < 0, yi  0, yi  0p y , y , y , y
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KINSOL solves F(u) = 0

 C rewrite of Fortran NKSOL (Brown and Saad)
 Inexact Newton solver: solves J un = -F(un) approximately Inexact Newton solver: solves J u = -F(u ) approximately
 Modified Newton option (with direct solves) – this freezes the 

Newton matrix over a number of iterations
Krylov solver: scaled preconditioned GMRES TFQMR Bi CGStab Krylov solver: scaled preconditioned GMRES, TFQMR, Bi-CGStab
• Optional restarts for GMRES
• Preconditioning on the right: (J P-1)(Ps) = -F

 Direct solvers: dense and band (serial & special structure)
 Optional constraints: ui > 0, ui < 0, ui  0 or ui  0
 Can scale equations and/or unknownsCa sca e equat o s a d/o u o s
 Dynamic linear tolerance selection
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An inexact Newton’s method is used to solve the 
nonlinear problem

1. Starting with x0, want x* such that F(x*) = 0g , ( )

2. Repeat for each k until tol)x(F 1k 

a. Solve (approximately)

)x(Fs)x(J kkk 

b. Update, xk+1 = xk + sk

 tol may be chosen adaptivelytol may be chosen adaptively 
based on accuracy requirements 

  is a search parameter
 || || is a weighted L 2 norm

23
Lawrence Livermore National Laboratory
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Linear stopping tolerances must be chosen to prevent 
“oversolves”

)(Fs)(J)(F kk1kkk  

The linear system is solved to a given tolerance:

 Newton method assumes a linear model 

B d i ti f f l ti l t l

)x(Fs)x(J)x(F kk1kkk  

• Bad approximation far from solution, loose tol.

• Good approximation close to solution, tight tol.

Ei t t d W lk (SISC 96) Eisenstat and Walker (SISC 96)

• Choice 1 1111   kkkkkk FsJFF

• Choice 2

 ODE literature

 2)1k()k(k FF9.0 

050k
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Inexact methods maintain the fast rate of convergence 
of Newton’s method

 Convergence of Newton’s method is q-quadratic locally, for some 
constant C

2*k*1k xxCxx 

 Convergence of an inexact Newton method is
• q-linear if      is constant in k

li if 0lim k

k

• q-super-linear if

• q-quadratic if for some constant C

0lim
k





2k1kkk

 Eisenstat and Walker methods are q-quadratic

2k1kkk )x(FCs)x(J)x(F  
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Line-search globalization for Newton’s method can 
enhance robustness

 User can select:

• Inexact Newton

• Inexact Newton with line search

Li h id fl ibilit i th i iti l (l Line searches can provide more flexibility in the initial guess (larger 
time steps)

 Take, xk+1 = xk + sk+1, for chosen appropriately (to satisfy the , , pp p y ( y
Goldstein-Armijo conditions):

• sufficient decrease in F relative to the step length 

• minimum step length relative to the initial rate of decrease

• full Newton step when close to the solution
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Preconditioning is essential for large problems as 
Krylov methods can stagnate

 Preconditioner P must approximate Newton matrix, yet be 
reasonably efficient to evaluate and solve.reasonably efficient to evaluate and solve.

 Typical P (for time-dep. ODE problem) is
 The user must supply two routines for treatment of P:

Setup: evaluate and preprocess P (infrequently)

JJJI  ~,~

• Setup: evaluate and preprocess P (infrequently)
• Solve: solve systems Px=b (frequently)

 User can save and reuse approximation to J, as directed by the 
solver

 SUNDIALS offers hooks for user-supplied preconditioning
 Band and block-banded preconditioners are supplied for use with 

the supplied vector structure
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Sensitivity Analysis

 Sensitivity Analysis (SA) is the study of how the variation in the output 
of a model (numerical or otherwise) can be apportioned, qualitatively or 
quantitatively, to different sources of variation in inputs.

