
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned  

subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration  

under contract DE-AC04-94AL85000  

Tutorial: The Zoltan Toolkit  

 

 

 Siva Rajamanickam 

Erik Boman, Karen Devine, Vitus Leung, Lee Ann Riesen 

Sandia National Laboratories, NM 

 

Umit Çatalyürek, Doruk Bozdag:  Ohio State University 

Cedric Chevalier: CEA-DAM 

Michael Wolf:  MIT Lincoln Lab 

 

 

ACTS Workshop: August 2011 



Slide 2 

Outline 

• High-level view of Zoltan 

• Requirements, data models, and interface 

• Load Balancing and Partitioning 

• Matrix Ordering, Graph Coloring 

• Utilities 

• Isorropia 

• Zoltan2 



Slide 3 

The Zoltan Toolkit 

Unstructured Communication 

Data Migration 
Matrix Ordering 

Dynamic Load  

Balancing 

Distributed Data Directories 

A B C 

0 1 0 

D E F 

2 1 0 

G H I 

1 2 1 

• Library of data management services for unstructured, dynamic 

and/or adaptive computations. 

Graph Coloring 



Slide 4 

Zoltan System Assumptions 

• Assume distributed memory model. 

• Data decomposition + “Owner computes”: 

– The data is distributed among the processors. 

– The owner performs all computation on its data. 

– Data distribution defines work assignment. 

– Data dependencies among data items owned by different 

processors incur communication. 

• Zoltan is available in Trilinos since version 9.0 

• Requirements:   

– MPI (when running in parallel) 

– C compiler 

– Autotools or CMake. 



Slide 5 Zoltan Supports 

Many Applications 

• Different applications, requirements, data structures. 

 

Multiphysics simulations 

x b A 

= 

Linear solvers &  

preconditioners 

Adaptive mesh refinement 

Crash simulations 

Particle methods 

Parallel electronics networks 

1
 

2
 

Vs 
SOURCE_VOLTAGE 

1
 

2
 

Rs 
R 

1
 

2
 Cm012 

C 

1
 

2
 

Rg02 
R 

1
 

2
 

Rg01 
R 

1
 

2
 C01 

C 

1
 

2
 C02 

C 

1 2 

L2 

INDUCTOR 

1 2 

L1 

INDUCTOR 

1 2 

R1 

R 

1 2 

R2 

R 

1
 

2
 

Rl 
R 

1
 

2
 

Rg1 
R 

1
 

2
 

Rg2 
R 

1
 

2
 C2 

C 

1
 

2
 C1 

C 

1
 

2
 Cm12 

C 



Slide 6 Zoltan’s use in large-scale 

experiments and simulations 
Partitioning 

Method 

Application Problem 

Size 

Number of 

Processes 

Number 

of Parts 

Architecture Source 

Graph PHASTA CFD 34M 

elements 

16K 16K BG/P Zhou, et 

al., RPI 

Hypergraph PHASTA CFD 1B elements 4096 160K Cray XT/5 Zhou, et 

al., RPI 

Hypergraph Sparta LB 

algorithms 

800M zones 8192 262K Hera (AMD 

Quadcore) 

Lewis, 

LLNL 

Geometric Pic3P 

particle-in-cell 

5B particles 24K 24K Cray XT/4 Candel, 

et al., 

SLAC 

Geometric MPSalsa 

CFD   

208M nodes 12K 12K RedStorm Lin, 

SNL 

Geometric Trilinos/ML 

Multigrid in 

ALEGRA 

shock physics  

24.6M rows 

1.2B non-

zeros 

24K  24K RedStorm Hu, et 

al., SNL 



Slide 7 

SciDAC Collaboration: ITAPS 

• ITAPS developers at RPI use Zoltan for dynamic load balancing in their 

Flexible Mesh DataBase (FMDB) through iZoltan and iMeshP. 

– Initial partitioning of large meshes (1B elements) for up to 128K cores. 

– Dynamic repartitioning of adaptively refined meshes. 

• FMDB is used by SLAC and PPPL for adaptive meshing. 

 

• RPI also uses Zoltan for static parallel graph and hypergraph partitioning 

of non-adaptive simulations.  

– Achieved strong scalability up to 128K cores (BG/P) for CFD code PHASTA. 

– We continue work with ITAPS to improve robustness on >10K cores. 

Number of cores Time (s)  Efficiency 

16k 222.03 1 

32k 112.43 0.987 

64k 57.09 0.972 

128k 31.35 0.885 
Results courtesy of  

K. Jansen, M. Shephard,  

M. Zhou, T. Xie, O. Sahni;  

Rensselaer Polytechnic Institute. 



Slide 8 

 Pic3P solves Maxwell’s equations with moving particles 

 Our suggested load balance strategy: Use two different data 
decompositions 

 Fields partitioned with graph-based methods (ParMETIS) 

 Particles partitioned geometrically (Zoltan RCB 3D)  

 Enables solution of larger problems:  24k CPUs, 750M DOFs, 5B particles 

Example: LCLS RF gun, colors indicate distribution to different CPUs 

(fields are computed only in causal region, using p-refinement) 

Particle 
Partitioning 

Field 
Partitioning 

Enhanced Pic3P accelerator simulation capability with new partitioning scheme 

Courtesy Arno Candel, 

SLAC 

SciDAC Collaborations:  

ComPASS (SLAC) 



Slide 9 

Zoltan Interface Design 

• Common interface to each class of tools 

• Tool/method specified with user parameters 

 

• Data-structure neutral design 

– Supports wide range of applications and data structures 

– Imposes no restrictions on application’s data structures 

– Application does not have to build Zoltan’s data 

structures. 

