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Outline 

• High-level view of Zoltan 

• Requirements, data models, and interface 

• Load Balancing and Partitioning 

• Matrix Ordering, Graph Coloring 

• Utilities 

• Isorropia 

• Zoltan2 
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The Zoltan Toolkit 

Unstructured Communication 

Data Migration 
Matrix Ordering 

Dynamic Load  

Balancing 

Distributed Data Directories 

A B C 

0 1 0 

D E F 

2 1 0 

G H I 

1 2 1 

• Library of data management services for unstructured, dynamic 

and/or adaptive computations. 

Graph Coloring 
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Zoltan System Assumptions 

• Assume distributed memory model. 

• Data decomposition + “Owner computes”: 

– The data is distributed among the processors. 

– The owner performs all computation on its data. 

– Data distribution defines work assignment. 

– Data dependencies among data items owned by different 

processors incur communication. 

• Zoltan is available in Trilinos since version 9.0 

• Requirements:   

– MPI (when running in parallel) 

– C compiler 

– Autotools or CMake. 
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Many Applications 

• Different applications, requirements, data structures. 

 

Multiphysics simulations 

x b A 

= 

Linear solvers &  

preconditioners 

Adaptive mesh refinement 

Crash simulations 

Particle methods 

Parallel electronics networks 
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Slide 6 Zoltan’s use in large-scale 

experiments and simulations 
Partitioning 

Method 

Application Problem 

Size 

Number of 

Processes 

Number 

of Parts 

Architecture Source 

Graph PHASTA CFD 34M 

elements 

16K 16K BG/P Zhou, et 

al., RPI 

Hypergraph PHASTA CFD 1B elements 4096 160K Cray XT/5 Zhou, et 

al., RPI 

Hypergraph Sparta LB 

algorithms 

800M zones 8192 262K Hera (AMD 

Quadcore) 

Lewis, 

LLNL 

Geometric Pic3P 

particle-in-cell 

5B particles 24K 24K Cray XT/4 Candel, 

et al., 

SLAC 

Geometric MPSalsa 

CFD   

208M nodes 12K 12K RedStorm Lin, 

SNL 

Geometric Trilinos/ML 

Multigrid in 

ALEGRA 

shock physics  

24.6M rows 

1.2B non-

zeros 

24K  24K RedStorm Hu, et 

al., SNL 
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SciDAC Collaboration: ITAPS 

• ITAPS developers at RPI use Zoltan for dynamic load balancing in their 

Flexible Mesh DataBase (FMDB) through iZoltan and iMeshP. 

– Initial partitioning of large meshes (1B elements) for up to 128K cores. 

– Dynamic repartitioning of adaptively refined meshes. 

• FMDB is used by SLAC and PPPL for adaptive meshing. 

 

• RPI also uses Zoltan for static parallel graph and hypergraph partitioning 

of non-adaptive simulations.  

– Achieved strong scalability up to 128K cores (BG/P) for CFD code PHASTA. 

– We continue work with ITAPS to improve robustness on >10K cores. 

Number of cores Time (s)  Efficiency 

16k 222.03 1 

32k 112.43 0.987 

64k 57.09 0.972 

128k 31.35 0.885 
Results courtesy of  

K. Jansen, M. Shephard,  

M. Zhou, T. Xie, O. Sahni;  

Rensselaer Polytechnic Institute. 
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 Pic3P solves Maxwell’s equations with moving particles 

 Our suggested load balance strategy: Use two different data 
decompositions 

 Fields partitioned with graph-based methods (ParMETIS) 

 Particles partitioned geometrically (Zoltan RCB 3D)  

 Enables solution of larger problems:  24k CPUs, 750M DOFs, 5B particles 

Example: LCLS RF gun, colors indicate distribution to different CPUs 

(fields are computed only in causal region, using p-refinement) 

Particle 
Partitioning 

Field 
Partitioning 

Enhanced Pic3P accelerator simulation capability with new partitioning scheme 

Courtesy Arno Candel, 

SLAC 

SciDAC Collaborations:  

ComPASS (SLAC) 
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Zoltan Interface Design 

• Common interface to each class of tools 

• Tool/method specified with user parameters 

 

• Data-structure neutral design 

– Supports wide range of applications and data structures 

– Imposes no restrictions on application’s data structures 

– Application does not have to build Zoltan’s data 

structures. 
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Zoltan Interface 

• Simple, easy-to-use interface. 

– Small number of callable Zoltan functions. 

