SLEPc: Scalable Library for Eigenvalue Problem Computations

Tony Drummond
Computational Research Division
Lawrence Berkeley National Laboratory

This presentation was prepared from slides from Jose E. Roman and SLEPc Team (UPV)
OUTLINE

• What is SLEPc?
• Computational Problems target by SLEPc
• SLEPc: Eigenvalue Solvers
• SLEPc: Spectral Transformation
• SLEPc: SVD Solvers
• SLEPc: Quadratic Eigenvalue Solvers
• Additional Features of SLEPc
• short DEMO
Scalable Library for Eigenvalue Problem Computation

Developed at Polytechnic University of Valencia, Spain

- Lead Developer: Prof. Jose Roman
 - others: Andres Thomas, Eloy Romero and Carmen Campos
- Contact SLEPc Team:
 slepc-maint@grycap.upv.es
Scalable Library for Eigenvalue Problem computation

- home page
 http://www.grycap.upv.es/slepc
- Additional Material:
 http://www.grycap.upv.es/slepc/handson
 > module load slepc/3.1_g (there are more choices)
 > cp -r $SLEPC_DIR/src/eps/examples/ .
Functionality in The DOE ACTS Collection

<table>
<thead>
<tr>
<th>Computational Problem</th>
<th>Methodology</th>
<th>Algorithm</th>
<th>Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Least Squares Problems</td>
<td>Least Squares</td>
<td>$\min_x | b - Ax |_2$</td>
<td>ScaLAPACK</td>
</tr>
<tr>
<td>Minimum Norm Solution</td>
<td></td>
<td>$\min_x | x |_2$</td>
<td>ScaLAPACK</td>
</tr>
<tr>
<td>Minimum Norm Least Squares</td>
<td></td>
<td>$\min_x | b - Ax |_2$</td>
<td>ScaLAPACK</td>
</tr>
<tr>
<td>Standard Eigenvalue Problem</td>
<td>Symmetric Eigenvalue Problem</td>
<td>$A z = \lambda z$</td>
<td>ScaLAPACK (dense)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$A = U \Sigma V^T$</td>
<td>SLEPc (sparse)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$A = U \Sigma V'^*$</td>
<td></td>
</tr>
<tr>
<td>Singular Value Problem</td>
<td>Singular Value Decomposition</td>
<td>$A = U \Sigma V^T$</td>
<td>ScaLAPACK (dense)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$A = U \Sigma V'^*$</td>
<td>SLEPc (sparse)</td>
</tr>
<tr>
<td>Generalized Symmetric Definite Eigenproblem</td>
<td>Eigenproblem</td>
<td>$A z = \lambda B z$</td>
<td>ScaLAPACK (dense)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$A B z = \lambda z$</td>
<td>SLEPc (sparse)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$B A z = \lambda z$</td>
<td></td>
</tr>
</tbody>
</table>

SLEPc

Thirteenth DOE ACTS Collection Workshop
Berkeley, California, August 14-17, 2012
<table>
<thead>
<tr>
<th>Computational Problem</th>
<th>Methodology</th>
<th>Algorithms</th>
<th>Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenvalue Solvers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectral Transformations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVD Solvers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadratic Eigenvalue Solvers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Available methods and their HPC implementations in ACTS

Specific ACTS Libraries or Tools that provide that functionality

SLEPc
[background]: Solving Eigenvalue Problems

- **Computational Problem**
 - Eigenvalue Solvers
 - Spectral Transformations
 - SVD Solvers
 - Quadratic Eigenvalue Solvers

- **Standard Eigenproblem**
 \[Ax = \lambda x \]

- **Generalized Eigenproblem**
 \[Ax = \lambda Bx \]

Where,
- \(\lambda \) is a (complex) scalar, eigenvalue
- \(x \) is a (complex) vector: eigenvector
- Matrices \(A \) and \(B \) can be real or complex
- Matrices \(A \) and \(B \) can be (un)symmetric (Hermitian)
- Typically \(B \) is symmetric positive (semi-) definite
[background]: Solving Eigenvalue Problems

Computational Problem

- Eigenvalue Solvers
- Spectral Transformations
- SVD Solvers
- Quadratic Eigenvalue Solvers

