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Outline 
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  ODE and DAE integration 

•  Initial value problems 
•  Implicit integration methods 

  Nonlinear Systems 
•  Newton’s method and inexact Newton’s method 
•  Preconditioning 

  Sensitivity analysis 
•  Definitions, applications, methods 
•  Forward sensitivity analysis 
•  Adjoint sensitivity analysis 

  SUNDIALS: usage, applications, and availability 
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LLNL has a long history of R&D in ODE/DAE methods 
and software 

  Fortran solvers written at LLNL: 
•  VODE: stiff/nonstiff ODE systems, with direct linear solvers 
•  VODPK: with Krylov linear solver (GMRES)  
•  NKSOL: Newton-Krylov solver - nonlinear algebraic systems  
•  DASPK: DAE system solver (from DASSL) 

  Recent focus has been on sensitivity analysis 

May 2009 
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Push to solve large, parallel systems motivated rewrites 
in C 

  CVODE: rewrite of VODE/VODPK [Cohen, Hindmarsh, 94] 
  PVODE: parallel CVODE [Byrne and Hindmarsh, 98] 
  KINSOL: rewrite of NKSOL [Taylor and Hindmarsh, 98] 
  IDA: rewrite of DASPK [Hindmarsh and Taylor, 99] 
  Sensitivity variants: SensPVODE, SensIDA, SensKINSOL [Brown, 

Grant, Hindmarsh, Lee, 00-01] 
  New sensitivity-capable solvers: 

•  CVODES [Hindmarsh and Serban, 02] 
•  IDAS  [Serban, Petra, and Hindmarsh, 09] 

  Organized into a single suite, SUNDIALS, including CVODE and 
CVODES, IDA, IDAS, and KINSOL  
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  Philosophy: Keep codes simple to use 
  Written in C 

— Fortran interfaces: FCVODE, FIDA, and FKINSOL 
— Matlab interfaces: sundialsTB (CVODES, IDA, & KINSOL) 

  Written in a data structure neutral manner 
— No specific assumptions about data 
— Application-specific data representations can be used 

  Modular implementation 
— Vector modules 
— Linear solver modules 

  Require minimal problem information, but offer user control over 
most parameters 

SUNDIALS was designed to easily interface with legacy 
codes 
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Initial value problems (IVPs) come in the form of ODEs 
and DAEs 

  The general form of an IVP is given by 

00 x)t(x
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  If              is invertible, we solve for    to obtain an ordinary 
differential equation (ODE), but this is not always the best 
approach 

  Else, the IVP is a differential algebraic equation (DAE) 

  A DAE has differentiation index i if i is the minimal number of 
analytical differentiations needed to extract an explicit ODE 
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Stiffness of an equation can significantly impact 
whether implicit methods are needed 

  (Ascher and Petzold, 1998): If the system has widely varying time 
scales, and the phenomena that change on fast scales are stable, 
then the problem is stiff 

  Stiffness depends on 
•  Jacobian eigenvalues, λj 

•  System dimension 
•  Accuracy requirements 
•  Length of simulation 

  In general a problem is stiff on [t0, t1] if 

101 −<<ℜ− )(min)tt( jj
λ
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Dalquist test problem shows impact of stability on step 
sizes for explicit and implicit methods 

Dalquist test equation:  
Exact solution:  
 
Absolute stability requirement  
 
 
If Re(λ)<0, then |y(tn)| decays exponentially, and we cannot tolerate 

growth in yn  

 
Region of absolute stability of an integrator written as:  
yn = R(z)yn-1, with time step z = hλ	
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Forward and backward Euler show different stability 
restrictions 

  Forward Euler: 

So, if λ < 0, FE has the step size restriction: 
 
 
  Backward Euler: 

So, if λ < 0, BE has the step size restriction: 
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Curtiss and Hirchfelder example 

( )( ) 5050 −=−−= λtcosyy

Solution curves 

time 

y 

Forward Euler  

h=2.01/50 
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Curtiss and Hirchfelder example 

( )( ) 5050 −=−−= λtcosyy

time 

y 

Implicit schemes  

h=0.5 for BE Forward Euler  
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SUNDIALS has implementations of Linear Multistep 
Methods (LMM) 

