
Lawrence Livermore National LaboratoryLawrence Livermore National Laboratory

SUNDIALS: Suite of Nonlinear and
Differential/Algebraic Equation SolversDifferential/Algebraic Equation Solvers

Carol S. Woodward

UCRL-PRES-213978

Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551
This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Outline

 SUNDIALS Overview
 ODE and DAE integration ODE and DAE integration

• Initial value problems
• Implicit integration methods

 Nonlinear Systems
• Newton’s method and inexact Newton’s method
• Preconditioning

 Sensitivity analysis
• Definitions, applications, methods
• Forward sensitivity analysis• Forward sensitivity analysis
• Adjoint sensitivity analysis

 SUNDIALS: usage, applications, and availability

2
Lawrence Livermore National Laboratory

LLNL has a long history of R&D in ODE/DAE methods
and software

 Fortran solvers written at LLNL:
• VODE: stiff/nonstiff ODE systems with direct linear solvers• VODE: stiff/nonstiff ODE systems, with direct linear solvers
• VODPK: with Krylov linear solver (GMRES)
• NKSOL: Newton-Krylov solver - nonlinear algebraic systems
• DASPK: DAE system solver (from DASSL)

 Recent focus has been on parallel solution of large-scale problems
and on sensitivity analysis

May 2009

3
Lawrence Livermore National Laboratory

Push to solve large, parallel systems motivated rewrites
in C

 CVODE: rewrite of VODE/VODPK [Cohen, Hindmarsh, 94]
PVODE ll l CVODE [B d Hi d h 98] PVODE: parallel CVODE [Byrne and Hindmarsh, 98]

 KINSOL: rewrite of NKSOL [Taylor and Hindmarsh, 98]
 IDA: rewrite of DASPK [Hindmarsh and Taylor, 99]
 Sensitivity variants: SensPVODE, SensIDA, SensKINSOL [Brown,

Grant, Hindmarsh, Lee, 00-01]
 New sensitivity-capable solvers:y p

• CVODES [Hindmarsh and Serban, 02]
• IDAS [Serban, Petra, and Hindmarsh, 09]

 Organized into a single suite, SUNDIALS, including CVODE and
CVODES, IDA, IDAS, and KINSOL

4
Lawrence Livermore National Laboratory

The SUNDIALS package offers Newton solvers, time
integration, and sensitivity solvers
 CVODE: implicit ODE solver, y’ = f(y, t)

— Variable-order, variable step BDF (stiff) or implicit Adams (nonstiff)
Nonlinear systems solved by Newton or functional iteration— Nonlinear systems solved by Newton or functional iteration

— Linear systems by direct (dense or band) or iterative solvers
 IDA: implicit DAE solver, F(t, y, y’) = 0

— Variable-order, variable step BDF
— Nonlinear system solved by Newton iteration
— Linear systems by direct (dense or band) or iterative solvers

 KINSOL: Newton solver, F(u) = 0
— Inexact and Modified (with dense solve) Newton
— Linear systems by iterative or dense direct solversLinear systems by iterative or dense direct solvers

 CVODES: sensitivity-capable (forward & adjoint) CVODE
 IDAS: sensitivity-capable (forward & adjoint) IDA

5
Lawrence Livermore National Laboratory

 Iterative linear Krylov solvers: GMRES, BiCGStab, TFQMR

SUNDIALS was designed to easily interface with legacy
codes

 Philosophy: Keep codes simple to use
 Written in C

—Fortran interfaces: FCVODE, FIDA, and FKINSOL
—Matlab interfaces: sundialsTB (CVODES, IDA, & KINSOL)

 Written in a data structure neutral manner
—No specific assumptions about data
—Application-specific data representations can be used

 Modular implementation
Vector modules—Vector modules

—Linear solver modules
 Require minimal problem information, but offer user control over

6
Lawrence Livermore National Laboratory

q p ,
most parameters

Initial value problems (IVPs) come in the form of ODEs
and DAEs

 The general form of an IVP is given by

00 x)t(x
0)x,x,t(F

00)(

 If is invertible, we solve for to obtain an ordinary
diff ti l ti (ODE) b t thi i t l th b t

x/F x
differential equation (ODE), but this is not always the best
approach

 Else, the IVP is a differential algebraic equation (DAE), g q ()