 Applications:
• Model evaluation (most and/or least influential parameters), Model 

reduction, Data assimilation, Uncertainty quantification, 
Optimization (parameter estimation, design optimization, optimal 
control, …)

 Approaches:
• Forward sensitivity analysisy y
• Adjoint sensitivity analysis
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Sensitivity Analysis Approaches
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(1+Np)Nx   increases with Np (1+Ng)Nx increases with Ng



FSA - Methods

 Staggered Direct Method: On each time step, converge Newton 
it ti f t t i bl th l li iti it titeration for state variables, then solve linear sensitivity system
• Requires formation and storage of Jacobian matrices, Not matrix-free, 

Errors in finite-difference Jacobians lead to errors in sensitivities
 Si lt C t M th d O h ti t l th  Simultaneous Corrector Method: On each time step, solve the 
nonlinear system simultaneously for solution and sensitivity variables
• Block-diagonal approximation of the combined system Jacobian, Requires 

formation of sensitivity R H S at every iterationformation of sensitivity R.H.S. at every iteration
  Staggered Corrector Method: On each time step, converge Newton 

for state variables, then iterate to solve sensitivity system
• With Krylov• With Krylov
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FSA – Generation of the sensitivity system

 Analytical CVODES case
 Automatic differentiation

• ADIFOR, ADIC, ADOLC
• complex-step derivatives ii
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ASA – Implementation

 Solution of the forward problem is required for the adjoint problem 
need predictable and compact storage of solution values for the 

l ti f th dj i t tsolution of the adjoint system

ckck ckck ckck
t0t0 tftf

ck0ck0 ck1ck1 ck2 …ck2 …

 Cubic Hermite or variable-degree polynomial interpolation
Si l ti d ibl f h h k i t

CheckpointingCheckpointing

 Simulations are reproducible from each checkpoint
 Force Jacobian evaluation at checkpoints to avoid storing it
 Store solution and first derivative 
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ASA – Generation of the sensitivity system

 Analytical 
• Tedious
• For PDEs: in general, adjoint and discretization operators do NOT 

commute

 Automatic differentiation
• Certainly the most attractive alternative

R AD t l t t f d AD t l• Reverse AD tools not as mature as forward AD tools

 Finite difference approximation
• NOT an option (computational cost equivalent to FSA!) p ( p q )

33
Lawrence Livermore National Laboratory



The SUNDIALS vector module is generic

 Data vector structures can be user-supplied
 The generic NVECTOR module defines: The generic NVECTOR module defines:

• A content structure (void *)
• An ops structure – pointers to actual vector operations supplied by 

d fi i ia vector definition
 Each implementation of NVECTOR defines:

• Content structure specifying the actual vector data and any 
information needed to make new vectors (problem or grid data)

• Implemented vector operations
• Routines to clone vectors

 Note that all parallel communication resides in reduction operations: 
dot products, norms, mins, etc.
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SUNDIALS provides serial and parallel NVECTOR 
implementations

 Use is optional

 Vectors are laid out as an array of doubles (or floats)
 Appropriate lengths (local, global) are specified
 Operations are fast since stride is always 1
 All vector operations are provided for both serial and parallel cases
 For the parallel vector, MPI is used for global reductions

 These serve as good templates for creating a user-supplied vector 
structure around a user’s own existing structuresst uctu e a ou d a use s o e st g st uctu es
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SUNDIALS provides Fortran interfaces

 CVODE, IDA, and KINSOL
 Cross-language calls go in both directions:
 Fortran user code  interfaces  CVODE/KINSOL/IDA

 Fortran main  interfaces to solver routines
 Solver routines  interface to user’s problem-defining routine and 

preconditioning routinespreconditioning routines

 For portability, all user routines have fixed names
 Examples are provided
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SUNDIALS provides Matlab interfaces

 CVODES, KINSOL, and IDAS
 The core of each interface is a single MEX file which interfaces toThe core of each interface is a single MEX file which interfaces to 

solver-specific user-callable functions
 Guiding design philosophy: make interfaces equally familiar to both 

SUNDIALS and Matlab usersSUNDIALS and Matlab users
• all user-provided functions are Matlab m-files
• all user-callable functions have the same names as the 

corresponding C functionscorresponding C functions 
• unlike the Matlab ODE solvers, we provide the more flexible 

SUNDIALS approach in which the 'Solve' function only returns the 
solution at the next requested output timesolution at the next requested output time.