  Two methods: 
•  Adams-Moulton (nonstiff); K1 = 1, K2 = k, k = 1,…,12 
•  BDF (stiff); K1 = k, K2 = 0, k = 1,…,5 

  Nonlinear systems (BDF) 
•  ODE:  

•  DAE:  

General form of LMM:  ∑ ∑
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Stability is very restricted for higher orders of BDF 
methods 

∑
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Regions of instability grow 
with the order 

CVODE and IDA allow up to 
order 5 

CVODE includes an 
optional stability limit 
detection algorithm: 
  Based on linear analysis 
  Limits step if it detects a 

potential stability 
problem 

Stability region OUTSIDE shaded area 
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CVODE solves  

  Variable order and variable step size methods: 
•  BDF (backward differentiation formulas) for stiff systems 
•  Implicit Adams for nonstiff systems 

  (Stiff case) Solves time step for the system 
•  applies an explicit predictor to give yn(0)  
 

•  applies an implicit corrector with yn(0) as the initial guess 
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Time steps are chosen to minimize the local truncation 
error 

  Time steps are chosen by: 
•  Estimate the error: E(Δt ) = C(yn - yn(0)) 
- Accept step if ||E(Δt)||WRMS < 1 
- Reject step otherwise 

•  Estimate error at the next step, Δt’, as  

•  Choose next step so that ||E(Δt’)|| WRMS < 1 
  Choose method order by: 

•  Estimate error for next higher and lower orders 
•  Choose the order that gives the largest time step meeting the 

error condition 

)t(E)tt()t(E q ΔΔΔΔ 1+ʹ′≈ʹ′
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Computations weighted so no component 
disproportionally impacts convergence 

  An absolute tolerance is specified for each solution component, 
ATOLi 

  A relative tolerance is specified for all solution components, RTOL  

  Norm calculations are weighted by: 

  Bound time integration error with: 

     

    The 1/6 factor tries to account for estimation errors 
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Nonlinear system will require nonlinear solves 

  Use predicted value as the initial iterate for the nonlinear solver 
  Nonstiff systems: Functional iteration 

  Stiff systems: Newton iteration 

•  ODE:  

•  DAE: 
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SUNDIALS provides many options for linear solvers 

  Iterative linear solvers 
•  Result in inexact Newton solver 
•  Scaled preconditioned solvers: GMRES, Bi-CGStab, TFQMR 
•  Only require matrix-vector products 
•  Require preconditioner for the Newton matrix, M 

  Jacobian information (matrix or matrix-vector product) can be 
supplied by the user or estimated with finite difference quotients 

  Two options require serial environments and some pre-defined 
structure to the data 
•  Direct dense  
•  Direct band 
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An inexact Newton-Krylov method can be used to solve 
the implicit systems 

  Krylov iterative methods find the linear system solution in a 
Krylov subspace: 

  Only require matrix-vector products 

  Difference approximations to the matrix-vector product are used, 

  Matrix entries need never be formed, and memory savings can 
be used for a better preconditioner 
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IDA solves F(t, y, y’) = 0 

  C rewrite of DASPK [Brown, Hindmarsh, Petzold] 
  Variable order / variable coefficient form of BDF 
  Targets: implicit ODEs, index-1 DAEs, and Hessenberg index-2 

DAEs 
  Optional routine solves for consistent values of y0 and y0’  

•  Semi-explicit index-1 DAEs, differential components known, 
algebraic unknown OR all of y0’ specified, y0 unknown 

  Nonlinear systems solved by Newton-Krylov method 

  Optional constraints: yi > 0, yi < 0, yi ≥ 0, yi ≤ 0 
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CVODE and IDA are equipped with a rootfinding 
capability 

  Finds roots of user-defined functions, gi(t,y) or gi(t,y, y’) 
  Roots are found by looking at sign changes, so only roots of odd 

multiplicity are found 
  Checks each time interval for sign change 

•  When sign changes are found, apply a modified secant method  
•  Tight tolerance: τ = 100 ∗ U ∗ (|tn| + |Δt|); U = unit roundoff 

  Checks for gi(t,y) = 0 every time gi is evaluated; if gi(t,y) = 0, then 
root is reported 