– Callable from C, C++, Fortran. 

 

• Requirement: Unique global IDs for objects to 

be partitioned/ordered/colored. For example: 

– Global element number. 

– Global matrix row number. 

– (Processor number, local element number) 

– (Processor number, local particle number) 
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Zoltan Application Interface 

• Application interface: 

– Zoltan queries the application for needed info. 
• IDs of objects, coordinates, relationships to other objects. 

– Application provides simple functions to answer queries. 

– Small extra costs in memory and function-call overhead. 

• Query mechanism supports… 

– Geometric algorithms  
• Queries for dimensions, coordinates, etc. 

– Hypergraph- and graph-based algorithms  
• Queries for edge lists, edge weights, etc. 

– Tree-based algorithms  
• Queries for parent/child relationships, etc. 

• Once query functions are implemented, application can 

access all Zoltan functionality. 

– Can switch between algorithms by setting parameters. 
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(Re)partition 

(Zoltan_LB_Partition) 

Zoltan Application Interface 

Initialize Zoltan 

(Zoltan_Initialize,  

Zoltan_Create) 

Select Method and 

Parameters 

(Zoltan_Set_Params) 

Register  

query functions 

(Zoltan_Set_Fn) 
COMPUTE 

Move data 

(Zoltan_Migrate) 

Clean up  

(Zoltan_Destroy) 

APPLICATION 

Zoltan_LB_Partition: 

• Call query functions. 

• Build data structures. 

• Compute new 

decomposition. 

• Return import/export 

lists. 

Zoltan_Migrate: 

• Call packing query 

functions for exports. 

• Send exports. 

• Receive imports. 

• Call unpacking query 

functions for imports. 

ZOLTAN 
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Zoltan Query Functions 

General Query Functions 

  ZOLTAN_NUM_OBJ_FN Number of items on processor 

  ZOLTAN_OBJ_LIST_FN List of item IDs and weights. 

Geometric Query Functions 

  ZOLTAN_NUM_GEOM_FN Dimensionality of domain. 

  ZOLTAN_GEOM_FN Coordinates of items. 

Hypergraph Query Functions 

  ZOLTAN_HG_SIZE_CS_FN Number of hyperedge pins. 

  ZOLTAN_HG_CS_FN List of hyperedge pins. 

  ZOLTAN_HG_SIZE_EDGE_WTS_FN Number of hyperedge weights. 

  ZOLTAN_HG_EDGE_WTS_FN List of hyperedge weights. 

Graph Query Functions 

  ZOLTAN_NUM_EDGE_FN Number of graph edges. 

  ZOLTAN_EDGE_LIST_FN List of graph edges and weights. 
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Using Zoltan in Your Application 

 

1. Decide what your objects are. 

 Elements?  Grid points?  Matrix rows?  Particles? 

2. Decide which tools (partitioning/ordering/coloring/utilities) 

and class of method (geometric/graph/hypergraph) to use. 

3. Download Zoltan. 

 http://www.cs.sandia.gov/Zoltan (or http://trilinos.sandia.gov) 

4. Write required query functions for your application.   

 Required functions are listed with each method in Zoltan 
User’s Guide. 

5. Call Zoltan from your application. 

6. #include “zoltan.h” in files calling Zoltan. 

7. Configure and build Zoltan. 

8. Compile application; link with libzoltan.a. 

 mpicc application.c -lzoltan 

 

 

http://www.cs.sandia.gov/Zoltan
http://www.cs.sandia.gov/Zoltan
http://trilinos.sandia.gov
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Partitioning and Load Balancing 

• Assignment of application data to processors for parallel 

computation. 

• Applied to grid points, elements, matrix rows, particles, 

…. 
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Static Partitioning 

 

 

• Static partitioning in an application: 

– Data partition is computed. 

– Data are distributed according to partition map. 

– Application computes. 

 

• Ideal partition: 

– Processor idle time is minimized. 

– Inter-processor communication costs are kept low. 

 

• Zoltan_Set_Param(zz, “LB_APPROACH”, “PARTITION”); 

Initialize 

Application 

Partition 

Data 

Distribute 

Data 

Compute 

Solutions 

Output 

& End 
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(a.k.a. Dynamic Load Balancing) 

Initialize 

Application 

Partition 

Data 

Redistribute 

Data 

Compute 

Solutions 

& Adapt 

Output 

& End  

 

 

• Dynamic repartitioning (load balancing) in an application: 

– Data partition is computed. 

– Data are distributed according to partition map. 