 A DAE has differentiation index i if i is the minimal number of

7
Lawrence Livermore National Laboratory

analytical differentiations needed to extract an explicit ODE

Stiffness of an equation can significantly impact
whether implicit methods are needed

 (Ascher and Petzold, 1998): If the system has widely varying time
scales, and the phenomena that change on fast scales are stable,scales, and the phenomena that change on fast scales are stable,
then the problem is stiff

 Stiffness depends on
• Jacobian eigenvalues • Jacobian eigenvalues, j

• System dimension
• Accuracy requirements
• Length of simulation

 In general a problem is stiff on [t0, t1] if

101)(min)tt(jj

8
Lawrence Livermore National Laboratory

Dalquist test problem shows impact of stability on step
sizes for explicit and implicit methods

Dalquist test equation:
Exact solution:

,yy 0y)0(y
ntey)t(y Exact solution:

Absolute stability requirement

n
n ey)t(y 0

If Re()<0, then |y(tn)| decays exponentially, and we cannot tolerate

,...,n,yy nn 211

n
growth in yn

Region of absolute stability of an integrator written as: eg o o abso ute stab ty o a teg ato tte as
yn = R(z)yn-1, with time step z = h

 1)z(R;CzS

9
Lawrence Livermore National Laboratory

Forward and backward Euler show different stability
restrictions

 Forward Euler: h1)z(Ryhyy 1n1nn

So, if < 0, FE has the step size restriction:

2h

 Backward Euler:

h1

1)z(Ryhyy n1nn

So, if < 0, BE has the step size restriction: 0h

10
Lawrence Livermore National Laboratory

Curtiss and Hirchfelder example

 5050 tcosyy
1.5 1.5

1

1.5

1

0.5

1

y

0.5

1

0.5 0.5

0 0.5 1 1.5
0

Solution curves

time
0 0.5 1 1.5

0

Forward Euler

h=2 01/50

11
Lawrence Livermore National Laboratory

Solution curves h=2.01/50

Curtiss and Hirchfelder example

 5050 tcosyy
1.51.5

h=1.974/50
h=1.875/50

1.5
Backward Euler
BDF(CVODE)

y

1 1

0.5 0.5

time Implicit schemes
0 0.5 1 1.5

0
0 0.5 1 1.5

0

12
Lawrence Livermore National Laboratory

h=0.5 for BEForward Euler

SUNDIALS has implementations of Linear Multistep
Methods (LMM)

General form of LMM:
1 2

0
K K

ini,nnini,n yhy

 Two methods:
• Adams-Moulton (nonstiff); K1 = 1, K2 = k, k = 1,…,12

 0 0i i

Adams Moulton (nonstiff); K1 1, K2 k, k 1,…,12
• BDF (stiff); K1 = k, K2 = 0, k = 1,…,5

 Nonlinear systems (BDF) Nonlinear systems (BDF)
• ODE:

 0yy,tfhyyG
k

ininnn0nn yfy

• DAE:

 yy,yy
1i

ini,nnn0nn

 yfy

 0yyF 0y,yh,tFyG
k

ii
1

0

13
Lawrence Livermore National Laboratory

 0y,yF 0y,yh,tFyG n
1i

ini,nn0n

Stability is very restricted for higher orders of BDF
methods

12
k=1

k

i
ini,nnnn yyhy

1
0

8

10

k=1
k=2
k=3
k=4
k=5
k=6

4

6

0

2

−8 −6 −4 −2 0 2 4 6 8
−4

−2

14
Lawrence Livermore National Laboratory

CVODE solves)y,t(fy

 Variable order and variable step size methods:
BDF (b k d diff ti ti f l) f tiff t• BDF (backward differentiation formulas) for stiff systems

• Implicit Adams for nonstiff systems
 (Stiff case) Solves time step for the system)y,t(fy

• applies an explicit predictor to give yn(0)

q

p
j

p
j)(ytyy 110

• applies an implicit corrector with yn(0) as the initial guess

j

njnj)(n ytyy
1

110

q

j
nnjnjn)y(ftyy

1
0

15
Lawrence Livermore National Laboratory

Time steps are chosen to minimize the local truncation
error

 Time steps are chosen by:
• Estimate the error: E(t) = C(y y)• Estimate the error: E(t) = C(yn - yn(0))

 Accept step if ||E(t)||WRMS < 1
 Reject step otherwise

• Estimate error at the next step, t’, as

)t(E)tt()t(E q 1

• Choose next step so that ||E(t’)|| WRMS < 1
 Choose method order by:

• Estimate error for next higher and lower orders• Estimate error for next higher and lower orders
• Choose the order that gives the largest time step meeting the

error condition

16
Lawrence Livermore National Laboratory

Computations weighted so no component
disproportionally impacts convergence

 An absolute tolerance is specified for each solution component,
ATOLiATOLi

 A relative tolerance is specified for all solution components, RTOL

 Norm calculations are weighted by:Norm calculations are weighted by:

ii
i

ATOLyRTOL
1ewt

 yewt1 y
1

2i
WRMS

N

i

i

N

 Bound time integration error with:

1y y

The 1/6 factor tries to account for estimation errors

6
1y 0n)(ny

17
Lawrence Livermore National Laboratory

Nonlinear system will require nonlinear solves

 Use predicted value as the initial iterate for the nonlinear solver
 Nonstiff systems: Functional iteration Nonstiff systems: Functional iteration

q

1i
ini,n)m(nn0)1m(n yyfhy

 Stiff systems: Newton iteration

)m(n)m(n)m(n yGyyM 1

• ODE: nh,yfIM 0

• DAE: nh,yFyFM 01

18
Lawrence Livermore National Laboratory

SUNDIALS provides many options for linear solvers

 Iterative linear solvers
• Result in inexact Newton solver• Result in inexact Newton solver
• Scaled preconditioned solvers: GMRES, Bi-CGStab, TFQMR
• Only require matrix-vector products
• Require preconditioner for the Newton matrix, M

 Jacobian information (matrix or matrix-vector product) can be
supplied by the user or estimated with finite difference quotients

 Two options require serial environments and some pre-defined
structure to the data
• Direct dense
• Direct band

19
Lawrence Livermore National Laboratory

An inexact Newton-Krylov method can be used to solve
the implicit systems

 Krylov iterative methods find the linear system solution in a
2Krylov subspace:

 Only require matrix-vector products

 Difference approximations to the matrix vector product are used

}...,rJ,Jr,r{)r,J(K 2

 Difference approximations to the matrix-vector product are used,

)x(F)vx(Fv)x(J

 Matrix entries need never be formed, and memory savings can
be used for a better preconditioner

20
Lawrence Livermore National Laboratory

IDA solves F(t, y, y’) = 0

 C rewrite of DASPK [Brown, Hindmarsh, Petzold]
 Variable order / variable coefficient form of BDF Variable order / variable coefficient form of BDF
 Targets: implicit ODEs, index-1 DAEs, and Hessenberg index-2

DAEs
O ti l ti l f i t t l f d ’ Optional routine solves for consistent values of y0 and y0’
• Semi-explicit index-1 DAEs, differential components known,

algebraic unknown OR all of y0’ specified, y0 unknown
 Nonlinear systems solved by Newton-Krylov method

 Optional constraints: yi > 0, yi < 0, yi 0, yi 0p y , y , y , y

21
Lawrence Livermore National Laboratory

KINSOL solves F(u) = 0

 C rewrite of Fortran NKSOL (Brown and Saad)
 Inexact Newton solver: solves J un = -F(un) approximately Inexact Newton solver: solves J u = -F(u) approximately
 Modified Newton option (with direct solves) – this freezes the

Newton matrix over a number of iterations
Krylov solver: scaled preconditioned GMRES TFQMR Bi CGStab Krylov solver: scaled preconditioned GMRES, TFQMR, Bi-CGStab
• Optional restarts for GMRES
• Preconditioning on the right: (J P-1)(Ps) = -F

 Direct solvers: dense and band (serial & special structure)
 Optional constraints: ui > 0, ui < 0, ui 0 or ui 0
 Can scale equations and/or unknownsCa sca e equat o s a d/o u o s
 Dynamic linear tolerance selection

22
Lawrence Livermore National Laboratory

An inexact Newton’s method is used to solve the
nonlinear problem

1. Starting with x0, want x* such that F(x*) = 0g , ()

2. Repeat for each k until tol)x(F 1k

a. Solve (approximately)

)x(Fs)x(J kkk

b. Update, xk+1 = xk + sk

 tol may be chosen adaptivelytol may be chosen adaptively
based on accuracy requirements

 is a search parameter
 || || is a weighted L 2 norm

23
Lawrence Livermore National Laboratory

 ||.|| is a weighted L-2 norm

Linear stopping tolerances must be chosen to prevent
“oversolves”

)(Fs)(J)(F kk1kkk

The linear system is solved to a given tolerance:

 Newton method assumes a linear model

B d i ti f f l ti l t l

)x(Fs)x(J)x(F kk1kkk

• Bad approximation far from solution, loose tol.