  If gi(t*,y) = 0 for some t* 
•  gi(t*+δ,y) is computed for some small δ in direction of integration 
•  Integration stops if any gi(t+δ,y) = 0 
•  Ensures values of gi are nonzero at some past value of t, 

beyond which a search for roots is done 
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KINSOL solves F(u) = 0 

  C rewrite of Fortran NKSOL (Brown and Saad) 
  Inexact Newton solver: solves J Δun = -F(un) approximately 
  Modified Newton option (with direct solves) – this freezes the 

Newton matrix over a number of iterations 
  Krylov solver: scaled preconditioned GMRES, TFQMR, Bi-CGStab 

•  Optional restarts for GMRES 
•  Preconditioning on the right: (J P-1)(Ps) = -F 

  Direct solvers: dense and band (serial & special structure) 
  Optional constraints: ui > 0, ui < 0, ui ≥ 0 or ui ≤ 0 
  Can scale equations and/or unknowns 
  Dynamic linear tolerance selection 
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1.  Starting with x0, want x* such that F(x*) = 0 

2.  Repeat for each k until 

a.  Solve (approximately) 

b.   Update, xk+1 = xk + λsk  

An inexact Newton’s method is used to solve the 
nonlinear problem 
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  tol may be chosen adaptively 
based on accuracy requirements  

  λ is a search parameter 
  ||.|| is a weighted L-2 norm 
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Linear stopping tolerances must be chosen to prevent 
“oversolves” 

  Newton method assumes a linear model  

•  Bad approximation far from solution, loose tol. 

•  Good approximation close to solution, tight tol. 

  Eisenstat and Walker (SISC 96) 

•  Choice 1 

•  Choice 2 

  ODE literature 
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The linear system is solved to a given tolerance: 
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Inexact methods maintain the fast rate of convergence 
of Newton’s method 

  Convergence of Newton’s method is q-quadratic locally, for some 
constant C 

  Convergence of an inexact Newton method is 

•  q-linear  if      is constant in k 

•  q-super-linear  if 

•  q-quadratic if for some constant C 

 

  Eisenstat and Walker methods are q-quadratic 
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Line-search globalization for Newton’s method can 
enhance robustness 

  User can select: 

•  Inexact Newton 

•  Inexact Newton with line search 

  Line searches can provide more flexibility in the initial guess (larger 
time steps) 

  Take, xk+1 = xk + λsk+1, for λ chosen appropriately (to satisfy the 
Goldstein-Armijo conditions): 

•  sufficient decrease in F relative to the step length  

•  minimum step length relative to the initial rate of decrease 

•  full Newton step when close to the solution 
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Preconditioning is essential for large problems as 
Krylov methods can stagnate 

  Preconditioner P must approximate Newton matrix, yet be 
reasonably efficient to evaluate and solve. 

  Typical P (for time-dep. ODE problem) is 
  The user must supply two routines for treatment of P: 

•  Setup: evaluate and preprocess P (infrequently) 
•  Solve: solve systems Px=b (frequently) 

  User can save and reuse approximation to J, as directed by the 
solver 

  SUNDIALS offers hooks for user-supplied preconditioning 
•  Can use hypre or PetSc or … 

  Band and block-banded preconditioners are supplied for use with 
the supplied vector structure 

JJJI ≈− ~,~γ
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Sensitivity Analysis 

  Sensitivity Analysis (SA) is the study of how the variation in the output 
of a model (numerical or otherwise) can be apportioned, qualitatively or 
quantitatively, to different sources of variation in inputs. 