– Application computes and, perhaps, adapts. 

– Process repeats until the application is done. 

 

• Ideal partition: 

– Processor idle time is minimized. 

– Inter-processor communication costs are kept low. 

– Cost to redistribute data is also kept low. 

 

• Zoltan_Set_Param(zz, “LB_APPROACH”, “REPARTITION”); 
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Suite of Partitioners 

• No single partitioner works best for all applications. 

– Trade-offs: 
• Quality vs. speed. 

• Geometric locality vs. data dependencies. 

• High-data movement costs vs. tolerance for remapping. 

• Application developers may not know which partitioner 

is best for application. 

 

• Zoltan contains suite of partitioning methods. 

– Application changes only one parameter to switch 
methods. 

• Zoltan_Set_Param(zz, “LB_METHOD”, “new_method_name”); 

– Allows experimentation/comparisons to find most 
effective partitioner for application. 
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in the Zoltan Toolkit 

Recursive Coordinate Bisection (Berger, Bokhari) 

Recursive Inertial Bisection (Taylor, Nour-Omid) 

Zoltan Graph Partitioning (PHG) 

ParMETIS  (Karypis, et al.) 

PT-Scotch (Pellegrini, et al.) 

Zoltan Hypergraph Partitioning (PHG) 

PaToH (Catalyurek & Aykanat) 

Geometric (coordinate-based) methods 

Combinatorial (topology-based) methods 

Space Filling Curve Partitioning 

 (Warren&Salmon, et al.) 
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Geometric Partitioning 

• Zoltan_Set_Param(zz, “LB_METHOD”, “RCB”); 

Zoltan_Set_Param(zz, “LB_METHOD”, “RIB”); 

Zoltan_Set_Param(zz, “LB_METHOD”, “HSFC”); 

• Partition based on geometric locality. 

– Assign physically close objects to the same processor. 

Recursive Coordinate Bisection (RCB) 

Berger & Bokhari, 1987  
Space Filling Curve Partitioning (HSFC) 

Warren & Salmon, 1993;  

Pilkington & Baden, 1994; Patra & Oden, 1995 
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Geometric Repartitioning 

• No explicit control of migration costs, but… 

• Implicitly achieves low data redistribution costs 

• For small changes in data, cuts move only slightly, 

resulting in little data redistribution. 

 

Recursive Coordinate Bisection (RCB) 
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Geometric Partitioners 

Parallel Volume Rendering 

Crash Simulations 

and Contact Detection 
 

Adaptive Mesh Refinement 

Particle Simulations 
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 Advantages and Disadvantages 

• Advantages: 

– Easiest partitioners to use. 

– Conceptually simple; fast and inexpensive. 

– All processors can inexpensively know entire partition (e.g., for 

global search in contact detection). 

– No connectivity info needed (e.g., particle methods). 

– Good on specialized geometries. 

 

 

 

• Disadvantages: 

– No explicit control of communication volume. 

– Mediocre partition quality (in terms of volume).  

– Can generate disconnected subdomains for complex geometries. 

– Need coordinate information. 

SLAC’S 55-cell Linear Accelerator with couplers: 

One-dimensional RCB partition reduced runtime up 

to 68% on 512 processor IBM SP3. (Wolf, Ko) 
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Query Functions 

General Query Functions 

  ZOLTAN_NUM_OBJ_FN Number of items on processor 

  ZOLTAN_OBJ_LIST_FN List of item IDs and weights. 

Geometric Query Functions 

  ZOLTAN_NUM_GEOM_FN Dimensionality of domain. 

  ZOLTAN_GEOM_FN Coordinates of items. 

Hypergraph Query Functions 

  ZOLTAN_HG_SIZE_CS_FN Number of hyperedge pins. 

  ZOLTAN_HG_CS_FN List of hyperedge pins. 

  ZOLTAN_HG_SIZE_EDGE_WTS_FN Number of hyperedge weights. 

  ZOLTAN_HG_EDGE_WTS_FN List of hyperedge weights. 

Graph Query Functions 

  ZOLTAN_NUM_EDGE_FN Number of graph edges. 

  ZOLTAN_EDGE_LIST_FN List of graph edges and weights. 
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Graph Partitioning 

• Represent problem as a weighted graph. 

– Vertices = objects to be partitioned. 

– Edges = dependencies between two 
objects. 

– Weights = work load or amount of 
dependency.  

• Partition graph so that … 

– Parts have equal vertex weight. 

