
SuperLU: Sparse Direct Solver and
Preconditioner

X. Sherry Li
xsli@lbl.gov

http://crd.lbl.gov/~xiaoye/SuperLU

13th DOE ACTS Collection Workshop
August 14-17, 2012

SuperLU tutorial 2

Acknowledgements

 Supports from DOE, NSF, DARPA
 TOPS (Towards Optimal Petascale Simulations)
 CEMM (Center for Extended MHD Modeling)

 Developers and contributors
 Sherry Li, LBNL
 James Demmel, UC Berkeley
 John Gilbert, UC Santa Barbara
 Laura Grigori, INRIA, France
 Meiyue Shao, Umeå University, Sweden
 Pietro Cicotti, UC San Diego
 Daniel Schreiber, UIUC
 Yu Wang, U. North Carolina, Charlotte
 Ichitaro Yamazaki, LBNL
 Eric Zhang, Albany High School

SuperLU tutorial 3

Quick installation

 Download site http://crd.lbl.gov/~xiaoye/SuperLU
 Users’ Guide, HTML code documentation

 Gunzip, untar
 Follow README at top level directory
 Edit make.inc for your platform (compilers, optimizations, libraries, ...)

(may move to autoconf in the future)
 Link with a fast BLAS library

• The one under CBLAS/ is functional, but not optimized
• Vendor, GotoBLAS, ATLAS, …

SuperLU tutorial 4

Outline of Tutorial

 Functionality
 Background of the algorithms
 Differences between sequential and parallel solvers

 Sparse matrix data structure, distribution, and user interface
 Examples, Fortran 90 interface

SuperLU tutorial

The Problem

Solve Ax = b, A is sparse, b is dense or sparse
Example: A of dimension 106, 10~100 nonzeros per row
fluid dynamics, structural mechanics, chemical process simulation,

circuit simulation, electromagnetic fields, magneto-hydrodynamics,
seismic-imaging, economic modeling, optimization, data analysis,
statistics, . . .

5

Mallya/lhr01Boeing/msc00726

SuperLU tutorial

Strategies of sparse linear solvers

6

 Solving a system of linear equations Ax = b
• Sparse: many zeros in A; worth special treatment

 Iterative methods
 A is not changed (read-only)
 Key kernel: sparse matrix-vector multiply
• Easier to optimize and parallelize
 Low algorithmic complexity, but may not converge

 Direct methods
 A is modified (factorized)
• Harder to optimize and parallelize
 Numerically robust, but higher algorithmic complexity

 Often use direct method to precondition iterative method

SuperLU tutorial

Available direct solvers

 Survey of different types of factorization codes
http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf
 LLT (s.p.d.)
 LDLT (symmetric indefinite)
 LU (nonsymmetric)
 QR (least squares)
 Sequential, shared-memory (multicore), distributed-memory, out-of-

core
 GPU, FPGA become active, no public code yet.

 Distributed-memory codes: usually MPI-based
 SuperLU_DIST [Li/Demmel/Grigori/Yamazaki]

• accessible from PETSc, Trilinos, . . .
 MUMPS, PasTiX, WSMP, . . .

7

SuperLU tutorial 8

SuperLU Functionality

 LU decomposition, triangular solution
 Incomplete LU (ILU) preconditioner (serial SuperLU 4.0 up)
 Transposed system, multiple RHS
 Sparsity-preserving ordering
 Minimum degree ordering applied to ATA or AT+A [MMD, Liu `85]
 ‘Nested-dissection’ applied to ATA or AT+A [(Par)Metis, (PT)-Scotch]

 User-controllable pivoting
 Pre-assigned row and/or column permutations
 Partial pivoting with threshold