 



Slide 10 

Zoltan Interface 

• Simple, easy-to-use interface. 

– Small number of callable Zoltan functions. 

– Callable from C, C++, Fortran. 

 

• Requirement: Unique global IDs for objects to 

be partitioned/ordered/colored. For example: 

– Global element number. 

– Global matrix row number. 

– (Processor number, local element number) 

– (Processor number, local particle number) 



Slide 11 

Zoltan Application Interface 

• Application interface: 

– Zoltan queries the application for needed info. 
• IDs of objects, coordinates, relationships to other objects. 

– Application provides simple functions to answer queries. 

– Small extra costs in memory and function-call overhead. 

• Query mechanism supports… 

– Geometric algorithms  
• Queries for dimensions, coordinates, etc. 

– Hypergraph- and graph-based algorithms  
• Queries for edge lists, edge weights, etc. 

– Tree-based algorithms  
• Queries for parent/child relationships, etc. 

• Once query functions are implemented, application can 

access all Zoltan functionality. 

– Can switch between algorithms by setting parameters. 



Slide 12 

(Re)partition 

(Zoltan_LB_Partition) 

Zoltan Application Interface 

Initialize Zoltan 

(Zoltan_Initialize,  

Zoltan_Create) 

Select Method and 

Parameters 

(Zoltan_Set_Params) 

Register  

query functions 

(Zoltan_Set_Fn) 
COMPUTE 

Move data 

(Zoltan_Migrate) 

Clean up  

(Zoltan_Destroy) 

APPLICATION 

Zoltan_LB_Partition: 

• Call query functions. 

• Build data structures. 

• Compute new 

decomposition. 

• Return import/export 

lists. 

Zoltan_Migrate: 

• Call packing query 

functions for exports. 

• Send exports. 

• Receive imports. 

• Call unpacking query 

functions for imports. 

ZOLTAN 



Slide 13 

Zoltan Query Functions 

General Query Functions 

  ZOLTAN_NUM_OBJ_FN Number of items on processor 

  ZOLTAN_OBJ_LIST_FN List of item IDs and weights. 

Geometric Query Functions 

  ZOLTAN_NUM_GEOM_FN Dimensionality of domain. 

  ZOLTAN_GEOM_FN Coordinates of items. 

Hypergraph Query Functions 

  ZOLTAN_HG_SIZE_CS_FN Number of hyperedge pins. 

  ZOLTAN_HG_CS_FN List of hyperedge pins. 

  ZOLTAN_HG_SIZE_EDGE_WTS_FN Number of hyperedge weights. 

  ZOLTAN_HG_EDGE_WTS_FN List of hyperedge weights. 

Graph Query Functions 

  ZOLTAN_NUM_EDGE_FN Number of graph edges. 

  ZOLTAN_EDGE_LIST_FN List of graph edges and weights. 



Slide 14 

Using Zoltan in Your Application 

 

1. Decide what your objects are. 

 Elements?  Grid points?  Matrix rows?  Particles? 

2. Decide which tools (partitioning/ordering/coloring/utilities) 

and class of method (geometric/graph/hypergraph) to use. 

3. Download Zoltan. 

 http://www.cs.sandia.gov/Zoltan (or http://trilinos.sandia.gov) 

4. Write required query functions for your application.   

 Required functions are listed with each method in Zoltan 
User’s Guide. 

5. Call Zoltan from your application. 

6. #include “zoltan.h” in files calling Zoltan. 

7. Configure and build Zoltan. 

8. Compile application; link with libzoltan.a. 

 mpicc application.c -lzoltan 

 

 

http://www.cs.sandia.gov/Zoltan
http://www.cs.sandia.gov/Zoltan
http://trilinos.sandia.gov


Slide 15 

Partitioning and Load Balancing 

• Assignment of application data to processors for parallel 

computation. 

• Applied to grid points, elements, matrix rows, particles, 

…. 



Slide 16 

Static Partitioning 

 

 

• Static partitioning in an application: 

– Data partition is computed. 

– Data are distributed according to partition map. 

– Application computes. 

 

• Ideal partition: 

– Processor idle time is minimized. 

– Inter-processor communication costs are kept low. 

 

• Zoltan_Set_Param(zz, “LB_APPROACH”, “PARTITION”); 

Initialize 

Application 

Partition 

Data 

Distribute 

Data 

Compute 

Solutions 

Output 

& End 



Slide 17 Dynamic Repartitioning  

(a.k.a. Dynamic Load Balancing) 

Initialize 

Application 

Partition 

Data 

Redistribute 

Data 

Compute 

Solutions 

& Adapt 

Output 

& End  

 

 

• Dynamic repartitioning (load balancing) in an application: 

– Data partition is computed. 

– Data are distributed according to partition map. 

– Application computes and, perhaps, adapts. 

– Process repeats until the application is done. 

 

• Ideal partition: 

– Processor idle time is minimized. 

– Inter-processor communication costs are kept low. 