– Weight of edges cut by part boundaries is 
small. 

• Zoltan_Set_Param(zz, “LB_METHOD”, “GRAPH”); 

• Zoltan_Set_Param(zz, “GRAPH_PACKAGE”, “PHG”); or 

Zoltan_Set_Param(zz, “GRAPH_PACKAGE”, “PARMETIS”); or 

Zoltan_Set_Param(zz, “GRAPH_PACKAGE”, “SCOTCH”); 

 

• Kernighan, Lin, Schweikert, Fiduccia, Mattheyes, Simon, Hendrickson, 

Leland, Kumar, Karypis, et al.  
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Partitioning 

x b A 

= 

Linear solvers & preconditioners 

(square, structurally symmetric systems) 

Finite Element  

Analysis 

Multiphysics  and 

multiphase simulations 
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Advantages and Disadvantages 

• Advantages: 

– Highly successful model for mesh-based PDE problems. 

– Explicit control of communication volume gives higher 
partition quality than geometric methods. 

– Excellent software available. 
• Serial:   Chaco (SNL) 

  Jostle (U. Greenwich) 
  METIS (U. Minn.) 
  Party (U. Paderborn) 
  Scotch (U. Bordeaux) 

• Parallel:   Zoltan (SNL) 
  ParMETIS (U. Minn.) 
  PJostle (U. Greenwich) 
  PTScotch (U. Bordeaux) 

• Disadvantages: 

– More expensive than geometric methods. 

– Edge-cut model only approximates communication volume. 
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Query Functions  

General Query Functions 

  ZOLTAN_NUM_OBJ_FN Number of items on processor 

  ZOLTAN_OBJ_LIST_FN List of item IDs and weights. 

Geometric Query Functions 

  ZOLTAN_NUM_GEOM_FN Dimensionality of domain. 

  ZOLTAN_GEOM_FN Coordinates of items. 

Hypergraph Query Functions 

  ZOLTAN_HG_SIZE_CS_FN Number of hyperedge pins. 

  ZOLTAN_HG_CS_FN List of hyperedge pins. 

  ZOLTAN_HG_SIZE_EDGE_WTS_FN Number of hyperedge weights. 

  ZOLTAN_HG_EDGE_WTS_FN List of hyperedge weights. 

Graph Query Functions 

  ZOLTAN_NUM_EDGE_FN Number of graph edges. 

  ZOLTAN_EDGE_LIST_FN List of graph edges and weights. 
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A 

Graph Partitioning Model 

A 

Hypergraph Partitioning Model 

Hypergraph Partitioning 

• Zoltan_Set_Param(zz, “LB_METHOD”, “HYPERGRAPH”); 

• Zoltan_Set_Param(zz, “HYPERGRAPH_PACKAGE”, “ZOLTAN”); or 

Zoltan_Set_Param(zz, “HYPERGRAPH_PACKAGE”, “PATOH”);  

 

• Alpert, Kahng, Hauck, Borriello, Çatalyürek, Aykanat, Karypis, et al. 

• Hypergraph model: 

– Vertices = objects to be partitioned. 

– Hyperedges = dependencies between two or more objects. 

• Partitioning goal: Assign equal vertex weight while minimizing 

hyperedge cut weight. 
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Hypergraph Repartitioning 

• Augment hypergraph with data redistribution costs 

– Account for data’s current processor assignments 

– Weight dependencies by their size and frequency of use 

• Partitioning then tries to minimize total communication volume: 

        Data redistribution volume 

       + Application communication volume                 

          Total communication volume 

• Data redistribution volume: callback returns data sizes 

– Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_MULTI_FN_TYPE,  

   myObjSizeFn, 0); 

• Application communication volume = Hyperedge cuts * Number 

of times the communication is done between repartitionings. 

– Zoltan_Set_Param(zz, “PHG_REPART_MULTIPLIER”, “100”); 
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Hypergraph Applications 

Circuit Simulations 
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 for sensor placement 

x b A 

= 

Linear solvers & preconditioners 

(no restrictions on matrix structure) 

Finite Element  

Analysis 

Multiphysics  and 

multiphase simulations 

Data Mining 
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Advantages and Disadvantages 

• Advantages: 

– Communication volume reduced 30-38% on average 
over graph partitioning (Catalyurek & Aykanat). 

• 5-15% reduction for mesh-based applications. 

– More accurate communication model than graph 
partitioning. 

• Better representation of highly connected and/or  
non-homogeneous systems. 

– Greater applicability than graph model. 