Solutions

\[\lambda_0, \lambda_1, \ldots, \lambda_{\text{nev}-1} \in \mathbb{C} \]
\[x_0, x_1, \ldots, x_{\text{nev}-1} \in \mathbb{C}^n \]

Where,

✦ there are \(\text{nev} \) eigenvalues (counted with their multiplicities)

Computational requirements:

✦ Compute a few dominant eigenvalues
✦ Compute a few \(\lambda_i \)'s with smallest or largest real parts
✦ Compute all \(\lambda_i \)'s in a given region of the complex plane
Computational Problem

- Eigenvalue Solvers
- Spectral Transformations
- SVD Solvers
- Quadratic Eigenvalue Solvers

A general techniques that can be used in many methods to improve convergence (better separation)

<table>
<thead>
<tr>
<th>Original System</th>
<th>Transformed System</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Ax = \lambda x$</td>
<td>$Tx = \theta x$</td>
</tr>
</tbody>
</table>

In the transformed systems:
- λ_i’s are modified by simple relation
- x_i’s are not altered

Shift of Origin

$$T_S = A + \sigma I$$

Shift-and-Invert

$$T_{SI} = (A - \sigma I)^{-1}$$

Cayley

$$T_C = (A - \sigma I)^{-1} (A + \tau I)$$

* Drawback: T not computed explicitly, linear solves
[background] Singular Value Decomposition (SVD) Problems

Computational Problem

Compute the SVD of a rectangular matrix $A \in \mathbb{R}^{m \times n}$

\[
A = U\Sigma V^T = \sum_{i=1}^{n} u_i \sigma_i v_i^T
\]

where

- Singular Values: $\sigma_1, \sigma_2, \ldots, \sigma_n$
- Left singular vectors: u_1, u_2, \ldots, u_m
- Right singular vectors: v_1, v_2, \ldots, v_n
Computational Problem

- Eigenvalue Solvers
- Spectral Transformations
- SVD Solvers
- Quadratic Eigenvalue Solvers

Partial solution: \(n_{SV} \) solutions:
- Singular values: \(\sigma_0, \sigma_1, \ldots, \sigma_{n_{SV}-1} \in \mathbb{R} \)
- Left singular vectors: \(u_0, u_1, \ldots, u_{n_{SV}-1} \in \mathbb{R}^m \)
- Right singular vectors: \(v_0, v_1, \ldots, v_{n_{SV}-1} \in \mathbb{R}^n \)

There are \(n_{SV} \) singular values (counted with their multiplicities)

Computational requirements:
- Compute a few smallest or largest \(\sigma_i \)'s
- Solve the eigenproblem \(A^T A \)
- Solve the eigenproblem \(H(A) = \begin{bmatrix} 0_{m \times m} & A \\ A^T & 0_{n \times n} \end{bmatrix} \)
- Bidiagonalization
Quadratic Eigenvalue Problems

\((\lambda^2 M + \lambda C + K)x = 0\)

Where,
- \(\lambda\) is a (complex) scalar, eigenvalue
- \(x\) is a (complex) vector: eigenvector
- Matrices \(M, C\) and \(K\) can be real or complex
- Matrices \(M, C\) and \(K\) can be (un)symmetric (Hermitian)
- Typically some matrices are also symmetric positive (semi-) definite
Solving Quadratic Eigenvalue Problems

\[\lambda_0, \lambda_1, \ldots, \lambda_{nev-1} \in \mathbb{C} \]
\[x_0, x_1, \ldots, x_{nev-1} \in \mathbb{C}^n \]

Where,
✦ there are 2 X nev eigenvalues

Alternatives:
✦ Linearization \(A_\lambda = \lambda B_\lambda \)

\[z = \begin{bmatrix} x \\ \lambda x \end{bmatrix} \quad A = \begin{bmatrix} 0 & I \\ -K & -C \end{bmatrix} \quad B = \begin{bmatrix} I & 0 \\ 0 & M \end{bmatrix} \]
✦ Specific method (Q-Arnoldi)
SLEPc Design Considerations