 Includes complete documentation (including through the Matlab help 
system) and several examples
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Structure of SUNDIALS

38
Lawrence Livermore National Laboratory



SUNDIALS code usage is similar across the suite

 Have a series of Set/Get routines to set options
 For CVODE with parallel vector implementation:For CVODE with parallel vector implementation:

#include “cvode.h”
#include “cvode_spgmr.h”
#include “nvector *.h”#include nvector_ .h

y = N_VNew_*(n,…);
cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
fl d *( )flag = CVodeSet*(…);
flag = CVodeInit(cvmem,rhs,t0,y,…);
flag = CVSpgmr(cvmem,…);
for(tout = …) {( ) {

flag = CVode(cvmem, …,y,…);  }

NV_Destroy(y);
CVodeFree(&c mem)
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CVodeFree(&cvmem);



Forward Sensitivity Analysis in SUNDIALS

User main routine
Specification of problem parameters
User main routine
Specification of problem parameters

Options
- sensitivity approach (simultaneous or staggered)
Options
- sensitivity approach (simultaneous or staggered)p p p

Activation of sensitivity computation
User problem-defining function
User preconditioner function

p p p
Activation of sensitivity computation
User problem-defining function
User preconditioner function

- sensitivity residuals: analytical, FD(DQ), AD, CS
- error control on sensitivity variables
- user-defined tolerances for sensitivity variables

- sensitivity residuals: analytical, FD(DQ), AD, CS
- error control on sensitivity variables
- user-defined tolerances for sensitivity variables

CVODES
ODE
Integrator

CVODES
ODE
Integrator

IDAS
DAE
Integrator

IDAS
DAE
Integrator

BandBand PreconditionedPreconditioned GeneralGeneral

Vector
Kernels
Vector
Kernels

DenseDenseBand
Linear
Solver

Band
Linear
Solver

Preconditioned
Iterative
Linear Solver

Preconditioned
Iterative
Linear Solver

General
Preconditioner
Modules

General
Preconditioner
Modules

Dense
Linear
Solver

Dense
Linear
Solver
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Forward Sensitivity Analysis in SUNDIALS

#include “cvodes.h”
#include “cvodes spgmr.h”#include cvodes_spgmr.h
#include “nvector_*.h”

y = N_VNew*(n,…);
cvmem = CVodeCreate(CV BDF,CV NEWTON);c e C odeC eate(C _ ,C _ O );
flag = CVodeSet*(…);
flag = CVodeMalloc(cvmem,rhs,t0,y,…);
flag = CVSpgmr(cvmem,…);
yS = N VNewVectorArray *(Ns,…);y _ y_ ( , );
flag = CVodeSetSens*(…);
flag = CVodeSensMalloc(cvmem,…,yS);
for(tout = …) {

flag = CVode(cvmem, …,y,…);g ( , ,y, );
flag = CVodeGetSens(cvmem,t,yS);

}
NV_Destroy(y);
NV DestroyVectorArray(yS,Ns);
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_ y y(y , );
CVodeFree(&cvmem);



Adjoint Sensitivity Analysis in SUNDIALS

User main routineUser main routine ImplementationImplementationUser main routine
Activation of sensitivity computation
User problem-defining function
User reverse function
User preconditioner function

User main routine
Activation of sensitivity computation
User problem-defining function
User reverse function
User preconditioner function

Implementation
- check point approach; total cost is 2 forward 
solutions + 1 backward solution 
- integrate any system backwards in time
- may require modifications to some user-defined

Implementation
- check point approach; total cost is 2 forward 
solutions + 1 backward solution 
- integrate any system backwards in time
- may require modifications to some user-definedUser preconditioner function