• Good approximation close to solution, tight tol.

Ei t t d W lk (SISC 96) Eisenstat and Walker (SISC 96)

• Choice 1 1111 kkkkkk FsJFF

• Choice 2

 ODE literature

 2)1k()k(k FF9.0

050k

24
Lawrence Livermore National Laboratory

 ODE literature 05.0k

Inexact methods maintain the fast rate of convergence
of Newton’s method

 Convergence of Newton’s method is q-quadratic locally, for some
constant C

2*k*1k xxCxx

 Convergence of an inexact Newton method is
• q-linear if is constant in k

li if 0lim k

k

• q-super-linear if

• q-quadratic if for some constant C

0lim
k

2k1kkk

 Eisenstat and Walker methods are q-quadratic

2k1kkk)x(FCs)x(J)x(F

25
Lawrence Livermore National Laboratory

Line-search globalization for Newton’s method can
enhance robustness

 User can select:

• Inexact Newton

• Inexact Newton with line search

Li h id fl ibilit i th i iti l (l Line searches can provide more flexibility in the initial guess (larger
time steps)

 Take, xk+1 = xk + sk+1, for chosen appropriately (to satisfy the , , pp p y (y
Goldstein-Armijo conditions):

• sufficient decrease in F relative to the step length

• minimum step length relative to the initial rate of decrease

• full Newton step when close to the solution

26
Lawrence Livermore National Laboratory

Preconditioning is essential for large problems as
Krylov methods can stagnate

 Preconditioner P must approximate Newton matrix, yet be
reasonably efficient to evaluate and solve.reasonably efficient to evaluate and solve.

 Typical P (for time-dep. ODE problem) is
 The user must supply two routines for treatment of P:

Setup: evaluate and preprocess P (infrequently)

JJJI ~,~

• Setup: evaluate and preprocess P (infrequently)
• Solve: solve systems Px=b (frequently)

 User can save and reuse approximation to J, as directed by the
solver

 SUNDIALS offers hooks for user-supplied preconditioning
 Band and block-banded preconditioners are supplied for use with

the supplied vector structure

27
Lawrence Livermore National Laboratory

Sensitivity Analysis

 Sensitivity Analysis (SA) is the study of how the variation in the output
of a model (numerical or otherwise) can be apportioned, qualitatively or
quantitatively, to different sources of variation in inputs.

 Applications:
• Model evaluation (most and/or least influential parameters), Model

reduction, Data assimilation, Uncertainty quantification,
Optimization (parameter estimation, design optimization, optimal
control, …)

 Approaches:
• Forward sensitivity analysisy y
• Adjoint sensitivity analysis

28
Lawrence Livermore National Laboratory

Sensitivity Analysis Approaches

)()0(

0),,,(

0 pxx
ptxxF Parameter dependent system

FFF 0 FF)(**

FSA ASA

p
ii

pixix Ni
dpdxs
FsFsF

i ,,1,
)0(

0

0

TtxF
gFF

px

xxx

at...
)(

*

px gsg
dp
dg

pxtg

),,(

 TT
pxpp

T

xFdtFg
dp
dG

dtpxtgpxG

00
**

0

)(

),,(),(

Computational cost:
(1+N)N increases with N

pxdp
 pppdp 00

Computational cost:

29
Lawrence Livermore National Laboratory

(1+Np)Nx increases with Np (1+Ng)Nx increases with Ng

FSA - Methods

 Staggered Direct Method: On each time step, converge Newton
it ti f t t i bl th l li iti it titeration for state variables, then solve linear sensitivity system
• Requires formation and storage of Jacobian matrices, Not matrix-free,

Errors in finite-difference Jacobians lead to errors in sensitivities
 Si lt C t M th d O h ti t l th Simultaneous Corrector Method: On each time step, solve the
nonlinear system simultaneously for solution and sensitivity variables
• Block-diagonal approximation of the combined system Jacobian, Requires

formation of sensitivity R H S at every iterationformation of sensitivity R.H.S. at every iteration
 Staggered Corrector Method: On each time step, converge Newton

for state variables, then iterate to solve sensitivity system
• With Krylov• With Krylov