– Cost to redistribute data is also kept low. 

 

• Zoltan_Set_Param(zz, “LB_APPROACH”, “REPARTITION”); 



Slide 18 Zoltan Toolkit: 

Suite of Partitioners 

• No single partitioner works best for all applications. 

– Trade-offs: 
• Quality vs. speed. 

• Geometric locality vs. data dependencies. 

• High-data movement costs vs. tolerance for remapping. 

• Application developers may not know which partitioner 

is best for application. 

 

• Zoltan contains suite of partitioning methods. 

– Application changes only one parameter to switch 
methods. 

• Zoltan_Set_Param(zz, “LB_METHOD”, “new_method_name”); 

– Allows experimentation/comparisons to find most 
effective partitioner for application. 



Slide 19 Partitioning Algorithms  

in the Zoltan Toolkit 

Recursive Coordinate Bisection (Berger, Bokhari) 

Recursive Inertial Bisection (Taylor, Nour-Omid) 

Zoltan Graph Partitioning (PHG) 

ParMETIS  (Karypis, et al.) 

PT-Scotch (Pellegrini, et al.) 

Zoltan Hypergraph Partitioning (PHG) 

PaToH (Catalyurek & Aykanat) 

Geometric (coordinate-based) methods 

Combinatorial (topology-based) methods 

Space Filling Curve Partitioning 

 (Warren&Salmon, et al.) 



Slide 20 

Geometric Partitioning 

• Zoltan_Set_Param(zz, “LB_METHOD”, “RCB”); 

Zoltan_Set_Param(zz, “LB_METHOD”, “RIB”); 

Zoltan_Set_Param(zz, “LB_METHOD”, “HSFC”); 

• Partition based on geometric locality. 

– Assign physically close objects to the same processor. 

Recursive Coordinate Bisection (RCB) 

Berger & Bokhari, 1987  
Space Filling Curve Partitioning (HSFC) 

Warren & Salmon, 1993;  

Pilkington & Baden, 1994; Patra & Oden, 1995 



Slide 21 

Geometric Repartitioning 

• No explicit control of migration costs, but… 

• Implicitly achieves low data redistribution costs 

• For small changes in data, cuts move only slightly, 

resulting in little data redistribution. 

 

Recursive Coordinate Bisection (RCB) 



Slide 22 Applications of  

Geometric Partitioners 

Parallel Volume Rendering 

Crash Simulations 

and Contact Detection 
 

Adaptive Mesh Refinement 

Particle Simulations 



Slide 23 Geometric Methods: 

 Advantages and Disadvantages 

• Advantages: 

– Easiest partitioners to use. 

– Conceptually simple; fast and inexpensive. 

– All processors can inexpensively know entire partition (e.g., for 

global search in contact detection). 

– No connectivity info needed (e.g., particle methods). 

– Good on specialized geometries. 

 

 

 

• Disadvantages: 

– No explicit control of communication volume. 

– Mediocre partition quality (in terms of volume).  

– Can generate disconnected subdomains for complex geometries. 

– Need coordinate information. 

SLAC’S 55-cell Linear Accelerator with couplers: 

One-dimensional RCB partition reduced runtime up 

to 68% on 512 processor IBM SP3. (Wolf, Ko) 
 



Slide 24 Geometric Partitioning:  

Query Functions 

General Query Functions 

  ZOLTAN_NUM_OBJ_FN Number of items on processor 

  ZOLTAN_OBJ_LIST_FN List of item IDs and weights. 

Geometric Query Functions 

  ZOLTAN_NUM_GEOM_FN Dimensionality of domain. 

  ZOLTAN_GEOM_FN Coordinates of items. 

Hypergraph Query Functions 

  ZOLTAN_HG_SIZE_CS_FN Number of hyperedge pins. 

  ZOLTAN_HG_CS_FN List of hyperedge pins. 

  ZOLTAN_HG_SIZE_EDGE_WTS_FN Number of hyperedge weights. 

  ZOLTAN_HG_EDGE_WTS_FN List of hyperedge weights. 

Graph Query Functions 

  ZOLTAN_NUM_EDGE_FN Number of graph edges. 

  ZOLTAN_EDGE_LIST_FN List of graph edges and weights. 



Slide 25 

Graph Partitioning 

• Represent problem as a weighted graph. 

– Vertices = objects to be partitioned. 

– Edges = dependencies between two 
objects. 

– Weights = work load or amount of 
dependency.  

• Partition graph so that … 

– Parts have equal vertex weight. 

– Weight of edges cut by part boundaries is 
small. 

• Zoltan_Set_Param(zz, “LB_METHOD”, “GRAPH”); 

• Zoltan_Set_Param(zz, “GRAPH_PACKAGE”, “PHG”); or 

Zoltan_Set_Param(zz, “GRAPH_PACKAGE”, “PARMETIS”); or 

Zoltan_Set_Param(zz, “GRAPH_PACKAGE”, “SCOTCH”); 

 

• Kernighan, Lin, Schweikert, Fiduccia, Mattheyes, Simon, Hendrickson, 

Leland, Kumar, Karypis, et al.  



Slide 26 Applications using Graph 

Partitioning 

x b A 

= 

Linear solvers & preconditioners 

(square, structurally symmetric systems) 

Finite Element  

Analysis 

Multiphysics  and 

multiphase simulations 



Slide 27 Graph Partitioning: 

Advantages and Disadvantages 

• Advantages: 

– Highly successful model for mesh-based PDE problems. 