• Can represent rectangular systems and non-symmetric 
dependencies. 

• Disadvantages: 

– Usually more expensive than graph partitioning. 
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Hypergraph Query Functions 

General Query Functions 

  ZOLTAN_NUM_OBJ_FN Number of items on processor 

  ZOLTAN_OBJ_LIST_FN List of item IDs and weights. 

Geometric Query Functions 

  ZOLTAN_NUM_GEOM_FN Dimensionality of domain. 

  ZOLTAN_GEOM_FN Coordinates of items. 

Hypergraph Query Functions 

  ZOLTAN_HG_SIZE_CS_FN Number of hyperedge pins. 

  ZOLTAN_HG_CS_FN List of hyperedge pins. 

  ZOLTAN_HG_SIZE_EDGE_WTS_FN Number of hyperedge weights. 

  ZOLTAN_HG_EDGE_WTS_FN List of hyperedge weights. 

Graph Query Functions 

  ZOLTAN_NUM_EDGE_FN Number of graph edges. 

  ZOLTAN_EDGE_LIST_FN List of graph edges and weights. 



Slide 34 Hypergraph Partitioning with 

Graph Query Functions 

General Query Functions 

  ZOLTAN_NUM_OBJ_FN Number of items on processor 

  ZOLTAN_OBJ_LIST_FN List of item IDs and weights. 

Geometric Query Functions 

  ZOLTAN_NUM_GEOM_FN Dimensionality of domain. 

  ZOLTAN_GEOM_FN Coordinates of items. 

Hypergraph Query Functions 

  ZOLTAN_HG_SIZE_CS_FN Number of hyperedge pins. 

  ZOLTAN_HG_CS_FN List of hyperedge pins. 

  ZOLTAN_HG_SIZE_EDGE_WTS_FN Number of hyperedge weights. 

  ZOLTAN_HG_EDGE_WTS_FN List of hyperedge weights. 

Graph Query Functions 

  ZOLTAN_NUM_EDGE_FN Number of graph edges. 

  ZOLTAN_EDGE_LIST_FN List of graph edges and weights. 
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Computation 
Memory 

Multi-Criteria Load-Balancing 

• Multiple constraints or objectives 

– Compute a single partition that is good  

with respect to multiple factors. 

• Balance both computation and memory 

• Balance multi-phase simulations 

– Extend algorithms to multiple weights 

• Difficult. No guarantee good solution exists. 

• Zoltan_Set_Param(zz, “OBJ_WEIGHT_DIM”, “2”); 

– Available in RCB, RIB and  

ParMETIS graph partitioning 
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Heterogeneous Architectures 

• Clusters may have different types of processors. 

• Assign “capacity” weights to processors. 

– E.g., Compute power (speed). 

– Zoltan_LB_Set_Part_Sizes(…); 
• Note:  Can use this function to specify part sizes for any purpose. 

• Balance with respect to processor capacity. 

 

• Hierarchical partitioning:  Allows different partitioners at 

different architecture levels. 

– Zoltan_Set_Param(zz, “LB_METHOD”, “HIER”); 

– Requires three additional callbacks  
to describe architecture hierarchy. 

• ZOLTAN_HIER_NUM_LEVELS_FN 

• ZOLTAN_HIER_PARTITION_FN 

• ZOLTAN_HIER_METHOD_FN 

 

Entire System 

... Processor Processor 

Core Core ... Core Core ... 
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Zoltan Ordering 

• Global ordering produces fill-reducing 

permutations for sparse matrix factorization. 

– Interface to PT-Scotch (Pellegrini, Chevalier; INRIA-
LaBRi) 

– Interface to ParMETIS (Karypis et al.; U. Minnesota) 

 

• Local ordering improves cache utilization. 

– Space-filling curve ordering of in-processor data. 

 

• Ordering algorithms use the same  

callback function interface as  

partitioning algorithms. 
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Zoltan Graph Coloring 

• Parallel distance-1 and distance-2 graph coloring. 

• Graph built using same application interface and code as 

graph partitioners. 

• Generic coloring interface; easy to add new coloring 

algorithms. 

• Algorithms 

– Distance-1: Bozdag, Gebremedhin, Manne, Boman, Catalyurek 

– Distance-2: Bozdag, Catalyurek, Gebremedhin, Manne, Boman, 

Ozguner 
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Other Zoltan Functionality  

• Tools needed when doing dynamic load balancing: 

– Data Migration 

– Unstructured Communication Primitives 

– Distributed Data Directories 

• Functionalities described in Zoltan User’s Guide 

– http://www.cs.sandia.gov/Zoltan/ug_html/ug.html 

http://www.cs.sandia.gov/Zoltan/ug_html/ug.html
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Zoltan Data Migration Tools 

• After partition is computed, data must be moved to new 

decomposition. 

