
ScaLAPACK

Osni Marques
Lawrence Berkeley National Laboratory

OAMarques@lbl.gov

12th DOE ACTS Collection Workshop
August 16-19, 2011

Outline

• Functionalities and applications

• ScaLAPACK: software structure
– Basic Linear Algebra Subprograms (BLAS)

– Linear Algebra PACKage (LAPACK)

– Basic Linear Algebra Communication Subprograms (BLACS)

– Parallel BLAS (PBLAS)

• ScaLAPACK: details
– Data layout

– Array descriptors

– Error handling

– Performance

• Hands-on

2

ScaLAPACK: functionalities

3

x x

x

x

x Least Squares

GQR

GRQ

x

x

x

x

x

x

x

x

x

x

x

x

x

Symmetric

General

Generalized BSPD

SVD

Solution Reduction Expert
Driver

Simple
Driver

Ax = x or Ax = Bx

x x x x

x

x

x

x

x

x x

x

x

General

General Banded

General Tridiagonal

x x x x

x

x

x

x

x

x x

x

x

SPD

SPD Banded

SPD Tridiagonal

x x x x Triangular

Iterative
Refinement

Conditioning
Estimator

Inversion Solve Factor Expert
Driver

Simple
Driver

Ax = b

Applications

4

Induced current
(white arrows) and
charge density
(colored plane and
gray surface) in
crystallized glycine
due to an external
field; courtesy of
Louie, Yoon,
Pfrommer and
Canning (UCB and
LBNL).

Model for the
internal structure

of the Earth,
resolution matrix

(Vasco and
Marques)

Two ScaLAPACK
routines, PZGETRF
and PZGETRS, are
used for solution of
linear systems in the
spectral algorithms
based AORSA code
(Batchelor et al.),
which is intended for
the study of
electromagnetic
wave-plasma
interactions.

The international BOOMERanG performed a detailed
measurement of the cosmic microwave background
radiation (CMB), which strongly indicated that the
universe is flat. The MADCAP (Microwave Anisotropy
Dataset Computational Analysis Package) code makes
maps from observations of the CMB and then calculates
their angular power spectra. These calculations are
dominated by the solution of linear systems, which are
solved with ScaLAPACK.

5

ScaLAPACK: software structure

http://acts.nersc.gov/scalapack

ScaLAPACK

BLAS

LAPACK BLACS

MPI/PVM/...

PBLAS

Global

Local

platform specific

Clarity, modularity, performance and
portability. Atlas can be used here for

automatic tuning

Linear systems, least
squares, singular value

decomposition,
eigenvalues

Communication
routines targeting

linear algebra
operations

Parallel BLAS

Communication layer
(message passing)

6

Basic Linear Algebra Subroutines (BLAS)

• Level 1 BLAS: vector-vector

• Level 2 BLAS: matrix-vector

• Level 3 BLAS: matrix-matrix

+ *

*

+ *

• Clarity

• Portability

• Performance: development of blocked
algorithms is vital for performance!

See http://acts.nersc.gov/atlas

LAPACK: main features

• Linear Algebra library written in Fortran

• Combine algorithms from LINPACK and EISPACK into

 a single package

• Efficient on a wide range of computers

• Built atop level 1, 2, and 3 BLAS Basic problems:

• Linear systems:

• Least squares:

• Singular value decomposition:

• Eigenvalues and eigenvectors:

• LAPACK does not provide routines for structured problems or
general sparse matrices (i.e. sparse storage formats such as
compressed-row, -column, -diagonal, skyline ...)

7

(http://www.netlib.org/lapack)

Basic Linear Algebra Communication Subroutines (BLACS)

• A design tool, they are a conceptual aid in design and
coding

• Associate widely recognized mnemonic names with
communication operations. This improves:
• program readability

• self-documenting quality of the code

• Promote efficiency by identifying frequently
occurring operations of linear algebra which can be
optimized on various computers

8

9

BLACS: basics

• Promote efficiency by identifying common operations of linear
algebra that can be optimized on various computers

• Processes are embedded in a two-dimensional grid

 Example: a 3x4 grid

• An operation which involves more than one sender and one
receiver is called a scoped operation

1 0 3 2

 0

0

 1 2 3

5 4 7 6

9 8 11 10

1

2

Scope Meaning

Row All processes in a process row participate

Column All processes in a process column participate

All All processes in the process grid participate

10

BLACS: communication routines

Send/Receive:

 _xxSD2D(ICTXT,[UPLO,DIAG],M,N,A,LDA,RDEST,CDEST)

 _xxRV2D(ICTXT,[UPLO,DIAG],M,N,A,LDA,RSRC,CSRC)

_ (Data type) xx (Matrix type)

I: Integer,

S: Real,

D: Double Precision,

C: Complex,

Z: Double Complex.