- Various problem characteristics:
 - real/complex
 - Hermitian/non-hermitian
- Multiple ways to specify the solutions that are sought
- Many formulations (beyond $Ax = \lambda x$ or $Ax = \lambda Bx$)
Characteristics of the SLEPc Library

• Uniform abstract User Interfaces to address all the aforementioned problems
 • Through a simple and intuitive interphase, SLEPc provides internally solver implementations with a high-level of algorithmic complexity (deflation, restart, etc.)
 • Spectral transformations can be used irrespectively of the solver
 • Recurrent linear solves may be necessary
 • SVD and QEP can be solved via associated eigenproblem or specific methods (bidiagonalization/Q-Arnoldi)
Characteristics of the SLEPc Library

- General Purpose library for the solution of large-scale sparse eigenproblems on parallel computers
 - For standard, generalized and quadratic eigenproblems
 - For real and complex arithmetic
 - For Hermitian or non-Hermitian problems
 - For the partial SVD decomposition

- Relies on PETSc Functionality
- Current version 3.3 (released on August 2012). The major changes in this version are:
 - New EPS solvers: RQCG, GD2 and indefinite Krylov-Schur.
 - A major reorganization of code (now everything related to projected eigenproblems is encapsulated in a new auxiliary object DS).
Four Abstract Objects SLEPc

- Extends PETSc functionality with four objects
 - **EPS**: Eigenvalue Problem Solver
 - **ST**: Spectral Transformation
 - **SVD**: Singular Value Decomposition
 - **QEP**: Quadratic Eigenvalue Problem

EPS is the abstract User Interface to:
- Describe an eigenvalue problem
- Access a collection of sparse eigensolver implementations and algorithmic parameters (e.g., eigenvalues of interest)
Four Abstract Objects SLEPc

- Extends PETSc functionality with four objects
 - **EPS**: Eigenvalue Problem Solver
 - **ST**: Spectral Transformation
 - **SVD**: Singular Value Decomposition
 - **QEP**: Quadratic Eigenvalue Problem

- ST is abstract interface to transform the original system into $Tx = \theta x$
- ST is always associated to an EPS object and cannot be directly accessed
Four Abstract Objects SLEPc

- Extends PETSc functionality with four objects
 - **EPS**: Eigenvalue Problem Solver
 - **ST**: Spectral Transformation
 - **SVD**: Singular Value Decomposition
 - **QEP**: Quadratic Eigenvalue Problem

SVD is the abstract User Interface to:
- Describe a SVD problem
- Provides, transparently, access to eigensolvers for the associated eigenproblems or the specialized solver based on bidiagonalization
Four Abstract Objects SLEPc

- Extends PETSc functionality with four objects
 - **EPS**: Eigenvalue Problem Solver
 - **ST**: Spectral Transformation
 - **SVD**: Singular Value Decomposition
 - **QEP**: Quadratic Eigenvalue Problem

QEP is the abstract User Interface to:
- Describe a Quadratic Eigenproblem
- Provides, transparently, the linearization to a generalized eigenproblem or the specialized solver (Q-Arnoldi)
Characteristics of the SLEPc Library

SNES
- Nonlinear Systems
 - Line Search
 - Trust Region
 - Other

PETSc
- Time Steppers
 - Euler
 - Backward Euler
 - Other
 - Time Stepping
- Krylov Subspace Methods
 - GMRES
 - CG
 - CGS
 - Bi-CGSTab
 - TFQMR
 - Richardson
 - Chebychev
 - Other
- Preconditioners
 - Additive Schwarz
 - Block Jacobi
 - Jacobi
 - ILU
 - ICC
 - LU
 - Other

SLEPc
- SVD
 - Cross Product
 - Cyclic Matrix
 - Lanczos
 - Thick R. Lanczos
- Quadratic
 - Linearization
 - Q-Arnoldi

EPS
- Eigensolvers
 - Krylov-Schur
 - Arnoldi
 - Lanczos
 - GD
 - JD
 - Other

QEP
- Shift
 - Shift-and-invert
 - Cayley
 - Fold
 - Preconditioner

Mat
- Compressed Sparse Row
 - Block Compressed Sparse Row
 - Block Diagonal
 - Dense
 - Other