– Explicit control of communication volume gives higher 
partition quality than geometric methods. 

– Excellent software available. 
• Serial:   Chaco (SNL) 

  Jostle (U. Greenwich) 
  METIS (U. Minn.) 
  Party (U. Paderborn) 
  Scotch (U. Bordeaux) 

• Parallel:   Zoltan (SNL) 
  ParMETIS (U. Minn.) 
  PJostle (U. Greenwich) 
  PTScotch (U. Bordeaux) 

• Disadvantages: 

– More expensive than geometric methods. 

– Edge-cut model only approximates communication volume. 



Slide 28 Graph Partitioning:  

Query Functions  

General Query Functions 

  ZOLTAN_NUM_OBJ_FN Number of items on processor 

  ZOLTAN_OBJ_LIST_FN List of item IDs and weights. 

Geometric Query Functions 

  ZOLTAN_NUM_GEOM_FN Dimensionality of domain. 

  ZOLTAN_GEOM_FN Coordinates of items. 

Hypergraph Query Functions 

  ZOLTAN_HG_SIZE_CS_FN Number of hyperedge pins. 

  ZOLTAN_HG_CS_FN List of hyperedge pins. 

  ZOLTAN_HG_SIZE_EDGE_WTS_FN Number of hyperedge weights. 

  ZOLTAN_HG_EDGE_WTS_FN List of hyperedge weights. 

Graph Query Functions 

  ZOLTAN_NUM_EDGE_FN Number of graph edges. 

  ZOLTAN_EDGE_LIST_FN List of graph edges and weights. 



Slide 29 

A 

Graph Partitioning Model 

A 

Hypergraph Partitioning Model 

Hypergraph Partitioning 

• Zoltan_Set_Param(zz, “LB_METHOD”, “HYPERGRAPH”); 

• Zoltan_Set_Param(zz, “HYPERGRAPH_PACKAGE”, “ZOLTAN”); or 

Zoltan_Set_Param(zz, “HYPERGRAPH_PACKAGE”, “PATOH”);  

 

• Alpert, Kahng, Hauck, Borriello, Çatalyürek, Aykanat, Karypis, et al. 

• Hypergraph model: 

– Vertices = objects to be partitioned. 

– Hyperedges = dependencies between two or more objects. 

• Partitioning goal: Assign equal vertex weight while minimizing 

hyperedge cut weight. 



Slide 30 

Hypergraph Repartitioning 

• Augment hypergraph with data redistribution costs 

– Account for data’s current processor assignments 

– Weight dependencies by their size and frequency of use 

• Partitioning then tries to minimize total communication volume: 

        Data redistribution volume 

       + Application communication volume                 

          Total communication volume 

• Data redistribution volume: callback returns data sizes 

– Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_MULTI_FN_TYPE,  

   myObjSizeFn, 0); 

• Application communication volume = Hyperedge cuts * Number 

of times the communication is done between repartitionings. 

– Zoltan_Set_Param(zz, “PHG_REPART_MULTIPLIER”, “100”); 



Slide 31 

Hypergraph Applications 

Circuit Simulations 

1
 

2
 

Vs 
SOURCE_VOLTAGE 

1
 

2
 

Rs 
R 

1
 

2
 Cm012 

C 

1
 

2
 

Rg02 
R 

1
 

2
 

Rg01 
R 

1
 

2
 C01 

C 

1
 

2
 C02 

C 

1 2 

L2 

INDUCTOR 

1 2 

L1 

INDUCTOR 

1 2 

R1 

R 

1 2 

R2 

R 

1
 

2
 

Rl 
R 

1
 

2
 

Rg1 
R 

1
 

2
 

Rg2 
R 

1
 

2
 C2 

C 

1
 

2
 C1 

C 

1
 

2
 Cm12 

C 

Linear programming 

 for sensor placement 

x b A 

= 

Linear solvers & preconditioners 

(no restrictions on matrix structure) 

Finite Element  

Analysis 

Multiphysics  and 

multiphase simulations 

Data Mining 



Slide 32 Hypergraph Partitioning: 

Advantages and Disadvantages 

• Advantages: 

– Communication volume reduced 30-38% on average 
over graph partitioning (Catalyurek & Aykanat). 

• 5-15% reduction for mesh-based applications. 

– More accurate communication model than graph 
partitioning. 

• Better representation of highly connected and/or  
non-homogeneous systems. 

– Greater applicability than graph model. 

• Can represent rectangular systems and non-symmetric 
dependencies. 

• Disadvantages: 

– Usually more expensive than graph partitioning. 



Slide 33 Hypergraph Partitioning with  

Hypergraph Query Functions 

General Query Functions 

  ZOLTAN_NUM_OBJ_FN Number of items on processor 

  ZOLTAN_OBJ_LIST_FN List of item IDs and weights. 

Geometric Query Functions 

  ZOLTAN_NUM_GEOM_FN Dimensionality of domain. 

  ZOLTAN_GEOM_FN Coordinates of items. 

Hypergraph Query Functions 

  ZOLTAN_HG_SIZE_CS_FN Number of hyperedge pins. 

  ZOLTAN_HG_CS_FN List of hyperedge pins. 