GE: General rectangular matrix

TR: Trapezoidal matrix

SCOPE TOP

‘Row’

‘Column’

‘All’

‘ ‘ (default)

‘Increasing Ring’

‘1-tree’ ...

Broadcast:

 _xxBS2D(ICTXT,SCOPE,TOP,[UPLO,DIAG],M,N,A,LDA)

 _xxBR2D(ICTXT,SCOPE,TOP,[UPLO,DIAG],M,N,A,LDA,RSRC,CSRC)

11

BLACS: example

 

* Get system information

 CALL BLACS_PINFO(IAM, NPROCS)

 

* Get default system context

 CALL BLACS_GET(0, 0, ICTXT)

 

* Define 1 x (NPROCS/2+1) process grid

 NPROW = 1

 NPCOL = NPROCS / 2 + 1

 CALL BLACS_GRIDINIT(ICTXT, ‘Row’, NPROW, NPCOL)

 CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)

* If I’m not in the grid, go to end of program

 IF(MYROW.NE.-1) THEN

 IF(MYROW.EQ.0 .AND. MYCOL.EQ.0) THEN

 CALL DGESD2D(ICTXT, 5, 1, X, 5, 1, 0)

 ELSE IF(MYROW.EQ.1 .AND. MYCOL.EQ.0) THEN

 CALL DGERV2D(ICTXT, 5, 1, Y, 5, 0, 0)

 END IF

 

 CALL BLACS_GRIDEXIT(ICTXT)

 END IF

 

 CALL BLACS_EXIT(0)

 END

• The BLACS context is the BLACS
mechanism for partitioning
communication space.

• A message in a context cannot be
sent or received in another
context.

• The context allows the user to

• create arbitrary groups of
processes

• create multiple overlapping
and/or disjoint grids

• isolate each process grid so
that grids do not interfere
with each other

• BLACS context  MPI
communicator

send X to process (1,0)

See http://www.netlib.org/blacs
for more information

(output)
process row and

column coordinate

receive X from process (0,0)

leave context

exit from the BLACS

(out) uniquely identifies each process
(out) number of processes available

(in) integer handle indicating the context
(in) use (default) system context
(out) BLACS context

12

• Similar to the BLAS in portability, functionality and naming

• Built atop the BLAS and BLACS

• Provide global view of matrix

CALL DGEXXX(M, N, A(IA, JA), LDA, ...)

CALL PDGEXXX(M, N, A, IA, JA, DESCA, ...)

Parallel Basic Linear Algebra Subroutines (PBLAS)

BLAS

PBLAS

Array descriptor
(see next slides)

A(IA:IA+M-1,JA:JA+N-1)

 JA

IA

N_

N

M M_

13

ScaLAPACK

• Efficiency
– Optimized computation and communication engines

– Block-partitioned algorithms (BLAS 3) for good node performance

• Reliability
– Whenever possible, use LAPACK algorithms and error bounds

• Scalability
– As the problem size and number of processors grow

– Replace LAPACK algorithm that did not scale (new ones into LAPACK)

• Portability
– Isolate machine dependencies to BLAS and the BLACS

• Flexibility
– Modularity: build rich set of linear algebra tools (BLAS, BLACS, PBLAS)

• Ease-of-Use
– Calling interface similar to LAPACK

14

Parallel Data Distribution

1D column distribution 1D column cyclic distribution

1D block column distribution 2D block cyclic distribution

15

ScaLAPACK: 2D Block-Cyclic Distribution

a11 a12 a15 a13 a14

a21 a22 a25 a23 a24

a51 a52 a55 a53 a54

a31 a32 a35 a33 a34

a41 a42 a45 a43 a44

5x5 matrix partitioned in 2x2 blocks 2x2 process grid point of view

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

0 1

2 3

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

16

2D Block-Cyclic Distribution Snippet

 

CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)

IF (MYROW.EQ.0 .AND. MYCOL.EQ.0) THEN

 A(1) = a11; A(2) = a21; A(3) = a51;

 A(1+LDA) = a12; A(2+LDA) = a22; A(3+LDA) = a52;

 A(1+2*LDA) = a15; A(2+3*LDA) = a25; A(3+4*LDA) = a55;

ELSE IF (MYROW.EQ.0 .AND. MYCOL.EQ.1) THEN

 A(1) = a13; A(2) = a23; A(3) = a53;