30
Lawrence Livermore National Laboratory

FSA – Generation of the sensitivity system

 Analytical CVODES case
 Automatic differentiation

• ADIFOR, ADIC, ADOLC
• complex-step derivatives ii

fsfs

pxtfx

),,(

p p
 Directional derivative approximation

)max(),,(),,(ixix rtolppsxtfpsxtfsf

i
ii px

),1max(
1

),max(

2
),,(),,(

2
),,(),,(

iWRMSii
x

ii

i

iiii

i

x

ixix
i

ps

rtolp

epxtfepxtf
p
f

pps
x

),min(
2

),,(),,(
xi

iiii
i

WRMSii

epsxtfepsxtffsf

or
p

31
Lawrence Livermore National Laboratory

)(
2 xi

i
i px

ASA – Implementation

 Solution of the forward problem is required for the adjoint problem
need predictable and compact storage of solution values for the

l ti f th dj i t tsolution of the adjoint system

ckck ckck ckck
t0t0 tftf

ck0ck0 ck1ck1 ck2 …ck2 …

 Cubic Hermite or variable-degree polynomial interpolation
Si l ti d ibl f h h k i t

CheckpointingCheckpointing

 Simulations are reproducible from each checkpoint
 Force Jacobian evaluation at checkpoints to avoid storing it
 Store solution and first derivative

32
Lawrence Livermore National Laboratory

 Computational cost: 2 forward and 1 backward integrations

ASA – Generation of the sensitivity system

 Analytical
• Tedious
• For PDEs: in general, adjoint and discretization operators do NOT

commute

 Automatic differentiation
• Certainly the most attractive alternative

R AD t l t t f d AD t l• Reverse AD tools not as mature as forward AD tools

 Finite difference approximation
• NOT an option (computational cost equivalent to FSA!) p (p q)

33
Lawrence Livermore National Laboratory

The SUNDIALS vector module is generic

 Data vector structures can be user-supplied
 The generic NVECTOR module defines: The generic NVECTOR module defines:

• A content structure (void *)
• An ops structure – pointers to actual vector operations supplied by

d fi i ia vector definition
 Each implementation of NVECTOR defines:

• Content structure specifying the actual vector data and any
information needed to make new vectors (problem or grid data)

• Implemented vector operations
• Routines to clone vectors

 Note that all parallel communication resides in reduction operations:
dot products, norms, mins, etc.

34
Lawrence Livermore National Laboratory

SUNDIALS provides serial and parallel NVECTOR
implementations

 Use is optional

 Vectors are laid out as an array of doubles (or floats)
 Appropriate lengths (local, global) are specified
 Operations are fast since stride is always 1
 All vector operations are provided for both serial and parallel cases
 For the parallel vector, MPI is used for global reductions

 These serve as good templates for creating a user-supplied vector
structure around a user’s own existing structuresst uctu e a ou d a use s o e st g st uctu es

35
Lawrence Livermore National Laboratory

SUNDIALS provides Fortran interfaces

 CVODE, IDA, and KINSOL
 Cross-language calls go in both directions:
 Fortran user code interfaces CVODE/KINSOL/IDA

 Fortran main interfaces to solver routines
 Solver routines interface to user’s problem-defining routine and

preconditioning routinespreconditioning routines

 For portability, all user routines have fixed names
 Examples are provided

36
Lawrence Livermore National Laboratory

SUNDIALS provides Matlab interfaces

 CVODES, KINSOL, and IDAS
 The core of each interface is a single MEX file which interfaces toThe core of each interface is a single MEX file which interfaces to

solver-specific user-callable functions
 Guiding design philosophy: make interfaces equally familiar to both

SUNDIALS and Matlab usersSUNDIALS and Matlab users
• all user-provided functions are Matlab m-files
• all user-callable functions have the same names as the

corresponding C functionscorresponding C functions
• unlike the Matlab ODE solvers, we provide the more flexible

SUNDIALS approach in which the 'Solve' function only returns the
solution at the next requested output timesolution at the next requested output time.