 Equilibration:
 Condition number estimation
 Iterative refinement
 Componentwise error bounds [Skeel `79, Arioli/Demmel/Duff `89]

cr ADD

SuperLU tutorial 9

Software Status

 Fortran interfaces
 SuperLU_MT similar to SuperLU both numerically and in usage

SuperLU SuperLU_MT SuperLU_DIST

Platform Serial SMP, multicore Distributed
memory

Language C C + Pthreads
or OpenMP

C + MPI

Data type Real/complex,
Single/double

Real/complex,
Single/double

Real/complex,
Double

SuperLU tutorial 10

Adoptions of SuperLU

 Industry
 Cray Scientific Libraries
 FEMLAB
 HP Mathematical Library
 IMSL Numerical Library
 NAG
 Sun Performance Library
 Python (NumPy, SciPy)

 Research
 In ACTS Tools: Hypre, PETSc, Overture, Trilinos
 M3D-C1, NIMROD (burning plasmas for fusion energys)
 Omega3P (accelerator design)
 . . .

SuperLU tutorial 11

Review of Gaussian Elimination (GE)

 Solving a system of linear equations Ax = b

 First step of GE: (make sure not too small . . . Otherwise do pivoting)

 Repeats GE on C
 Results in {L\U} decomposition (A = LU)
 L lower triangular with unit diagonal, U upper triangular

 Then, x is obtained by solving two triangular systems with L and U

C
w

IvBv
w

A
TT

0/
01

TwvBC

SuperLU tutorial 12

Sparse GE – fill-in

 Scalar algorithm: 3 nested loops
• Can re-arrange loops to get different variants: left-looking, right-

looking, . . .

1
2

3
4

6
7

5L

U for i = 1 to n
column_scale (A(:,i))
for k = i+1 to n s.t. A(i,k) != 0

for j = i+1 to n s.t. A(j,i) != 0
A(j,k) = A(j,k) - A(j,i) * A(i,k)

Typical fill-ratio: 10x for 2D problems, 30-50x for 3D problems

SuperLU tutorial 13

Data structure: Compressed Row Storage (CRS)

 Store nonzeros row by row contiguously
 Example: N = 7, NNZ = 19
 3 arrays:
 Storage: NNZ reals, NNZ+N+1 integers

7
6

5
4

3
2

1

lk
jih
g

fe
dc

b
a

nzval 1 a 2 b c d 3 e 4 f 5 g h i 6 j k l 7

colind 1 4 2 5 1 2 3 2 4 5 5 7 4 5 6 7 3 5 7

rowptr 1 3 5 8 11 13 17 20

1 3 5 8 11 13 17 20

Many other data structures: “Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods”, R. Barrett et al.

SuperLU tutorial

General Sparse Solver

 Use (blocked) CRS or CCS, and any ordering method
 Leave room for fill-ins ! (symbolic factorization)

 Exploit “supernode” (dense) structures in the factors
 Can use Level 3 BLAS
 Reduce inefficient indirect addressing (scatter/gather)
 Reduce graph traversal time using a coarser graph

14

SuperLU tutorial 15

Overview of the Algorithms

 Sparse LU factorization: Pr A Pc
T = L U

 Choose permutations Pr and Pc for numerical stability, minimizing fill-
in, and maximizing parallelism.

 Phases for sparse direct solvers
1. Order equations & variables to minimize fill-in.
 NP-hard, use heuristics based on combinatorics.

2. Symbolic factorization.
 Identify supernodes, set up data structures and allocate memory for L & U.

3. Numerical factorization – usually dominates total time.
 How to pivot?

4. Triangular solutions – usually less than 5% total time.

SuperLU tutorial 16

Numerical Pivoting

 Goal of pivoting is to control element growth in L & U for stability
 For sparse factorizations, often relax the pivoting rule to trade with better

sparsity and parallelism (e.g., threshold pivoting, static pivoting , . . .)