 A(1+LDA) = a14; A(2+LDA) = a24; A(3+LDA) = a54;

ELSE IF (MYROW.EQ.1 .AND. MYCOL.EQ.0) THEN

 A(1) = a31; A(2) = a41;

 A(1+LDA) = a32; A(2+LDA) = a42;

 A(1+2*LDA) = a35; A(2+3*LDA) = a45;

ELSE IF (MYROW.EQ.1 .AND. MYCOL.EQ.1) THEN

 A(1) = a33; A(2) = a43;

 A(1+LDA) = a34; A(2+LDA) = a44;

END IF

 

CALL PDGESVD(JOBU, JOBVT, M, N, A, IA, JA, DESCA, S, U, IU,

 JU, DESCU, VT, IVT, JVT, DESCVT, WORK, LWORK,

 INFO)

 

a11 a12 a15 a13 a14

a21 a22 a25 a23 a24

a51 a52 a55 a53 a54

a31 a32 a35 a33 a34

a41 a42 a45 a43 a44

0 1

2 3

0 1

0

1

LDA is the leading
dimension of the local
array (see slides 18-21)

Array descriptor for A
(see slides 18-21)

17

2D Block-Cyclic Distribution

• Ensures good load balance  performance and scalability

 (analysis of many algorithms to justify this layout)

• Encompasses a large number of data distribution schemes (but not all).

• Needs redistribution routines to go from one distribution to the other.

• See http://acts.nersc.gov/scalapack/hands-on/datadist.html

ScaLAPACK: array descriptors

• Each global data object is assigned an array descriptor.
• The array descriptor:

• Contains information required to establish mapping between a
global array entry and its corresponding process and memory
location (uses concept of BLACS context).

• Is differentiated by the DTYPE_ (first entry) in the descriptor.
• Provides a flexible framework to easily specify additional data

distributions or matrix types.

• User must distribute all global arrays prior to the
invocation of a ScaLAPACK routine, for example:
• Each process generates its own submatrix.
• One processor reads the matrix from a file and send pieces to

other processors (may require message-passing for this).

18

19

DESC_() Symbolic Name Scope Definition

1
2
3
4
5
6
7

8

9

DTYPE_A
CTXT_A
M_A
N_A
MB_A
NB_A
RSRC_A

CSRC_A

LLD_A

(global)
(global)
(global)
(global)
(global)
(global)
(global)

(global)

(local)

Descriptor type DTYPE_A=1 for dense matrices.
BLACS context handle.
Number of rows in global array A.
Number of columns in global array A.
Blocking factor used to distribute the rows of array A.
Blocking factor used to distribute the columns of array A.
Process row over which the first row of the array A is
distributed.
Process column over which the first column of the array A
is distributed.
Leading dimension of the local array.

Array Descriptor for Dense Matrices

20

Array Descriptor for Narrow Band Matrices

DESC_() Symbolic Name Scope Definition

1

2
3
4
5

6

7

DTYPE_A

CTXT_A
N_A
NB_A
CSRC_A

LLD_A



(global)

(global)
(global)
(global)
(global)

(local)



Descriptor type DTYPE_A=501 for 1 x Pc process grid for
band and tridiagonal matrices block-column distributed.
BLACS context handle.
Number of columns in global array A.
Blocking factor used to distribute the columns of array A.
Process column over which the first column of the array A
is distributed.
Leading dimension of the local array. For the tridiagonal
subroutines, this entry is ignored.
Unused, reserved.

21

Array Descriptor for Right Hand Sides for Narrow Band Linear Solvers

DESC_() Symbolic Name Scope Definition

1

2
3
4
5

6

7

DTYPE_B

CTXT_B
M_B
MB_B
RSRC_B

LLD_B



(global)

(global)
(global)
(global)
(global)

(local)



Descriptor type DTYPE_B=502 for Pr x 1 process grid for
block-row distributed matrices
BLACS context handle
Number of rows in global array B
Blocking factor used to distribute the rows of array B
Process row over which the first row of the array B is
distributed
Leading dimension of the local array. For the tridiagonal
subroutines, this entry is ignored
Unused, reserved

ScaLAPACK: error handling

• Driver and computational routines perform global
and local input error-checking

• Global checking  synchronization

• Local checking  validity

• No input error-checking is performed on the auxiliary
routines

• If an error is detected in a PBLAS or BLACS program
execution stops

22

ScaLAPACK: debugging hints

• Look at ScaLAPACK example programs.

• Always check the value of INFO on exit from a
ScaLAPACK routine.