 Includes complete documentation (including through the Matlab help
system) and several examples

37
Lawrence Livermore National Laboratory

Structure of SUNDIALS

38
Lawrence Livermore National Laboratory

SUNDIALS code usage is similar across the suite

 Have a series of Set/Get routines to set options
 For CVODE with parallel vector implementation:For CVODE with parallel vector implementation:

#include “cvode.h”
#include “cvode_spgmr.h”
#include “nvector *.h”#include nvector_ .h

y = N_VNew_*(n,…);
cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
fl d *()flag = CVodeSet*(…);
flag = CVodeInit(cvmem,rhs,t0,y,…);
flag = CVSpgmr(cvmem,…);
for(tout = …) {() {

flag = CVode(cvmem, …,y,…); }

NV_Destroy(y);
CVodeFree(&c mem)

39
Lawrence Livermore National Laboratory

CVodeFree(&cvmem);

Forward Sensitivity Analysis in SUNDIALS

User main routine
Specification of problem parameters
User main routine
Specification of problem parameters

Options
- sensitivity approach (simultaneous or staggered)
Options
- sensitivity approach (simultaneous or staggered)p p p

Activation of sensitivity computation
User problem-defining function
User preconditioner function

p p p
Activation of sensitivity computation
User problem-defining function
User preconditioner function

- sensitivity residuals: analytical, FD(DQ), AD, CS
- error control on sensitivity variables
- user-defined tolerances for sensitivity variables

- sensitivity residuals: analytical, FD(DQ), AD, CS
- error control on sensitivity variables
- user-defined tolerances for sensitivity variables

CVODES
ODE
Integrator

CVODES
ODE
Integrator

IDAS
DAE
Integrator

IDAS
DAE
Integrator

BandBand PreconditionedPreconditioned GeneralGeneral

Vector
Kernels
Vector
Kernels

DenseDenseBand
Linear
Solver

Band
Linear
Solver

Preconditioned
Iterative
Linear Solver

Preconditioned
Iterative
Linear Solver

General
Preconditioner
Modules

General
Preconditioner
Modules

Dense
Linear
Solver

Dense
Linear
Solver

40
Lawrence Livermore National Laboratory

Forward Sensitivity Analysis in SUNDIALS

#include “cvodes.h”
#include “cvodes spgmr.h”#include cvodes_spgmr.h
#include “nvector_*.h”

y = N_VNew*(n,…);
cvmem = CVodeCreate(CV BDF,CV NEWTON);c e C odeC eate(C _ ,C _ O);
flag = CVodeSet*(…);
flag = CVodeMalloc(cvmem,rhs,t0,y,…);
flag = CVSpgmr(cvmem,…);
yS = N VNewVectorArray *(Ns,…);y _ y_ (,);
flag = CVodeSetSens*(…);
flag = CVodeSensMalloc(cvmem,…,yS);
for(tout = …) {

flag = CVode(cvmem, …,y,…);g (, ,y,);
flag = CVodeGetSens(cvmem,t,yS);

}
NV_Destroy(y);
NV DestroyVectorArray(yS,Ns);

41
Lawrence Livermore National Laboratory

_ y y(y ,);
CVodeFree(&cvmem);

Adjoint Sensitivity Analysis in SUNDIALS

User main routineUser main routine ImplementationImplementationUser main routine
Activation of sensitivity computation
User problem-defining function
User reverse function
User preconditioner function

User main routine
Activation of sensitivity computation
User problem-defining function
User reverse function
User preconditioner function

Implementation
- check point approach; total cost is 2 forward
solutions + 1 backward solution
- integrate any system backwards in time
- may require modifications to some user-defined

Implementation
- check point approach; total cost is 2 forward
solutions + 1 backward solution
- integrate any system backwards in time
- may require modifications to some user-definedUser preconditioner function

User reverse preconditioner function
User preconditioner function
User reverse preconditioner function

may require modifications to some user defined
vector kernels

may require modifications to some user defined
vector kernels

CVODESCVODES IDASIDAS

(Modified)
Vector

(Modified)
Vector

CVODES
ODE

Integrator

CVODES
ODE

Integrator

IDAS
DAE

Integrator

IDAS
DAE

Integrator

Vector
Kernels
Vector

Kernels

Band
Linear
Band

Linear
Preconditioned

Iterative
Preconditioned

Iterative
General

Preconditioner
General

Preconditioner
Dense
Linear
Dense
Linear

42Option:UCRL# Option:Additional Information

Lawrence Livermore National Laboratory

SolverSolver Linear SolverLinear Solver ModulesModulesSolverSolver

Adjoint Sensitivity Analysis in SUNDIALS
#include “cvodes.h”
#include “cvodea.h”
#include “cvodes_spgmr.h”
#include “nvector_*.h”