  ZOLTAN_HG_SIZE_EDGE_WTS_FN Number of hyperedge weights. 

  ZOLTAN_HG_EDGE_WTS_FN List of hyperedge weights. 

Graph Query Functions 

  ZOLTAN_NUM_EDGE_FN Number of graph edges. 

  ZOLTAN_EDGE_LIST_FN List of graph edges and weights. 



Slide 34 Hypergraph Partitioning with 

Graph Query Functions 

General Query Functions 

  ZOLTAN_NUM_OBJ_FN Number of items on processor 

  ZOLTAN_OBJ_LIST_FN List of item IDs and weights. 

Geometric Query Functions 

  ZOLTAN_NUM_GEOM_FN Dimensionality of domain. 

  ZOLTAN_GEOM_FN Coordinates of items. 

Hypergraph Query Functions 

  ZOLTAN_HG_SIZE_CS_FN Number of hyperedge pins. 

  ZOLTAN_HG_CS_FN List of hyperedge pins. 

  ZOLTAN_HG_SIZE_EDGE_WTS_FN Number of hyperedge weights. 

  ZOLTAN_HG_EDGE_WTS_FN List of hyperedge weights. 

Graph Query Functions 

  ZOLTAN_NUM_EDGE_FN Number of graph edges. 

  ZOLTAN_EDGE_LIST_FN List of graph edges and weights. 



Slide 35 

Computation 
Memory 

Multi-Criteria Load-Balancing 

• Multiple constraints or objectives 

– Compute a single partition that is good  

with respect to multiple factors. 

• Balance both computation and memory 

• Balance multi-phase simulations 

– Extend algorithms to multiple weights 

• Difficult. No guarantee good solution exists. 

• Zoltan_Set_Param(zz, “OBJ_WEIGHT_DIM”, “2”); 

– Available in RCB, RIB and  

ParMETIS graph partitioning 

 



Slide 36 

Heterogeneous Architectures 

• Clusters may have different types of processors. 

• Assign “capacity” weights to processors. 

– E.g., Compute power (speed). 

– Zoltan_LB_Set_Part_Sizes(…); 
• Note:  Can use this function to specify part sizes for any purpose. 

• Balance with respect to processor capacity. 

 

• Hierarchical partitioning:  Allows different partitioners at 

different architecture levels. 

– Zoltan_Set_Param(zz, “LB_METHOD”, “HIER”); 

– Requires three additional callbacks  
to describe architecture hierarchy. 

• ZOLTAN_HIER_NUM_LEVELS_FN 

• ZOLTAN_HIER_PARTITION_FN 

• ZOLTAN_HIER_METHOD_FN 

 

Entire System 

... Processor Processor 

Core Core ... Core Core ... 



Slide 37 

Zoltan Ordering 

• Global ordering produces fill-reducing 

permutations for sparse matrix factorization. 

– Interface to PT-Scotch (Pellegrini, Chevalier; INRIA-
LaBRi) 

– Interface to ParMETIS (Karypis et al.; U. Minnesota) 

 

• Local ordering improves cache utilization. 

– Space-filling curve ordering of in-processor data. 

 

• Ordering algorithms use the same  

callback function interface as  

partitioning algorithms. 



Slide 38 

Zoltan Graph Coloring 

• Parallel distance-1 and distance-2 graph coloring. 

• Graph built using same application interface and code as 

graph partitioners. 

• Generic coloring interface; easy to add new coloring 

algorithms. 

• Algorithms 

– Distance-1: Bozdag, Gebremedhin, Manne, Boman, Catalyurek 

– Distance-2: Bozdag, Catalyurek, Gebremedhin, Manne, Boman, 

Ozguner 



Slide 39 

Other Zoltan Functionality  

• Tools needed when doing dynamic load balancing: 

– Data Migration 

– Unstructured Communication Primitives 

– Distributed Data Directories 

• Functionalities described in Zoltan User’s Guide 

– http://www.cs.sandia.gov/Zoltan/ug_html/ug.html 

http://www.cs.sandia.gov/Zoltan/ug_html/ug.html


Slide 40 

Zoltan Data Migration Tools 

• After partition is computed, data must be moved to new 

decomposition. 

– Depends strongly on application data structures 

– Complicated communication patterns 

• Zoltan can help! 

– Application supplies query functions to pack/unpack data. 

– Zoltan does all communication to new processors. 



Slide 41 

Graph-based 

decomposition 

RCB 

decomposition 

Zoltan_Comm_Do 

Zoltan_Comm_Do_Reverse 

Zoltan Unstructured  

Communication Package 

• Simple primitives for efficient irregular communication.  

– Zoltan_Comm_Create: Generates communication plan. 
• Processors and amount of data to send and receive. 

– Zoltan_Comm_Do: Send data using plan. 
• Can reuse plan. (Same plan, different data.) 

– Zoltan_Comm_Do_Reverse:  Inverse communication. 

• Used for most communication in Zoltan. 

 



Slide 42 

• Helps applications locate off-processor data. 

• Rendezvous algorithm (Pinar, 2001). 

– Directory distributed in known way (hashing) across 

processors. 

– Requests for object location  

sent to processor storing  

the object’s directory entry. 