• Query for size of workspace, LWORK = –1.

• Link to the Debug Level 1 BLACS (specified by
BLACSDBGLVL=1 in Bmake.inc).

• Consult errata files on netlib:

http://www.netlib.org/scalapack/errata.scalapack

http://www.netlib.org/blacs/errata.blacs

23

ScaLAPACK: performance

• The algorithms implemented in ScaLAPACK are scalable in the sense that
the parallel efficiency is an increasing function of N2/P (problem size per
node)

• Maintaining memory use per node constant allows efficiency to be
maintained (in practice, a slight degradation is acceptable)

• Use efficient machine-specific BLAS (not the Fortran 77 source code available in
http://www.netlib.gov) and BLACS (nondebug installation)

• On a distributed-memory computer:
• Use the right number of processors

• Rule of thumb: P=MxN/106 for an MxN matrix, which provides a local
matrix of size approximately 1000-by-1000

• Do not try to solve a small problem on too many processors.

• Do not exceed the physical memory

• Use an efficient data distribution

• Block size (i.e., MB,NB) = 64

• Square processor grid: Prow = Pcolumn

24

0.00

20.00

40.00

60.00

80.00

100.00

120.00

3000 5000 7000 9000 11000 13000 15000 17000 19000 21000 23000

ti
m

e
(s

)

size of the matrix

p = 2

p = 4

p = 8

p = 16

p = 32

p = 64

LU + solve (PDGETRF+PDGETRS) on carver, NB=8

1 x 60

2 x 30

3 x 20

4 x 15

5 x 12

6 x 10

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

1
1

0
0

0

1
2

0
0

0

ti
m

e
 (

s)

problem size

LU + solve (PDGETRF+PDGETRS) for different grids on carver, NB=8

8.00-9.00

7.00-8.00

6.00-7.00

5.00-6.00

4.00-5.00

3.00-4.00

2.00-3.00

1.00-2.00

0.00-1.00

grid shape

27

ScaLAPACK: Commercial Use

ScaLAPACK has been incorporated in the following packages:

– Fujitsu
– Hewlett-Packard
– Hitachi
– IBM Parallel ESSL
– NAG Numerical Library
– Cray LIBSCI
– NEC Scientific Software Library
– Sun Scientific Software Library
– Visual Numerics (IMSL)

28

ScaLAPACK: Development Team

• Susan Blackford, UTK

• Jaeyoung Choi, Soongsil University

• Andy Cleary, LLNL

• Ed D'Azevedo, ORNL

• Jim Demmel, UCB

• Inderjit Dhillon, UT Austin

• Jack Dongarra, UTK

• Ray Fellers, LLNL

• Sven Hammarling, NAG

• Greg Henry, Intel

• Sherry Li, LBNL

• Osni Marques, LBNL

• Caroline Papadopoulos, UCSD

• Antoine Petitet, UTK

• Ken Stanley, UCB

• Francoise Tisseur, Manchester

• David Walker, Cardiff

• Clint Whaley, UTK

• Julien Langou, UTK

 

Related Projects

• PLAPACK (Parallel Linear Algebra Package)
www.cs.utexas.edu/~plapack

• MAGMA (Matrix Algebra on GPU and Multicore
Architectures)

 http://icl.eecs.utk.edu/magma

• PLASMA (Parallel Linear Algebra for Scalable Multi-
core Architectures)

 http://icl.cs.utk.edu/plasma

29

30

Hands-on: http://acts.nersc.gov/scalapack/hands-on

Hands-on

• Do
cp /project/projectdirs/acts/acts.nersc.gov/doc/scalapack/hands-on.tgz .
tar xzvf hands-on.tgz

• There are six subdirectories under hands-on:
– Example 1: BLACS, “hello world” example
– Example 2: BLACS, “pi” example
– Example 3: PBLAS example
– Example 4: ScaLAPACK example 1 (PSGESV)
– Example 5: ScaLAPACK example 2 (PSGESV)
– Additional exercises

• Examples 1-5 are written in Fortran. For a successful compilation
and execution of Example 5, you will have to correct some lines in
the code, in particular the lines starting with *** (commented
lines).

• Examples 1-5 can be compiled with “make”, which will generate an
executable file with “.x”.

• Try also http://acts.nersc.gov/scalapack/hands-on/datadist.html
with a bigger matrix and different block/grid sizes.