Vec
- Vectors

Is
- Index Sets
 - Indices
 - Block Indices
 - Stride
 - Other
Solving an Eigenvalue Problem with SLEPc

• Usual steps:
 • Declare a SLEPc EPS object and create the EPS object
 • Define the eigenvalue problem
 • Optionally specify algorithmic parameters for the solution
 • Invoke the eigensolver
 • Retrieve the computed solution
 • Don’t forget to **Destroy** the EPS object
Solving an Eigenvalue Problem with SLEPc

EPS: Simple Example

```c
EPS eps;    /* eigensolver context */
Mat A, B;    /* matrices of Ax=kBx */
Vec xr, xi;  /* eigenvector, x */
PetscScalar kr, ki; /* eigenvalue, k */

EPSCreate(PETSC_COMM_WORLD, &eps);
EPSSetOperators(eps, A, B);
EPSSetProblemType(eps, EPS_GNHEP);
EPSSetFromOptions(eps);

EPSSolve(eps);

EPSGetConverged(eps, &nconv);
for (i=0; i<nconv; i++) {
    EPSGetEigenpair(eps, i, &kr, &ki, xr, xi);
}

EPSDestroy(eps);
```
Functionality available in the EPSSolve

Currently available eigensolvers:

- Power Iteration and Rayleigh-Quatient Iteration (RQI)
- Subspace Iteration with Rayleigh-Ritz projection and locking
- Arnoldi method with explicit restart and deflation
- Lanczos method with explicit restart and deflation
- Reorthogonalization: local, partial, periodic, selective, full
- Krylov-Schur (default)
- Preconditioned solvers: Generalized Davison and Jacobi-Davidson (non-hermitian)
- new: Rayleigh-Quatient CG (RQCG)
- new: GD2
- new: Indefinite Krylov-Schur
Defining the Eigenproblem in SLEPc

EPSSetOperators(EPS eps, Mat A, Mat B)

- **Standard Eigenproblem**
 \[Ax = \lambda x \]
 Specified through Mat A, while Mat B is set to PETSC_NULL

- **Generalized Eigenproblem**
 \[Ax = \lambda Bx \]
 Specified through Mat A and Mat B

EPSSetProblemType(EPS eps, EPSProblemType type)

<table>
<thead>
<tr>
<th>Problem Type</th>
<th>EPSProblemType</th>
<th>Command line option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermitian</td>
<td>EPS_HEP</td>
<td>-eps_hermitian</td>
</tr>
<tr>
<td>Generalized Hermitian</td>
<td>EPS_GHEP</td>
<td>-eps_gen_hermitian</td>
</tr>
<tr>
<td>non-Hermitian</td>
<td>EPS_NHEP</td>
<td>-eps_non_hermitian</td>
</tr>
<tr>
<td>Generalized non-Hermitian</td>
<td>EPS_GNHEP</td>
<td>-eps_gen_non_hermitian</td>
</tr>
<tr>
<td>GNHEP with B > 0</td>
<td>EPS_PGNHEP</td>
<td>-eps_pos_gen_non_hermitian</td>
</tr>
</tbody>
</table>

SLEPc Thirteenth DOE ACTS Collection Workshop
Berkeley, California, August 14-17, 2012
Defining the Eigenproblem in SLEPc

EPSSetFromOptions(EPS eps)
Looks in the command line for options related to EPS

For example, the following command line

```plaintext
% program -eps_hermitian
```

is equivalent to a call `EPSSetProblemType(eps, EPS_HEP)`

Other options have an associated function call

```plaintext
% program -epsnev 6 -eps_tol 1e-8
```

EPSView(EPS eps, PetscViewer viewer)
Prints information about the object (equivalent to `-eps_view`)

SLEPc

Thirteenth DOE ACTS Collection Workshop
Berkeley, California, August 14-17, 2012
Profiling in SLEPc (EPS)

Sample output of \texttt{-eps_view}

EPS Object:
- problem type: symmetric eigenvalue problem
- method: krylovshur
- selected portion of spectrum: largest eigenvalues in magnitude
- number of eigenvalues (nev): 1
- number of column vectors (ncv): 16
- maximum dimension of projected problem (mpd): 16
- maximum number of iterations: 100
- tolerance: 1e-07
- dimension of user-provided deflation space: 0