  Applications: 
•  Model evaluation (most and/or least influential parameters), Model 

reduction, Data assimilation, Uncertainty quantification, 
Optimization (parameter estimation, design optimization, optimal 
control, …) 

  Approaches: 
•  Forward sensitivity analysis 
•  Adjoint sensitivity analysis 
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Sensitivity Analysis Approaches 

Computational cost: 
(1+Np)Nx   increases with Np 
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(1+Ng)Nx    increases with Ng  
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FSA - Methods 

  Staggered Direct Method: On each time step, converge Newton 
iteration for state variables, then solve linear sensitivity system 
•  Requires formation and storage of Jacobian matrices, Not matrix-free, 

Errors in finite-difference Jacobians lead to errors in sensitivities 
   Simultaneous Corrector Method: On each time step, solve the 

nonlinear system simultaneously for solution and sensitivity variables 
•  Block-diagonal approximation of the combined system Jacobian, Requires 

formation of sensitivity R.H.S. at every iteration 
   Staggered Corrector Method: On each time step, converge Newton 

for state variables, then iterate to solve sensitivity system 
•  With Krylov 
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FSA – Generation of the sensitivity system 

  Analytical  
  Automatic differentiation 

•  ADIFOR, ADIC, ADOLC 
•  complex-step derivatives 

  Directional derivative approximation 
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ASA – Implementation 

  Solution of the forward problem is required for the adjoint problem  
need predictable and compact storage of solution values for the 
solution of the adjoint system 

  Cubic Hermite or variable-degree polynomial interpolation 
  Simulations are reproducible from each checkpoint 
  Force Jacobian evaluation at checkpoints to avoid storing it 
  Store solution and first derivative  
  Computational cost: 2 forward and 1 backward integrations 

t0 tf 
ck0 ck1 ck2         … 

Checkpointing 
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ASA – Generation of the sensitivity system 

  Analytical  
•  Tedious 
•  For PDEs: in general, adjoint and discretization operators do NOT 

commute 

  Automatic differentiation 
•  Certainly the most attractive alternative 
•  Reverse AD tools not as mature as forward AD tools 

  Finite difference approximation 
•  NOT an option (computational cost equivalent to FSA!)  
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The SUNDIALS vector module is generic 

  Data vector structures can be user-supplied 
  The generic NVECTOR module defines: 

•  A content structure (void *) 
•  An ops structure – pointers to actual vector operations supplied by 

a vector definition 
  Each implementation of NVECTOR defines: 

•  Content structure specifying the actual vector data and any 
information needed to make new vectors (problem or grid data) 

•  Implemented vector operations 
•  Routines to clone vectors 

  Note that all parallel communication resides in reduction operations: 
dot products, norms, mins, etc. 
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SUNDIALS provides serial and parallel NVECTOR 
implementations 

  Use is optional 

  Vectors are laid out as an array of doubles (or floats) 
  Appropriate lengths (local, global) are specified 
  Operations are fast since stride is always 1 
  All vector operations are provided for both serial and parallel cases 
  For the parallel vector, MPI is used for global reductions 

  These serve as good templates for creating a user-supplied vector 
structure around a user’s own existing structures 
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SUNDIALS provides Fortran interfaces 

  CVODE, IDA, and KINSOL 
  Cross-language calls go in both directions: 
  Fortran user code  interfaces  CVODE/KINSOL/IDA 

  Fortran main  interfaces to solver routines 
  Solver routines  interface to user’s problem-defining routine and 

preconditioning routines 

  For portability, all user routines have fixed names 
  Examples are provided 
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SUNDIALS provides Matlab interfaces 

  CVODES, KINSOL, and IDAS 
  The core of each interface is a single MEX file which interfaces to 

solver-specific user-callable functions 
  Guiding design philosophy: make interfaces equally familiar to both 

SUNDIALS and Matlab users 
•  all user-provided functions are Matlab m-files 
•  all user-callable functions have the same names as the 

corresponding C functions  
•  unlike the Matlab ODE solvers, we provide the more flexible 

SUNDIALS approach in which the 'Solve' function only returns the 
solution at the next requested output time. 

  Includes complete documentation (including through the Matlab help 
system) and several examples 
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Structure of SUNDIALS 
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SUNDIALS code usage is similar across the suite 

  Have a series of Set/Get routines to set options 
  For CVODE with parallel vector implementation: 

  
 #include “cvode.h” 
 #include “cvode_spgmr.h” 
 #include “nvector_*.h” 

 
 y = N_VNew_*(n,…); 
 cvmem = CVodeCreate(CV_BDF,CV_NEWTON); 
 flag = CVodeSet*(…); 
 flag = CVodeInit(cvmem,rhs,t0,y,…); 
 flag = CVSpgmr(cvmem,…); 
 for(tout = …) { 
    flag = CVode(cvmem, …,y,…);  } 