– Depends strongly on application data structures 

– Complicated communication patterns 

• Zoltan can help! 

– Application supplies query functions to pack/unpack data. 

– Zoltan does all communication to new processors. 
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Graph-based 

decomposition 

RCB 

decomposition 

Zoltan_Comm_Do 

Zoltan_Comm_Do_Reverse 

Zoltan Unstructured  

Communication Package 

• Simple primitives for efficient irregular communication.  

– Zoltan_Comm_Create: Generates communication plan. 
• Processors and amount of data to send and receive. 

– Zoltan_Comm_Do: Send data using plan. 
• Can reuse plan. (Same plan, different data.) 

– Zoltan_Comm_Do_Reverse:  Inverse communication. 

• Used for most communication in Zoltan. 
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• Helps applications locate off-processor data. 

• Rendezvous algorithm (Pinar, 2001). 

– Directory distributed in known way (hashing) across 

processors. 

– Requests for object location  

sent to processor storing  

the object’s directory entry. 

A B C 

0 1 0 

D E F 

2 1 0 

G H I 

1 2 1 

Processor 0 Processor 1 Processor 2 

Directory  Index   

                   Location   

Zoltan Distributed Data Directory 

A F 

C 

B 

E 

I 

G H 

D 

Processor 0 

Processor 1 

Processor 2 
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Interfaces to Zoltan 

• C, C++ and F90 interfaces in Zoltan 

 

• Mesh-based interface in ITAPS 

 

• Isorropia: matrix-based interface in Trilinos 
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Mesh-based Interface to Zoltan 

• Interoperable Technologies for Advanced Petascale 

Simulations (L. Diachin, LLNL, PI) 

– SciDAC2 CET. 

• ITAPS Goals: 

– Develop the next generation of meshing and geometry 
tools for petascale computing.  

• E.g., adaptive mesh refinement, shape optimization. 

– Improve applications’ ability to use these tools.  
• “Standardization” of mesh interfaces. 

• Dynamic Services toolkit: 

– ITAPS-compliant mesh interface 
 to Zoltan tools. 

– Integration with ITAPS iMeshP  
parallel mesh interface to be  
released FY09. 

Image courtesy of M. Shephard, RPI 
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Trilinos and Isorropia 

• Trilinos (M. Heroux, SNL, PI) 

– Framework for solving large-scale scientific problems 

– Focus on packages (independent pieces of software  

 that are combined to solve these problems) 

– Epetra: parallel linear algebra package 

 

• Isorropia 

– Trilinos package for combinatorial scientific computing 

– Partitioning, coloring, ordering algorithms applied to Epetra matrices 

– Utilizes many algorithms in Zoltan  

– “Zoltan for sparse matrices” 

 

• Partitioning methods 

– linear/block, cyclic, random  

– Hypergraph 

– graph 
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 Example 1 

• Simple partitioning of rowmatrix 
– Row hypergraph partitioning 

– Balancing number of nonzeros 

– Load imbalance tolerance of 1.03 
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Redistributing Matrix Data 

• After partitioning matrix 
– Build Redistributor from new partition 

– Redistribute data based on new partition 

– Obtain new matrix 
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Redistributing Matrix Data 

• Shortcut  
– Combines partitioning/redistibution of data 
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Zoltan2 

• Rewrite of Zoltan to focus on petascale and exascale 

computing. 

• Can handle > 2 Billion elements without recompiling 

with the help of templates 

• Templated interface to support different data structures 

– Trilinos and Application data structures. 

• Architecture aware load balancing algorithms for 

modern manycore systems. 

• Under development. 
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For More Information... 