A B C 

0 1 0 

D E F 

2 1 0 

G H I 

1 2 1 

Processor 0 Processor 1 Processor 2 

Directory  Index   

                   Location   

Zoltan Distributed Data Directory 

A F 

C 

B 

E 

I 

G H 

D 

Processor 0 

Processor 1 

Processor 2 



Slide 43 

Interfaces to Zoltan 

• C, C++ and F90 interfaces in Zoltan 

 

• Mesh-based interface in ITAPS 

 

• Isorropia: matrix-based interface in Trilinos 

 



Slide 44 ITAPS Dynamic Services: 

Mesh-based Interface to Zoltan 

• Interoperable Technologies for Advanced Petascale 

Simulations (L. Diachin, LLNL, PI) 

– SciDAC2 CET. 

• ITAPS Goals: 

– Develop the next generation of meshing and geometry 
tools for petascale computing.  

• E.g., adaptive mesh refinement, shape optimization. 

– Improve applications’ ability to use these tools.  
• “Standardization” of mesh interfaces. 

• Dynamic Services toolkit: 

– ITAPS-compliant mesh interface 
 to Zoltan tools. 

– Integration with ITAPS iMeshP  
parallel mesh interface to be  
released FY09. 

Image courtesy of M. Shephard, RPI 



Slide 45 

Trilinos and Isorropia 

• Trilinos (M. Heroux, SNL, PI) 

– Framework for solving large-scale scientific problems 

– Focus on packages (independent pieces of software  

 that are combined to solve these problems) 

– Epetra: parallel linear algebra package 

 

• Isorropia 

– Trilinos package for combinatorial scientific computing 

– Partitioning, coloring, ordering algorithms applied to Epetra matrices 

– Utilizes many algorithms in Zoltan  

– “Zoltan for sparse matrices” 

 

• Partitioning methods 

– linear/block, cyclic, random  

– Hypergraph 

– graph 



Slide 46 Isorropia Partitioning: 

 Example 1 

• Simple partitioning of rowmatrix 
– Row hypergraph partitioning 

– Balancing number of nonzeros 

– Load imbalance tolerance of 1.03 

 



Slide 47 Isorropia:  

Redistributing Matrix Data 

• After partitioning matrix 
– Build Redistributor from new partition 

– Redistribute data based on new partition 

– Obtain new matrix 

 



Slide 48 Isorropia:  

Redistributing Matrix Data 

• Shortcut  
– Combines partitioning/redistibution of data 



Slide 49 

Zoltan2 

• Rewrite of Zoltan to focus on petascale and exascale 

computing. 

• Can handle > 2 Billion elements without recompiling 

with the help of templates 

• Templated interface to support different data structures 

– Trilinos and Application data structures. 

• Architecture aware load balancing algorithms for 

modern manycore systems. 

• Under development. 

 



Slide 50 

For More Information... 

• Zoltan Home Page 

– http://www.cs.sandia.gov/Zoltan  

– User’s and Developer’s Guides 

– Tutorial: “Getting Started with Zoltan: A Short Tutorial” 

– Download Zoltan software under GNU LGPL 

• Trilinos Home Page 

– http://trilinos.sandia.gov 

• ITAPS Home Page 

– http://www.itaps.org 

• CSCAPES Home Page 

– http://www.cscapes.org 

• Email 

– zoltan-dev@software.sandia.gov 

http://trilinos.sandia.gov
http://www.itaps.org
http://www.cscapes.org
mailto:zoltan-dev@software.sandia.gov
mailto:zoltan-dev@software.sandia.gov
mailto:zoltan-dev@software.sandia.gov
mailto:zoltan-dev@software.sandia.gov


Slide 51 

The End 

 



Slide 52  

Partitioning Interface 

  

Zoltan computes the difference (Δ) from current distribution 

Choose between: 

a) Import lists (data to import from other procs) 

b) Export lists (data to export to other procs) 

c) Both (the default) 

 
err = Zoltan_LB_Partition(zz,  

&changes, /* Flag indicating whether partition changed */ 

&numGidEntries, &numLidEntries, 

&numImport, /* objects to be imported to new part */ 

&importGlobalGids, &importLocalGids, &importProcs, &importToPart,  

&numExport, /* # objects to be exported from old part */ 

&exportGlobalGids, &exportLocalGids, &exportProcs, 

&exportToPart); 



Slide 53 

Extra Slides 

• Experimental results:  Partitioning 



Slide 54 

Performance Results 

• Experiments on Sandia’s Thunderbird cluster. 

– Dual 3.6 GHz Intel EM64T processors with 6 GB RAM. 

– Infiniband network. 

• Compare RCB, HSFC, graph and hypergraph 

methods. 

• Measure … 

– Amount of communication induced by the partition. 

– Partitioning time. 