 
 NV_Destroy(y); 
 CVodeFree(&cvmem); 
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Forward Sensitivity Analysis in SUNDIALS 

User main routine 
Specification of problem parameters 
Activation of sensitivity computation 
User problem-defining function 
User preconditioner function 

Options 
-  sensitivity approach (simultaneous or staggered) 
-  sensitivity residuals: analytical, FD(DQ), AD, CS 
-  error control on sensitivity variables 
-  user-defined tolerances for sensitivity variables 
 

Band 
Linear 
Solver 

Preconditioned 
Iterative 
Linear Solver 

General 
Preconditioner 
Modules 

Vector 
Kernels 

Dense 
Linear 
Solver 

CVODES 
ODE 
Integrator 

IDAS 
DAE 
Integrator 
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 #include “cvodes.h” 
 #include “cvodes_spgmr.h” 
 #include “nvector_*.h” 

 
 y = N_VNew*(n,…); 
 cvmem = CVodeCreate(CV_BDF,CV_NEWTON); 
 flag = CVodeSet*(…); 
 flag = CVodeMalloc(cvmem,rhs,t0,y,…); 
 flag = CVSpgmr(cvmem,…); 
 yS = N_VNewVectorArray_*(Ns,…); 
 flag = CVodeSetSens*(…); 
 flag = CVodeSensMalloc(cvmem,…,yS); 
 for(tout = …) { 
  flag = CVode(cvmem, …,y,…); 
  flag = CVodeGetSens(cvmem,t,yS); 
 } 
 NV_Destroy(y); 
 NV_DestroyVectorArray(yS,Ns); 
 CVodeFree(&cvmem); 

 

Forward Sensitivity Analysis in SUNDIALS 
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Adjoint Sensitivity Analysis in SUNDIALS 

User main routine 
Activation of sensitivity computation 
User problem-defining function 
User reverse function 
User preconditioner function 
User reverse preconditioner function 

(Modified) 
Vector 
Kernels 

Implementation 
-  check point approach; total cost is 2 forward 
solutions + 1 backward solution  
-  integrate any system backwards in time 
-  may require modifications to some user-defined 
vector kernels 
 

CVODES 
ODE 

Integrator 

IDAS 
DAE 

Integrator 

Band 
Linear 
Solver 

Preconditioned 
Iterative 

Linear Solver 

General 
Preconditioner 

Modules 

Dense 
Linear 
Solver 
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Adjoint Sensitivity Analysis in SUNDIALS 
 

 #include “cvodes.h” 
 #include “cvodea.h” 
 #include “cvodes_spgmr.h” 
 #include “nvector_*.h” 

 
 y = N_VNew_*(n,…); 
 cvmem = CVodeCreate(CV_BDF,CV_NEWTON); 
 CVodeSet*(…);  CVodeMalloc(…);  CVSpgmr(…); 

 
 cvadj = CVadjMalloc(cvmem,STEPS); 
 flag = CVodeF(cvadj,…,&nchk); 
 yB = N_VNew_*(nB,…); 
 CVodeSet*B(…);  CVodeMallocB(…);  CVSpgmrB(…); 
 for(tout = …) { 
  flag = CVodeB(cvadj, …,yB,…); 
 } 
 NV_Destroy(y); 
 NV_Destroy(yB); 
 CVodeFree(&cvmem); 
 CVadjFree(&cvadj); 
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Upcoming additions to SUNDIALS 

  Accelerated fixed point nonlinear solver 
•  Anderson acceleration: preliminary version in place, now 

refining 

  Vector kernels supporting multi/many core architectures 

  Time integrators for multi-rate problems: ARKODE from Dan 
Reynolds (SMU) 
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The ARKODE Solver 

We are currently working on a new solver that will extend 
SUNDIALS to support multi-rate systems of ordinary differential 
equations. 
 