• Zoltan Home Page 

– http://www.cs.sandia.gov/Zoltan  

– User’s and Developer’s Guides 

– Tutorial: “Getting Started with Zoltan: A Short Tutorial” 

– Download Zoltan software under GNU LGPL 

• Trilinos Home Page 

– http://trilinos.sandia.gov 

• ITAPS Home Page 

– http://www.itaps.org 

• CSCAPES Home Page 

– http://www.cscapes.org 

• Email 

– zoltan-dev@software.sandia.gov 

http://trilinos.sandia.gov
http://www.itaps.org
http://www.cscapes.org
mailto:zoltan-dev@software.sandia.gov
mailto:zoltan-dev@software.sandia.gov
mailto:zoltan-dev@software.sandia.gov
mailto:zoltan-dev@software.sandia.gov
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The End 
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Partitioning Interface 

  

Zoltan computes the difference (Δ) from current distribution 

Choose between: 

a) Import lists (data to import from other procs) 

b) Export lists (data to export to other procs) 

c) Both (the default) 

 
err = Zoltan_LB_Partition(zz,  

&changes, /* Flag indicating whether partition changed */ 

&numGidEntries, &numLidEntries, 

&numImport, /* objects to be imported to new part */ 

&importGlobalGids, &importLocalGids, &importProcs, &importToPart,  

&numExport, /* # objects to be exported from old part */ 

&exportGlobalGids, &exportLocalGids, &exportProcs, 

&exportToPart); 
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Extra Slides 

• Experimental results:  Partitioning 
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Performance Results 

• Experiments on Sandia’s Thunderbird cluster. 

– Dual 3.6 GHz Intel EM64T processors with 6 GB RAM. 

– Infiniband network. 

• Compare RCB, HSFC, graph and hypergraph 

methods. 

• Measure … 

– Amount of communication induced by the partition. 

– Partitioning time. 



Slide 55 

Test Data 

SLAC *LCLS  

Radio Frequency Gun 

6.0M x 6.0M 

23.4M nonzeros  

Xyce 680K ASIC Stripped 

Circuit Simulation 

680K x 680K 

2.3M nonzeros 

Cage15 DNA 

Electrophoresis 

5.1M x 5.1M 

99M nonzeros 

SLAC Linear Accelerator 

2.9M x 2.9M 

11.4M nonzeros  
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Extra Slides 

• Experimental results:  Repartitioning 
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Repartitioning Experiments 

• Experiments with 64 parts on 64 processors. 

• Dynamically adjust weights in data to simulate, 

say, adaptive mesh refinement. 

• Repartition. 

• Measure repartitioning time and  

total communication volume: 

     Data redistribution volume 

 + Application communication volume                 

       Total communication volume 
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Lower is Better 
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Extra Slides 

• Experimental results:  Coloring 
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A Parallel Coloring Framework 

• Color vertices iteratively in rounds using a first 

fit strategy 

• Each round is broken into supersteps 

– Color a certain number of vertices 

– Exchange recent color information  

• Detect conflicts at the end of each round 

• Repeat until all vertices receive consistent 

colors 

 



Slide 63 

Experimental Results 
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Extra Slides 

• More details on callback/query functions. 
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More Details on Query Functions 

• void* data pointer allows user data structures to be used in all 

query functions. 

– To use, cast the pointer to the application data type. 

• Local IDs provided by application are returned by Zoltan to 

simplify access of application data.  

– E.g.  Indices into local arrays of coordinates. 

•ZOLTAN_ID_PTR is pointer to array of unsigned integers, 

allowing IDs to be more than one integer long. 

– E.g., (processor number, local element number) pair. 

– numGlobalIds and numLocalIds are lengths of each ID. 

• All memory for query-function arguments is allocated in Zoltan. 

 
void ZOLTAN_GET_GEOM_MULTI_FN(void *userDefinedData,  

                       int numGlobalIds, int numLocalIds, int numObjs, 

                       ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,  

                       int numDim, double *pts, int *err) 
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ZOLTAN_OBJ_LIST_FN 
void exGetObjectList(void *userDefinedData,  

                     int numGlobalIds, int numLocalIds, 

                     ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,  

                     int wgt_dim, float *obj_wgts, 

                     int *err) 

{  

/* ZOLTAN_OBJ_LIST_FN callback function. 

** Returns list of objects owned by this processor. 

** lids[i] = local index of object in array. 

*/ 

  int i; 

      

  for (i=0; i<NumPoints; i++) 

  {  

    gids[i] = GlobalIds[i]; 

    lids[i] = i; 

  } 

     

  *err = 0; 

     

  return; 

}    
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ZOLTAN_GEOM_MULTI_FN 
void exGetObjectCoords(void *userDefinedData,  

                       int numGlobalIds, int numLocalIds, int numObjs, 

                       ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,  

                       int numDim, double *pts, int *err) 

{  

/* ZOLTAN_GEOM_MULTI_FN callback. 