 Partial pivoting used in sequential SuperLU and SuperLU_MT (GEPP)
 Can force diagonal pivoting (controlled by diagonal

threshold)
 Hard to implement scalably for sparse factorization

 Static pivoting used in SuperLU_DIST (GESP)
 Before factor, scale and permute A to maximize diagonal: Pr Dr A Dc = A’

 During factor A’ = LU, replace tiny pivots by , without changing data
structures for L & U

 If needed, use a few steps of iterative refinement after the first solution
 quite stable in practice

A

b

s x x

x x x

x

SuperLU tutorial 17

Ordering : Minimum Degree

Local greedy: minimize upper bound on fill-in

Eliminate 1

1

i

j

k

Eliminate 1

x

x

x

x

xxxxx
i j k l

1

i

j

k

l

x

x

x

x

xxxxx
i j k l

1

i

j

k

l

l

i

k

j

l

SuperLU tutorial 18

Ordering : Nested Dissection

Model problem: discretized system Ax = b from certain PDEs,
e.g., 5-point stencil on n x n grid, N = n2

 Factorization flops: O(n3) = O(N3/2)

 Theorem: ND ordering gives optimal complexity in exact
arithmetic [George ’73, Hoffman/Martin/Rose]

SuperLU tutorial 19

ND Ordering

 Generalized nested dissection [Lipton/Rose/Tarjan ’79]
 Global graph partitioning: top-down, divide-and-conqure
 Best for largest problems
 Parallel codes available: ParMetis, PT-Scotch
 First level

 Recurse on A and B

 Goal: find the smallest possible separator S at each level
 Multilevel schemes:

• Chaco [Hendrickson/Leland `94], Metis [Karypis/Kumar `95]
 Spectral bisection [Simon et al. `90-`95]
 Geometric and spectral bisection [Chan/Gilbert/Teng `94]

A BS

Sxx
xB
xA

0
0

SuperLU tutorial 20

ND Ordering

2D mesh A, with row-wise ordering

A, with ND ordering L &U factors

SuperLU tutorial 21

Ordering for LU (unsymmetric)

 Can use a symmetric ordering on a symmetrized matrix
• Case of partial pivoting (serial SuperLU, SuperLU_MT):

Use ordering based on AT*A
• Case of static pivoting (SuperLU_DIST):

Use ordering based on AT+A

 Can find better ordering based solely on A, without
symmetrization

• Diagonal Markowitz [Amestoy/Li/Ng `06]
• Similar to minimum degree, but without symmetrization

• Hypergraph partition [Boman, Grigori, et al. `08]
• Similar to ND on ATA, but no need to compute ATA

SuperLU tutorial 22

Ordering Interface in SuperLU

 Library contains the following routines:
 Ordering algorithms: MMD [J. Liu], COLAMD [T. Davis]
 Utility routines: form AT+A , ATA

 Users may input any other permutation vector (e.g., using
Metis, Chaco, etc.)

. . .
set_default_options_dist (&options);
options.ColPerm = MY_PERMC; // modify default option
ScalePermstructInit (m, n, &ScalePermstruct);
METIS (. . . , &ScalePermstruct.perm_c);
. . .
pdgssvx (&options, . . . , &ScalePermstruct, . . .);
. . .

SuperLU tutorial 23

Symbolic Factorization

 Cholesky [George/Liu `81 book]
 Use elimination graph of L and its transitive reduction (elimination tree)
 Complexity linear in output: O(nnz(L))

 LU
 Use elimination graphs of L & U and their transitive reductions

(elimination DAGs) [Tarjan/Rose `78, Gilbert/Liu `93, Gilbert `94]
 Improved by symmetric structure pruning [Eisenstat/Liu `92]
 Improved by supernodes
 Complexity greater than nnz(L+U), but much smaller than flops(LU)

SuperLU tutorial 24

Numerical Factorization

 Sequential SuperLU
 Enhance data reuse in memory hierarchy by calling Level 3 BLAS on

the supernodes

 SuperLU_MT
 Exploit both coarse and fine grain parallelism
 Employ dynamic scheduling to minimize parallel runtime

 SuperLU_DIST
 Enhance scalability by static pivoting and 2D matrix distribution

SuperLU tutorial
25

SuperLU_MT [Li/Demmel/Gilbert]