IP Object:
- orthogonalization method: classical Gram-Schmidt
- orthogonalization refinement: if needed (eta: 0.707100)

ST Object:
- type: shift
- shift: 0
Built-In Profiling/Debugging Support SLEPc

- Plotting computed eigenvalues
  ```
  % program -eps_plot_eigs
  ```

- Printing profiling information
  ```
  % program -log_summary
  ```

- Debugging
  ```
  % program -start_in_debugger
  % program -malloc_dump
  ```
Built-In Profiling/Debugging Support SLEPc

- Monitoring convergence (textually)
 % program -eps_monitor

- Monitoring convergence (graphically)
 % program -draw_pause 1 -eps_monitor_draw_all
Spectral Transformation in SLEPc

Original System \[Ax = \lambda x \] \[\implies \] Transformed System \[Tx = \theta x \]

- A **ST** object is always associated to a **EPS** object
- Internally, the eigensolver works with the operator \(T \)
- At the end, eigenvalues are transformed back automatically

<table>
<thead>
<tr>
<th>ST Type</th>
<th>Standard problem</th>
<th>Generalized problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>shift</td>
<td>(A + \sigma I)</td>
<td>(B^{-1}A + \sigma I)</td>
</tr>
<tr>
<td>fold</td>
<td>((A + \sigma I)^2)</td>
<td>((B^{-1}A + \sigma I)^2)</td>
</tr>
<tr>
<td>sinvert</td>
<td>((A - \sigma I)^{-1})</td>
<td>((A - \sigma B)^{-1}B)</td>
</tr>
<tr>
<td>cayley</td>
<td>((A - \sigma I)^{-1}(A + \tau I))</td>
<td>((A - \sigma B)^{-1}(A + \tau B))</td>
</tr>
<tr>
<td>precond</td>
<td>(K^{-1} \approx (A - \sigma I)^{-1})</td>
<td>(K^{-1} \approx (A - \sigma B)^{-1})</td>
</tr>
</tbody>
</table>
Accessing SLEPc’s ST Object

EPSGetST(EPS eps, ST *st)

- ST objects are not created by the user instead it is obtained
- Users only need *st to set options inside the code
- Linear solve are handled internally through PETSc’s KSP

STGetKSP(ST st, KSP *ksp)

Gets the KSP object associated to an ST

All KSP options are available to the user, in the command line by prepending the -st_ prefix
ST Run-Time Examples

% program -eps_type power -st_type shift -eps_target 1.5

% program -eps_type power -st_type sinvert -eps_target 1.5
 -eps_power_shift_type rayleigh

% program -eps_type krylovschur -eps_tol 1e-6
 -st_type sinvert -eps_target 1
 -st_ksp_type cgs -st_ksp_rtol 1e-8
 -st_pc_type sor -st_pc_sor_omega 1.3

% program -eps_type jd -eps_target 2
Solving a SVD Problem with SLEPc

• Usual steps:
 • Declare a SLEPc SVD object and create the SVD object
 • Define the problem
 • Optionally specify algorithmic parameters for the solution
 • Invoke the solver
 • Retrieve the computed solution
 • Don’t forget to Destroy the SVD object
Example of Solving a SVD Problem with SLEPc

```c
SVD svd;        /* SVD solver context */
Mat A;          /* matrix for A=USV^T */
Vec u,v;        /* singular vectors */
PetscReal s;    /* singular value */

SVDCreate(PETSC_COMM_WORLD, &svd);
SVDSSetOperator(svd, A);
SVDSSetFromOptions(svd);

SVDSolve(svd);

SVDGetConverged(svd, &nconv);
for (i=0; i<nconv; i++) {
    SVDGetSingularTriplet(svd, i, &s, u, v);
}

SVDDestroy(svd);
```
Currently available SVD solver:

- Cross-product matrix with any EPS eigensolver
- Cyclic matrix with any EPS
- Golub-Kahan-Lanczos bidiagonalization with explicit restart and deflation
- Golub-Kahan-Lanczos bidiagonalization with thick restart and deflation
Additional Parameters for the SVD in SLEPc