Slide 55 

Test Data 

SLAC *LCLS  

Radio Frequency Gun 

6.0M x 6.0M 

23.4M nonzeros  

Xyce 680K ASIC Stripped 

Circuit Simulation 

680K x 680K 

2.3M nonzeros 

Cage15 DNA 

Electrophoresis 

5.1M x 5.1M 

99M nonzeros 

SLAC Linear Accelerator 

2.9M x 2.9M 

11.4M nonzeros  



Slide 56 

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

1.6E+06

2 4 8 16 32 64 128 256 512 1024

Number of Processors

C
o

m
m

u
n

ic
a
t
io

n
 V

o
lu

m
e

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

2 4 8 16 32 64 128 256 512 1024

Number of Processors

C
o

m
m

u
n

ic
a
t
io

n
 V

o
lu

m
e

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

2 4 8 16 32 64 128 256 512 1024

Number of Processors

C
o

m
m

u
n

ic
a
t
io

n
 V

o
lu

m
e

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

2 4 8 16 32 64 128 256 512 1024

Number of Processors

C
o

m
m

u
n

ic
a
t
io

n
 V

o
lu

m
e

Communication Volume:  

Lower is Better 

Cage15 5.1M electrophoresis 

Xyce 680K circuit SLAC 6.0M LCLS 

SLAC 2.9M Linear Accelerator 

Number of parts  

= number of  

processors. 

RCB 

Graph 

Hypergraph 

HSFC 



Slide 57 

0.1

1

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024

Number of Processors

P
a
r
t
it

io
n

in
g

 t
im

e
 (

s
e
c
s
)

0.01

0.1

1

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024

Number of Processors

P
a
r
t
it

io
n

in
g

 t
im

e
 (

s
e
c
s
)

1

10

100

1 2 4 8 16 32 64 128 256 512 1024

Number of Processors

P
a
r
t
it

io
n

in
g

 t
im

e
 (

s
e
c
s
)

Partitioning Time:   

Lower is better 

Cage15 5.1M electrophoresis 

Xyce 680K circuit SLAC 6.0M LCLS 

SLAC 2.9M Linear Accelerator 

1024 parts. 

Varying number 

of processors. 

1

10

100

1000

10000

1 2 4 8 16 32 64 128 256 512 1024

Number of Processors

P
a
r
t
it

io
n

in
g

 t
im

e
 (

s
e
c
s
)

RCB 

Graph 

Hypergraph 

HSFC 



Slide 58 

Extra Slides 

• Experimental results:  Repartitioning 



Slide 59 

Repartitioning Experiments 

• Experiments with 64 parts on 64 processors. 

• Dynamically adjust weights in data to simulate, 

say, adaptive mesh refinement. 

• Repartition. 

• Measure repartitioning time and  

total communication volume: 

     Data redistribution volume 

 + Application communication volume                 

       Total communication volume 



Slide 60 Repartitioning Results: 

Lower is Better 
Xyce 680K circuit SLAC 6.0M LCLS 

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

Hypergraph

Repart

Graph Repart Static

Hypergraph

Static Graph

Repartitioning Method

T
o

t
a
l 

C
o

m
m

u
n

ic
a
t
io

n
 V

o
lu

m
e

0.0E+00

1.0E+00

2.0E+00

3.0E+00

4.0E+00

5.0E+00

6.0E+00

7.0E+00

8.0E+00

9.0E+00

Hypergraph

Repart

Graph Repart Static

Hypergraph

Static Graph

Repartitioning Method

R
e
p

a
r
t
it

io
n

in
g

 T
im

e
 (

s
e
c
s
)

Repartitioning 

Time (secs) 

Data  

Redistribution  

Volume 

Application 

Communication 

Volume 

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

2.5E+09

RCB HSFC Hypergraph
Repart

Graph Repart Static
Hypergraph

Static Graph

Repartitioning Method

T
o

t
a
l
 
C

o
m

m
u

n
i
c
a
t
i
o

n
 
V

o
l
u

m
e

1.0E-01

1.0E+00

1.0E+01

1.0E+02

RCB HSFC Hypergraph

Repart

Graph Repart Static

Hypergraph

Static Graph

Repartitioning Method

R
e
p

a
r
t
i
t
i
o

n
i
n

g
 
T
i
m

e
 
(
s
e
c
s
)



Slide 61 

Extra Slides 

• Experimental results:  Coloring 



Slide 62 

A Parallel Coloring Framework 

• Color vertices iteratively in rounds using a first 

fit strategy 

• Each round is broken into supersteps 

– Color a certain number of vertices 

– Exchange recent color information  

• Detect conflicts at the end of each round 

• Repeat until all vertices receive consistent 

colors 

 



Slide 63 

Experimental Results 



Slide 64 

Extra Slides 

• More details on callback/query functions. 



Slide 65 

More Details on Query Functions 

• void* data pointer allows user data structures to be used in all 

query functions. 

– To use, cast the pointer to the application data type. 

• Local IDs provided by application are returned by Zoltan to 

simplify access of application data.  

– E.g.  Indices into local arrays of coordinates. 

•ZOLTAN_ID_PTR is pointer to array of unsigned integers, 

allowing IDs to be more than one integer long. 

– E.g., (processor number, local element number) pair. 

– numGlobalIds and numLocalIds are lengths of each ID. 

• All memory for query-function arguments is allocated in Zoltan. 

 
void ZOLTAN_GET_GEOM_MULTI_FN(void *userDefinedData,  

                       int numGlobalIds, int numLocalIds, int numObjs, 

                       ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,  

                       int numDim, double *pts, int *err) 



Slide 66 Example zoltanSimple.c:   

ZOLTAN_OBJ_LIST_FN 
void exGetObjectList(void *userDefinedData,  

                     int numGlobalIds, int numLocalIds, 

                     ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,  

                     int wgt_dim, float *obj_wgts, 

                     int *err) 

{  

/* ZOLTAN_OBJ_LIST_FN callback function. 