Like CVODE, this solver applies advanced error estimators and 
adaptive time stepping to efficiently evolve systems of ODEs 
 
Unlike CVODE, this solver allows a user to decompose the ODE 
system into “fast” and “slow” components, applying implicit and 
explicit solvers to these components, respectively 
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The ARKODE Design 

ARKODE solvers are based on additive Runge-Kutta (ARK) 
methods 

• Comprised of a pair of explicit and diagonally-implicit Runge-
Kutta methods 
• ERK and DIRK methods derived in coordination, to guarantee 
accuracy of each method as well as their coupling 

 
Built-in coefficients providing from 3rd to 5th order accurate 
methods 
 
May also be run in purely explicit or purely implicit mode 
 
One step (multi stage) solvers that work naturally with spatially-
adaptive PDE simulations 
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The ARKODE Algorithms 
Data structures and iterative solvers used within ARKODE match 
the rest of SUNDIALS 
 
General vector-based implementation, for serial, parallel, or user-
defined data structures 
 
Inexact Newton methods, with preconditioned Krylov linear 
solvers for parallel and serial problems 
 
Modified Newton methods with LAPACK linear solvers for serial 
problems 

For more information:  http://faculty.smu.edu/reynolds/
arkode 
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Applications of SUNDIALS 

  CVODE and KINSOL are being used in parallel fusion simulations at SMU 

  KINSOL is being used to solve for implicit hydrodynamics in core collapse 
supernova simulations at SUNY-Stony Brook 

  Parallel CVODE is being used in a 3D tokamak turbulence model (BOUT+
+) in LLNL’s Magnetic Fusion Energy Division.  

  KINSOL with a HYPRE multigrid preconditioner is being applied to solve a 
nonlinear Richards’ equation for pressure in porous media flows.  

  CVODE, KINSOL, IDA, with MG preconditioner, are being used to solve 3D 
neutral particle transport problems in CASC.  

  … 
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Applications with sensitivity analysis 

  CVODES used for sensitivity analysis of chemically reacting flows 
(SciDAC collaboration with Sandia Livermore). 

  CVODES used for sensitivity analysis of radiation transport (diffusion 
approximation). 

  KINSOL+CVODES used for inversion of large-scale time-dependent 
PDEs (atmospheric releases). 

  … 
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Stellar collapse simulations must deliver high accuracy 
over long time periods 

  Evolve by fusion burning, iron core 
collapse, blow up, and neutrino radiation 
cooling 

  Stellar collapse, supernova explosion, and 
neutron star formation is one of the most 
energetic, but poorly understood,  
phenomena in astrophysics 

  Models: of radiation transport, 
hydrodynamics & self-gravity 

  Neutrinos carry off ~99% of energy; 1% is 
observed (have to model this) 

 

He      C,O 
C      Ne,Mg 

H      He 

O      S,Si 

 Fe 

S,Si      Fe 

Onionskin-like structure  

ΔtCFL,core(10-7 s) < desired step < ΔtCFL,shock(~10-4 s) <  tcooling(10s) 
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We model the hydrodynamics with a Lagrangian 
formulation and pose the discrete system as a DAE 

Lagrangian Eqns 
(fluid flow) Self-gravity Conservation form + + 

=> 
Stellar collapse hydrodynamics model 
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Implicit approach 
works for Eulerian 
forms as well 

w/. D. Reynolds (SMU) & D. Swesty (SUNY SB) 

We apply Newton-Krylov to the space-
discretized form of this DAE system 
using the SUNDIALS KINSOL package 
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We have customized the Newton-Krylov method for the 
stellar collapse simulation 

  Non-differentiabilities in discretization schemes result in 
convergence problems with finite differences 
•  Limiters and artificial viscosity increase stability for shocks but 

result in discontinuities in the Jacobian 
•  Freeze parameters in Newton iteration to smooth Jacobian 
•  Approximate Jacobian entries at the start of each iteration 

  Form the preconditioner by extracting only the spatially local 
entries that couple the variables within a given cell 
•  Place them in a block diagonal matrix 
•  Solve each block exactly 
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We had to take care in scaling and constraints 

  Unknowns and equations at differing scales can cause 
difficulties with stopping criteria 
•  Use a weighted RMS norm for convergence: 

•  D gives the typical equation magnitude 

  Certain variables have positivity constraints which can be 
violated in Newton updates or differencing 
•  Apply a log transform for density, temperature, and radius 