y = N_VNew_*(n,…);
cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
CVodeSet*(…); CVodeMalloc(…); CVSpgmr(…);

cvadj = CVadjMalloc(cvmem,STEPS);
flag = CVodeF(cvadj,…,&nchk);
yB = N_VNew_*(nB,…);
CVodeSet*B(…); CVodeMallocB(…); CVSpgmrB(…);
for(tout = …) {

flag = CVodeB(cvadj, …,yB,…);
}
NV_Destroy(y);
NV_Destroy(yB);
CVodeFree(&cvmem);

43Option:UCRL# Option:Additional Information

Lawrence Livermore National Laboratory

CVadjFree(&cvadj);

Applications of SUNDIALS

 CVODE and KINSOL are being used in parallel fusion simulations at PPPL

 KINSOL is being used to solve for implicit hydrodynamics in core collapse
supernova simulations at SUNY-Stony Brook

 Parallel CVODE is being used in a 3D tokamak turbulence model in LLNL’s
Magnetic Fusion Energy Division.

 KINSOL with a HYPRE multigrid preconditioner is being applied to solve a
nonlinear Richards’ equation for pressure in porous media flows.

 CVODE, KINSOL, IDA, with MG preconditioner, are being used to solve 3D
neutral particle transport problems in CASC.

44
Lawrence Livermore National Laboratory

 …

Applications with sensitivity analysis

 CVODES used for sensitivity analysis of chemically reacting flows
(SciDAC collaboration with Sandia Livermore).

 CVODES used for sensitivity analysis of radiation transport (diffusion
approximation).pp)

 KINSOL+CVODES used for inversion of large-scale time-dependent
PDEs (atmospheric releases)PDEs (atmospheric releases).

 …

45
Lawrence Livermore National Laboratory

KINSOL enabled modeling variably saturated subsurface
flow in numerous contexts

 The Newton-Krylov method in
KINSOL from SUNDIALS qzg–ppKk–p

provided the main solver
engine for the PARFLOW
variably saturated subsurface

 qzgppKk
t r

variably saturated subsurface
flow solver

 hypre structured multigrid
preconditionerpreconditioner

 Symmetric approximation to
Jacobian for preconditioning

 Line search globalization
 Dynamic linear tolerances Variably saturated PARFLOW

is used in large-scale, parallel
d l f DOE it

46
Lawrence Livermore National Laboratory

Jones and W., Adv. Water Res., 2001 models of many DOE sites

The ParFlow model enabled a parallel watershed model
used to diagnose subsurface/land-surface feedbacksg
 550,000 node domain
 Fully-coupled physics: subsurface, land-

s rface o erland flosurface, overland flow
 PARFLOW replaced simple 1D moisture

content calculation
 Transient simulation based on Transient simulation based on

atmospheric forcing, 1hr t for 7 yrs
 Multiple cases, efficient code required

Multiple plant types show strong interaction p p yp g
between heat and water table depth at the

upper end of the root zone depth:
Subsurface water distributions matter!

47
Lawrence Livermore National Laboratory Kollet & Maxwell (2008)

The variably saturated flow model is part of the only bedrock to
top of the atmosphere model in existencep p
First fully coupled model: subsurface, overland flow, atmosphere

PARFLOW (3D, parallel) coupledPARFLOW (3D, parallel) coupled
with CLM overland flow
ARPS for atmospheric modeling
Little Washita watershed (OK)

•Water table depth was found to impact the

Maxwell Chow & Kollet

Water table depth was found to impact the
formation of the planetary boundary layer
•More detailed subsurface modeling
allowed better representation of spatial

48
Lawrence Livermore National Laboratory

Maxwell, Chow & Kollet,
Adv. Water Res. (2007) variability in surface forcing

Availability

Open source BSD license
https://computation.llnl.gov/casc/sundials

Publications
https://computation.llnl.gov/casc/nsde

Web site:
Individual codes download
SUNDIALS suite downloadSUNDIALS suite download
User manuals
User group email list

The SUNDIALS Team:
Alan Hindmarsh, Radu Serban, and

Carol Woodward

49
Lawrence Livermore National Laboratory

Carol Woodward