SVDSetOperators(SVD svd, Mat A)
 Specified through Mat A as the operator

SVDSetFromOptions(SVD svd)
 Overwrite options from command-line arguments

SVDView(SVD svd, PetscViewer viewer)
 Equivalent to -svd_view
Solving a QEP with SLEPc

- Usual steps:
 - Declare a SLEPc QEP object and create the QEP object
 - Define the eigenvalue problem
 - Optionally specify algorithmic parameters for the solution
 - Invoke the solver
 - Retrieve the computed solution
 - Don’t forget to **Destroy** the QPD object
Example of Solving a QEP with SLEPc

```c
QEP qep;    /* eigensolver context */
Mat M, C, K; /* matrices of the QEP */
Vec xr, xi;  /* eigenvector, x */
PetscScalar kr, ki; /* eigenvalue, k */

QEPCreate(PETSC_COMM_WORLD, &qep);
QEPSetOperators(qep, M, C, K);
QEPSetProblemType(qep, QEP_GENERAL);
QEPSetFromOptions(qep);

QEPSolve(qep);

QEPGetConverged(qep, &nconv);
for (i=0; i<nconv; i++) {
    QEPGetEigenpair(qep, i, &kr, &ki, xr, xi);
}

QEPDestroy(qep);
```
Functionality available in the QEPSolve

Currently available eigensolvers:

- Linearization with any EPS solver
 - Non-symmetric
 \[
 \begin{bmatrix}
 0 & I \\
 -K & -C
 \end{bmatrix}
 - \lambda
 \begin{bmatrix}
 I & 0 \\
 0 & M
 \end{bmatrix}
 \]
 - Symmetric
 \[
 \begin{bmatrix}
 0 & -K \\
 -K & -C
 \end{bmatrix}
 - \lambda
 \begin{bmatrix}
 -K & 0 \\
 0 & M
 \end{bmatrix}
 \]
 - Hamiltonian
 \[
 \begin{bmatrix}
 K & 0 \\
 C & K
 \end{bmatrix}
 - \lambda
 \begin{bmatrix}
 0 & K \\
 -M & 0
 \end{bmatrix}
 \]
- Q-Arnoldi
Defining the QEP in SLEPC

\[\text{QEPSetOperators}(\text{QEP qep, Mat M, Mat C, Mat K}) \]

Define the QEP through matrices \(M, C,\) and \(K\)

\[\text{QEPSetProblemType}(\text{QEP qep, QEPProblemType type}) \]

<table>
<thead>
<tr>
<th>Problem Type</th>
<th>EPSProblemType</th>
<th>Command line option</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>QEP_GENERAL</td>
<td>-qep_general</td>
</tr>
<tr>
<td>hermitian</td>
<td>QEP_HERMITIAN</td>
<td>-qep_hermitian</td>
</tr>
<tr>
<td>Gyroscopic</td>
<td>QEP_GYROSCOPIC</td>
<td>-qep_gyroscopic</td>
</tr>
</tbody>
</table>
Additional Parameters for the QEP in SLEPc

```c
QEPSetFromOptions(QEP qep)

Overwrite options from command-line arguments

QEPView(QEP qep, PetscViewer viewer)

Equivalent to -qep_view

QEPLinearSetCompanionForm(QEP qep, PetscInt cform)

Selects among the different available expressions for linearization
```
Options for Subspace Generation in SLEPc

Initial Subspace

- Provide an initial trial subspace with `EPSSetInitialSpace` (e.g., from previous computations)
- Krylov solvers only support a single vector

Deflation Subspace

- Provide an initial trial subspace with `EPSSetDeflationSpace`
- The eigensolver operates in the restriction to the orthogonal compliment
- Useful for constraint eigenproblems or problems with a known nullspace
SLEPc Highlights

- Growing number of eigensolvers
- Seamlessly integrated spectral transformation
- Support for SVD and QEP
- PETSc style user interfaces and extensibility
- Supported run-time options to drive the solver and parameter selection
- Portability to a wide range of platforms
- Supports C, C++ and different flavors of fortran
- Extensive documentation
- **Got PETSc?** then, very easy to install
Special thanks to Jose E. Roman from the Polytechnic University of Valencia for SLEPc and the materials used in producing this presentation.