** Returns list of objects owned by this processor. 

** lids[i] = local index of object in array. 

*/ 

  int i; 

      

  for (i=0; i<NumPoints; i++) 

  {  

    gids[i] = GlobalIds[i]; 

    lids[i] = i; 

  } 

     

  *err = 0; 

     

  return; 

}    



Slide 67 Example zoltanSimple.c:   

ZOLTAN_GEOM_MULTI_FN 
void exGetObjectCoords(void *userDefinedData,  

                       int numGlobalIds, int numLocalIds, int numObjs, 

                       ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,  

                       int numDim, double *pts, int *err) 

{  

/* ZOLTAN_GEOM_MULTI_FN callback. 

** Returns coordinates of objects listed in gids and lids. 

*/ 

  int i, id, id3, next = 0; 

  if (numDim != 3) { 

    *err = 1; return; 

  } 

  for (i=0; i<numObjs; i++){ 

    id = lids[i]; 

    if ((id < 0) || (id >= NumPoints)) { 

      *err = 1; return; 

    } 

    id3 = lids[i] * 3; 

    pts[next++] = (double)(Points[id3]); 

    pts[next++] = (double)(Points[id3 + 1]); 

    pts[next++] = (double)(Points[id3 + 2]); 

  } 

} 



Slide 68 

Example Graph Callbacks 
void ZOLTAN_NUM_EDGES_MULTI_FN(void *data,  

  int num_gid_entries, int num_lid_entries, 

  int num_obj, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, 

  int *num_edges, int *ierr); 

 

 

Proc 0 Input from Zoltan:   
    num_obj = 3    
  global_id = {A,C,B}    
  local_id  = {0,1,2}  
 
Output from Application on Proc 0: 
  num_edges = {2,4,3}  
              (i.e., degrees of vertices A, C, B) 
  ierr = ZOLTAN_OK 

A 

B C 

D E 

Proc 0 

Proc 1 



Slide 69 

Example Graph Callbacks 
void ZOLTAN_EDGE_LIST_MULTI_FN(void *data, 

  int num_gid_entries, int num_lid_entries, 

  int num_obj, ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids, 

  int *num_edges,  

  ZOLTAN_ID_PTR nbor_global_id, int *nbor_procs, 

  int wdim, float *nbor_ewgts, 

  int *ierr); 

 

 

Proc 0 Input from Zoltan: 
    num_obj = 3     
  global_ids = {A, C, B}   
  local_ids  = {0, 1, 2} 
  num_edges  = {2, 4, 3} 
  wdim = 0 or EDGE_WEIGHT_DIM parameter value   
 

Output from Application on Proc 0: 
  nbor_global_id = {B, C, A, B, E, D, A, C, D} 
  nbor_procs     = {0, 0, 0, 0, 1, 1, 0, 0, 1} 
  nbor_ewgts   = if wdim then  
                   {7, 8, 8, 9, 1, 3, 7, 9, 5} 
  ierr = ZOLTAN_OK 

A 

B C 

D E 

Proc 0 

Proc 1 

8 7 

9 

5 3 
1 

2 



Slide 70 Example Hypergraph  

Callbacks 

void ZOLTAN_HG_SIZE_CS_FN(void *data, int *num_lists, int *num_pins, 

  int *format, int *ierr); 

  
 
Output from Application on Proc 0: 
  num_lists = 2 
  num_pins = 6 
  format = ZOLTAN_COMPRESSED_VERTEX  
           (owned non-zeros per vertex) 
  ierr = ZOLTAN_OK 
 
OR 
 
Output from Application on Proc 0: 
  num_lists = 5 
  num_pins = 6 
  format = ZOLTAN_COMPRESSED_EDGE  
           (owned non-zeros per edge) 
  ierr = ZOLTAN_OK 

Vertices 

Proc 0 Proc 1 

A B C D 

a X X 

b X X 

c X X 

d X X 

e X   X X 

f X X X X 
H

y
p

e
re

d
g

e
s

 



Slide 71 Example Hypergraph  

Callbacks 
 void ZOLTAN_HG_CS_FN(void *data, int num_gid_entries, 
  int nvtxedge, int npins, int format, 

  ZOLTAN_ID_PTR vtxedge_GID, int *vtxedge_ptr, ZOLTAN_ID_PTR pin_GID, 

  int *ierr); 

 
Proc 0 Input from Zoltan: 
  nvtxedge = 2 or 5 
  npins = 6 
  format = ZOLTAN_COMPRESSED_VERTEX or 
           ZOLTAN_COMPRESSED_EDGE 
 
Output from Application on Proc 0: 
  if (format = ZOLTAN_COMPRESSED_VERTEX) 
      vtxedge_GID = {A, B} 
      vtxedge_ptr = {0, 3} 
      pin_GID = {a, e, f, b, d, f} 
  if (format = ZOLTAN_COMPRESSED_EDGE) 
      vtxedge_GID = {a, b, d, e, f} 
      vtxedge_ptr = {0, 1, 2, 3, 4} 
      pin_GID = {A, B, B, A, A, B} 
  ierr = ZOLTAN_OK 

Vertices 

Proc 0 Proc 1 

A B C D 

a X X 

b X X 

c X X 

d X X 

e X   X X 

f X X X X 
H

y
p

e
re

d
g

e
s

 