** Returns coordinates of objects listed in gids and lids. 

*/ 

  int i, id, id3, next = 0; 

  if (numDim != 3) { 

    *err = 1; return; 

  } 

  for (i=0; i<numObjs; i++){ 

    id = lids[i]; 

    if ((id < 0) || (id >= NumPoints)) { 

      *err = 1; return; 

    } 

    id3 = lids[i] * 3; 

    pts[next++] = (double)(Points[id3]); 

    pts[next++] = (double)(Points[id3 + 1]); 

    pts[next++] = (double)(Points[id3 + 2]); 

  } 

} 
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Example Graph Callbacks 
void ZOLTAN_NUM_EDGES_MULTI_FN(void *data,  

  int num_gid_entries, int num_lid_entries, 

  int num_obj, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, 

  int *num_edges, int *ierr); 

 

 

Proc 0 Input from Zoltan:   
    num_obj = 3    
  global_id = {A,C,B}    
  local_id  = {0,1,2}  
 
Output from Application on Proc 0: 
  num_edges = {2,4,3}  
              (i.e., degrees of vertices A, C, B) 
  ierr = ZOLTAN_OK 

A 

B C 

D E 

Proc 0 

Proc 1 
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Example Graph Callbacks 
void ZOLTAN_EDGE_LIST_MULTI_FN(void *data, 

  int num_gid_entries, int num_lid_entries, 

  int num_obj, ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids, 

  int *num_edges,  

  ZOLTAN_ID_PTR nbor_global_id, int *nbor_procs, 

  int wdim, float *nbor_ewgts, 

  int *ierr); 

 

 

Proc 0 Input from Zoltan: 
    num_obj = 3     
  global_ids = {A, C, B}   
  local_ids  = {0, 1, 2} 
  num_edges  = {2, 4, 3} 
  wdim = 0 or EDGE_WEIGHT_DIM parameter value   
 

Output from Application on Proc 0: 
  nbor_global_id = {B, C, A, B, E, D, A, C, D} 
  nbor_procs     = {0, 0, 0, 0, 1, 1, 0, 0, 1} 
  nbor_ewgts   = if wdim then  
                   {7, 8, 8, 9, 1, 3, 7, 9, 5} 
  ierr = ZOLTAN_OK 

A 

B C 

D E 

Proc 0 

Proc 1 

8 7 

9 

5 3 
1 

2 
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Callbacks 

void ZOLTAN_HG_SIZE_CS_FN(void *data, int *num_lists, int *num_pins, 

  int *format, int *ierr); 

  
 
Output from Application on Proc 0: 
  num_lists = 2 
  num_pins = 6 
  format = ZOLTAN_COMPRESSED_VERTEX  
           (owned non-zeros per vertex) 
  ierr = ZOLTAN_OK 
 
OR 
 
Output from Application on Proc 0: 
  num_lists = 5 
  num_pins = 6 
  format = ZOLTAN_COMPRESSED_EDGE  
           (owned non-zeros per edge) 
  ierr = ZOLTAN_OK 

Vertices 

Proc 0 Proc 1 

A B C D 

a X X 

b X X 

c X X 

d X X 

e X   X X 

f X X X X 
H

y
p

e
re

d
g

e
s
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Callbacks 
 void ZOLTAN_HG_CS_FN(void *data, int num_gid_entries, 
  int nvtxedge, int npins, int format, 

  ZOLTAN_ID_PTR vtxedge_GID, int *vtxedge_ptr, ZOLTAN_ID_PTR pin_GID, 

  int *ierr); 

 
Proc 0 Input from Zoltan: 
  nvtxedge = 2 or 5 
  npins = 6 
  format = ZOLTAN_COMPRESSED_VERTEX or 
           ZOLTAN_COMPRESSED_EDGE 
 
Output from Application on Proc 0: 
  if (format = ZOLTAN_COMPRESSED_VERTEX) 
      vtxedge_GID = {A, B} 
      vtxedge_ptr = {0, 3} 
      pin_GID = {a, e, f, b, d, f} 
  if (format = ZOLTAN_COMPRESSED_EDGE) 
      vtxedge_GID = {a, b, d, e, f} 
      vtxedge_ptr = {0, 1, 2, 3, 4} 
      pin_GID = {A, B, B, A, A, B} 
  ierr = ZOLTAN_OK 

Vertices 

Proc 0 Proc 1 

A B C D 

a X X 

b X X 

c X X 

d X X 

e X   X X 

f X X X X 
H

y
p

e
re

d
g

e
s

 