•  Increases nonlinearity but, in practice, this adds only up to 1 
Newton iteration 

( ) )d,,d(diagD,N)U(DH)U(H N
11

1
2

2
−−== …
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Implicit approach enabled the first radiation-hydrodynamic 
modeling of the entire proto-neutron star cooling  

  Initial central density: 5 x 1014 g/cm3 

  Initial radiation distribution contributes 
½ of pressure support in the star 
center and diminishes radially 

  Star contracts as neutrinos diffuse out 
  NK for neutrino MGFLD as well as 

hydrodynamics 

Explicit CFL restriction:  
Δt ~ 2.5 x 10-8 s => 109 steps 
Implicit used Δt ~ 2.5 x 10-5 s 

0.1% of the number of explicit steps! 

Mass contours show contraction 

Neutrino cooling signal 
decays over 15s timescale 

Reynolds, Swesty, and W., 2008 
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Newton-Krylov methods have been applied to resistive 
magnetohydrodynamics simulations 

Magnetic Reconnection 
  Breaking & reconnecting oppositely-

directed field lines in a plasma 
  Instabilities replace hot plasma core 

with cool plasma, halting fusion 
  Sweet-Parker reconnection is ~105 

times slower than fastest waves 

Both applications require large-scale, long-time simulations 

Pellet Injection Fueling 
  Shoot frozen hydrogen pellets into 

the plasma at high velocity ~500 m/s 
  Want location of mass deposition 
  Pellet motion is ~104 times slower 

than fastest waves 
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We use a conservative form of the single-fluid 
resistive magnetohydrodynamics equations 

0=⋅∇−⋅∇+∂ )U(F)U(FUt υ

Euler eqns 
(fluid flow) 

Low-freq. Maxwell eqns 
(electromagnetic fields) Conservation form + + 

=> 
Resistive magnetohydrodynamics  

fluxesdiffusive
fluxeshyperbolic

=

=

=

)U(F
)U(F

)e,B,v,(U T

υ

ρρ

We view this model as a system of ODEs:  
 
High order BDF time integrator, CVODE, with Newton-Krylov 
from SUNDIALS Package 

)U(F)U(F)U(f ⋅∇−⋅∇≡ υ

)U(fUt =∂

w/. D. Reynolds (SMU) & R. Samtaney (KAUST) 
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The implicit approach gave faster solutions than the 
original explicit approach on our reconnection problem 

  GEM magnetic reconnection 
challenge (Brin et al., 2001) 

  2D, characteristic velocity is 
the Alfven speed 

  Small magnetic resistivity and 
fluid viscosity 

  No preconditioning 
  O(Δt5) implicit method 
  O(Δt4) explicit Runge-Kutta 
Implicit is almost 6x faster than 

explicit 
Preconditioning further improved 

these results 

Implicit 

Explicit 

Reynolds, Samtaney, & W., JCP, 2006 

Problem
Size Explicit Implicit

64x32 0.029 0.067
128x64 0.015 0.057

256x128 0.008 0.056
512x256 0.004 0.059

Avg Step Size
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KINSOL enabled modeling variably saturated subsurface 
flow in numerous contexts 

  The Newton-Krylov method in 
KINSOL from SUNDIALS 
provided the main solver 
engine for the PARFLOW 
variably saturated subsurface 
flow solver 

  hypre structured multigrid 
preconditioner 

  Symmetric approximation to 
Jacobian for preconditioning 

  Line search globalization 
  Dynamic linear tolerances 

Jones and W., Adv. Water Res., 2001 

( ) ( )( )( ) qzg–ppKk–
t
p

r =∇∇⋅∇ ρ
∂

∂θ

Variably saturated PARFLOW 
is used in large-scale, parallel  
models of many DOE sites 
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Availability 

Web site: 
Individual codes download  
SUNDIALS suite download 
User manuals 
User group email list 

 

 

The SUNDIALS Team:  
Alan Hindmarsh, Radu Serban, Carol 

Woodward, and Dan Reynolds 

Open source BSD license 
https://computation.llnl.gov/casc/sundials 

Publications 
https://computation.llnl.gov/casc/nsde 