31

Contents of hands-on/etc

32

pddttrdrv.c (pddttrdrv.f): illustrates the use of
the ScaLAPACK routines PDDTTRF and PDDTTRS
to factor and solve a (diagonally dominant)
tridiagonal system of linear equations Tx = b.
After compilation, it can be executed with qsub
pddttrdrv.pbs.

pdpttr_2.c (pdpttr_2.f): illustrates the use of the
ScaLAPACK routines PDPTTRF and PPPTTRS to
factor and solve a symmetric positive definite
tridiagonal system of linear equations Tx = b, in
two distinct contexts. After compilation, it can
be executed with qsub pdpttr.pbs_4.

Considering the file A.dat:

• if m=n=10 the results are given in the file A.SVD

• if m=10, n=7: diag(S)=[4.4926 1.4499 0.8547 0.8454 0.6938 0.4332 0.2304]

• if m=7, n=10: diag(S)=[4.5096 1.1333 1.0569 0.8394 0.8108 0.5405 0.2470]

pdgesvddrv.f: reads a (full) matrix A from a file,
distributes A among the available processors
and then call the ScaLAPACK subroutine
PDGESVD to compute the SVD of A, A=USV T. It
requires the file pdgesvddrv.dat, which should
contain: line 1, the name of the file where A will
be read from; line 2, the number of rows of A;
line 3: the number of columns of A.

33

Contents of hands-on/various

pdgesvddrv.f: reads a (full) matrix A from a file, distributes A among the available processors and then
call the ScaLAPACK subroutine PDGESVD to compute the SVD of A, A=USV T. It requires the file
pdgesvddrv.dat, which should contain: line 1, the name of the file where A will be read from; line 2, the
number of rows of A; line 3: the number of columns of A. Considering the file A.dat:

• if m=n=10 the results are given in the file A.SVD

• if m=10, n=7: diag(S)=[4.4926 1.4499 0.8547 0.8454 0.6938 0.4332 0.2304]

• if m=7, n=10: diag(S)=[4.5096 1.1333 1.0569 0.8394 0.8108 0.5405 0.2470]

pddttrdrv.c (pddttrdrv.f): illustrates the
use of the ScaLAPACK routines PDDTTRF
and PDDTTRS to factor and solve a
(diagonally dominant) tridiagonal system
of linear equations Tx = b. After
compilation, it can be executed with
llsubmit pddttrdrv.ll.

pdpttr_2.c (pdpttr_2.f): illustrates the use
of the ScaLAPACK routines PDPTTRF and
PPPTTRS to factor and solve a symmetric
positive definite tridiagonal system of
linear equations Tx = b, in two distinct
contexts. After compilation, it can be
executed with llsubmit pdpttr_2.ll.

34

Data distribution for pdpttr_2.c (pdpttr_2.f)











































































































18

27

36

45

54

63

72

81

3093.16946.0

6946.07271.14449.0

4449.05341.15466.0

5466.03412.17027.0

7027.02897.13704.0

3704.03420.15681.0

5681.06602.18385.0

8385.08180.1

)2(

8

)1(

8

)2(

7

)1(

7

)2(

6

)1(

6

)2(

5

)1(

5

)2(

4

)1(

4

)2(

3

)1(

3

)2(

2

)1(

2

)2(

1

)1(

1

xx

xx

xx

xx

xx

xx

xx

xx

Pes 0 and 2

Pes 1 and 3

0 2

1 3

0 2

1 3

35

Block Cyclic Distribution















































10,129,128,127,126,125,124,123,122,121,12

10,119,118,117,116,115,114,113,112,111,11

10,109,108,107,106,105,104,103,102,101,10

10,99,98,97,96,95,94,93,92,91,9

10,89,88,87,86,85,84,83,82,81,8

10,79,78,77,76,75,74,73,72,71,7

10,69,68,67,66,65,64,63,62,61,6

10,59,58,57,56,55,54,53,52,51,5

10,49,48,47,46,45,44,43,42,41,4

10,39,38,37,36,35,34,33,32,31,3

10,29,28,27,26,25,24,23,22,21,2

10,19,18,17,16,15,14,13,12,11,1

aaaaaaaaaa

aaaaaaaaaa

aaaaaaaaaa

aaaaaaaaaa

aaaaaaaaaa

aaaaaaaaaa

aaaaaaaaaa

aaaaaaaaaa

aaaaaaaaaa

aaaaaaaaaa

aaaaaaaaaa

aaaaaaaaaa

A

Consider the 12-by-10 matrix:

Do the following block cyclic distributions:

• 3-by-3 blocking on a 3-by-2 process grid

• 4-by-4 blocking on a 2-by-3 process grid

Use http://acts.nersc.gov/scalapack/hands-on/datadist.html to compare

