
Sherry Li
August 15, 2012

1. Introduction

These exercises provide basic and more advanced programming instruction for writing parallel programs
calling SuperLU_DIST. A basic knowledge of C, parallel programming with message-passing, and MPI are
assumed. Some of the exercises also require an understanding of two-dimensional block cyclic data
distribution.

Detailed information on SuperLU may be found at the following URL:
http://crd.lbl.gov/~xiaoye/SuperLU

2. Setup on carver.nersc.gov

After login to carver, you can access the SuperLU_DIST by typing:

 % module load superlu_dist

After this, all the SuperLU related shell variables, library path, and include path are added into your
environment. For example, the shell variable $SUPERLU_DIST_EXAMPLE is the directory containing all the
examples.

 % echo $SUPERLU_DIST_EXAMPLE

shows the following path

/usr/common/acts/SuperLU/SuperLU_DIST/2.5/EXAMPLE

You can read the short help page by typing:

 % module help superlu_dist

Now, you can copy all the examples in the $SUPERLU_DIST_EXAMPLE directory by doing the following in
your home directory:

 % mkdir SuperLU_DIST
 % cd SuperLU_DIST
 % cp -r $SUPERLU_DIST_EXAMPLE .
 % cd EXAMPLE

Now you can compile the programs by simply typing:

 % make

There is a README file in this directory, which gives you instructions on how to run these programs. For
example, you can run pddrive on 4 cores as follows:

 % qsub -I -V -q mag_acts -l nodes=1
 (wait to get the node ...)
 % cd $PBS_O_WORKDIR
 % mpirun -np 4 ./pddrive -r 2 -c 2 big.rua

Hands-On Exercises for SuperLU http://crd-legacy.lbl.gov/~xiaoye/SuperLU/slu_hands_on.html

1 of 3 8/10/2012 10:32 AM

3. Anatomy of example pddrive.c

Five basic steps are required to call a SuperLU routine:

Initialize the MPI environment and the SuperLU process grid.
This is achieved by the calls to the MPI routine MPI_Init() and the SuperLU routine superlu_gridinit().
In this example, the communication domain for SuperLU is built upon the MPI default communicator
MPI_COMM_WORLD. In general, it can be built upon any MPI communicator.

1.

Set up the input matrix and the right-hand side.
In this example, process 0 reads the input matrix stored on disk in Harwell-Boeing format (Compressed
Column Storage), and distributes it to all the other processes, so that each process only owns a block of
rows of the matrix. The right-hand side matrix is generated so that the exact solution matrix consists of
all ones. See routine dcreate_matrix() for details.

2.

Initialize the input arguments: options, ScalePermstruct, LUstruct, stat.
The input argument options controls how the linear system would be solved---use equilibration or not,
how to order the rows and the columns of the matrix, use iterative refinement or not. The subroutine
set_default_options() sets the options argument so that the solver performs all the functionality. You
can also set it up according to your own needs. ScalePermstruct is the data structure that stores the
several vectors describing the transformations done to A. LUstruct is the data structure in which the
distributed L and U factors are stored. Stat is a structure collecting the statistics about runtime and flop
count.

3.

Call the SuperLU routine pdgssvx().4.
Release the process grid and terminate the MPI environment.
After the computation on a process grid has been completed, the process grid should be released by a
call to the SuperLU routine superlu_gridexit(). When all computations have been completed, the MPI
routine MPI_Finalize should be called.

5.

4. Fortran90 example FORTRAN/f_5x5.f90

At the SuperLU directory you just created, you can copy the Fortran90 examples as follows:

 % cp -r /usr/common/acts/SuperLU/SuperLU_DIST/2.5/FORTRAN .

Then, a subdirectory FORTRAN/ is created. Now you can compile the programs by:

 % cd FORTRAN
 % make

The README in this directory gives you instruction on how to run the programs.

The example f_5x5.f90 is the 5x5 matrix appeared in SuperLU Users' Guide,, Section 2.2:

 [s u u] [19 21 21]
 [l u] [12 21]
 [l p] = [12 16]
 [e u] [5 21]
 [l l r] [12 12 18]

It is set up to use 2 processors:

processor 1 contains the first 2 rows
processor 2 contains the last 3 rows

You can run this example by typing:

Hands-On Exercises for SuperLU http://crd-legacy.lbl.gov/~xiaoye/SuperLU/slu_hands_on.html

2 of 3 8/10/2012 10:32 AM

 % qsub -I -V -q mag_acts -l nodes=1
 (wait to get the node ...)
 % cd $PBS_O_WORKDIR
 % mpirun -np 2 ./f_5x5

Hands-On Exercises for SuperLU http://crd-legacy.lbl.gov/~xiaoye/SuperLU/slu_hands_on.html

3 of 3 8/10/2012 10:32 AM