User reverse preconditioner function
User preconditioner function
User reverse preconditioner function

may require modifications to some user defined 
vector kernels

may require modifications to some user defined 
vector kernels

CVODESCVODES IDASIDAS

(Modified)
Vector

(Modified)
Vector

CVODES
ODE

Integrator

CVODES
ODE

Integrator

IDAS
DAE

Integrator

IDAS
DAE

Integrator

Vector
Kernels
Vector

Kernels

Band
Linear
Band

Linear
Preconditioned

Iterative
Preconditioned

Iterative
General

Preconditioner
General

Preconditioner
Dense
Linear
Dense
Linear
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Adjoint Sensitivity Analysis in SUNDIALS
#include “cvodes.h”
#include “cvodea.h”
#include “cvodes_spgmr.h”
#include “nvector_*.h”

y = N_VNew_*(n,…);
cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
CVodeSet*(…);  CVodeMalloc(…);  CVSpgmr(…);

cvadj = CVadjMalloc(cvmem,STEPS);
flag = CVodeF(cvadj,…,&nchk);
yB = N_VNew_*(nB,…);
CVodeSet*B(…);  CVodeMallocB(…);  CVSpgmrB(…);
for(tout = …) {

flag = CVodeB(cvadj, …,yB,…);
}
NV_Destroy(y);
NV_Destroy(yB);
CVodeFree(&cvmem);

43Option:UCRL# Option:Additional Information
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CVadjFree(&cvadj);



Applications of SUNDIALS

 CVODE and KINSOL are being used in parallel fusion simulations at PPPL

 KINSOL is being used to solve for implicit hydrodynamics in core collapse 
supernova simulations at SUNY-Stony Brook

 Parallel CVODE is being used in a 3D tokamak turbulence model in LLNL’s 
Magnetic Fusion Energy Division. 

 KINSOL with a HYPRE multigrid preconditioner is being applied to solve a 
nonlinear Richards’ equation for pressure in porous media flows. 

 CVODE, KINSOL, IDA, with MG preconditioner, are being used to solve 3D 
neutral particle transport problems in CASC. 
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Applications with sensitivity analysis

 CVODES used for sensitivity analysis of chemically reacting flows 
(SciDAC collaboration with Sandia Livermore).

 CVODES used for sensitivity analysis of radiation transport (diffusion 
approximation).pp )

 KINSOL+CVODES used for inversion of large-scale time-dependent 
PDEs (atmospheric releases)PDEs (atmospheric releases).

 …
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KINSOL enabled modeling variably saturated subsurface 
flow in numerous contexts

 The Newton-Krylov method in 
KINSOL from SUNDIALS       qzg–ppKk–p

 

provided the main solver 
engine for the PARFLOW 
variably saturated subsurface

    qzgppKk
t r  


variably saturated subsurface 
flow solver

 hypre structured multigrid 
preconditionerpreconditioner

 Symmetric approximation to 
Jacobian for preconditioning

 Line search globalization
 Dynamic linear tolerances Variably saturated PARFLOW 

is used in large-scale, parallel  
d l f DOE it
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The ParFlow model enabled a parallel watershed model 
used to diagnose subsurface/land-surface feedbacksg
 550,000 node domain
 Fully-coupled physics: subsurface, land-

s rface o erland flosurface, overland flow
 PARFLOW replaced simple 1D moisture 

content calculation
 Transient simulation based on Transient simulation based on 

atmospheric forcing, 1hr t for 7 yrs
 Multiple cases, efficient code required

Multiple plant types show strong interaction p p yp g
between heat and water table depth at the 

upper end of the root zone depth:
Subsurface water distributions matter!
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The variably saturated flow model is part of the only bedrock to 
top of the atmosphere model in existencep p
First fully coupled model: subsurface, overland flow, atmosphere

PARFLOW (3D, parallel) coupledPARFLOW (3D, parallel) coupled 
with CLM overland flow 
ARPS for atmospheric modeling
Little Washita watershed (OK) 

•Water table depth was found to impact the

Maxwell Chow & Kollet

Water table depth was found to impact the 
formation of the planetary boundary layer
•More detailed subsurface modeling 
allowed better representation of spatial 
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Availability

Open source BSD license
https://computation.llnl.gov/casc/sundials

Publications
https://computation.llnl.gov/casc/nsde

Web site:
Individual codes download 
SUNDIALS suite downloadSUNDIALS suite download
User manuals
User group email list

The SUNDIALS Team: 
Alan Hindmarsh, Radu Serban, and 

Carol Woodward
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