 Pthread or OpenMP
 Left-looking – relatively more READs than WRITEs
 Use shared task queue to schedule ready columns in the

elimination tree (bottom up)
 Over 12x speedup on conventional 16-CPU SMPs (1999)

P1 P2

DONE NOT
TOUCHED

WORKING

U

L

A
P1

P2

DONE WORKING

SuperLU tutorial

MPI
 Right-looking – relatively more WRITEs than READs
 2D block cyclic layout
 Look-ahead to overlap comm. & comp.
 Scales to 1000s processors

26

SuperLU_DIST [Li/Demmel/Grigori/Yamazaki]

0 2
3 4

1
5

Process mesh
2

3 4

1

5

0 2

3 4

1

5

0

2
3 4

1
5

0

2

3 4

1

5

0

210

2
3 4

1
5

0

2

3 4

1

5

0

210

3

0

3
0

3

0

0

Matrix

ACTIVE

SuperLU tutorial

Multicore platforms

Intel Clovertown:
2.33 GHz Xeon, 9.3 Gflops/core
2 sockets x 4 cores/socket
L2 cache: 4 MB/2 cores

Sun VictoriaFalls:
1.4 GHz UltraSparc T2, 1.4 Gflops/core
2 sockets x 8 cores/socket x 8 hardware threads/core
L2 cache shared: 4 MB

27

SuperLU tutorial

Benchmark matrices

apps dim nnz(A) SLU_MT
Fill

SLU_DIST
Fill

Avg.
S-node

g7jac200 Economic
model

59,310 0.7 M 33.7 M 33.7 M 1.9

stomach 3D finite
diff.

213,360 3.0 M 136.8 M 137.4 M 4.0

torso3 3D finite
diff.

259,156 4.4 M 784.7 M 785.0 M 3.1

twotone Nonlinear
analog
circuit

120,750 1.2 M 11.4 M 11.4 M 2.3

28

SuperLU tutorial

Intel Clovertown

Maximum speedup 4.3, smaller than conventional SMP
Pthreads scale better
Question: tools to analyze resource contention?

29

SuperLU tutorial

SunVictoriaFalls – multicore + multithread

 Maximum speedup 20
 Pthreads more robust, scale better
 MPICH crashes with large #tasks,

mismatch between coarse and
fine grain models

SuperLU_MT SuperLU_DIST

30

SuperLU tutorial 31

User interface – distribute input matrices

 Matrices involved:
 A, B (turned into X) – input, users manipulate them
 L, U – output, users do not need to see them

 A (sparse) and B (dense) are distributed by block rows

Local A stored in
Compressed Row Format

 Natural for users, and consistent with other popular packages: e.g.
PETSc

A B
x x x x

x x x

x x x

x x x

P0

P1

P2

SuperLU tutorial 32

Distributed input interface

Each process has a structure to store local part of A
Distributed Compressed Row Storage

typedef struct {
int_t nnz_loc; // number of nonzeros in the local submatrix
int_t m_loc; // number of rows local to this processor
int_t fst_row; // global index of the first row
void *nzval; // pointer to array of nonzero values, packed by row
int_t *colind; // pointer to array of column indices of the nonzeros
int_t *rowptr; // pointer to array of beginning of rows in nzval[]and colind[]

} NRformat_loc;

SuperLU tutorial 33

Distributed Compressed Row Storage

 Processor P0 data structure:
 nnz_loc = 5
 m_loc = 2
 fst_row = 0 // 0-based indexing
 nzval = { s, u, u, l, u }
 colind = { 0, 2, 4, 0, 1 }
 rowptr = { 0, 3, 5 }

 Processor P1 data structure:
 nnz_loc = 7
 m_loc = 3
 fst_row = 2 // 0-based indexing
 nzval = { l, p, e, u, l, l, r }
 colind = { 1, 2, 3, 4, 0, 1, 4 }
 rowptr = { 0, 2, 4, 7 }

u
s u u
l

p
e

l l r

P0

P1
l

A is distributed on 2 processors:

u

SuperLU tutorial 34

Process grid and MPI communicator

 Example: Solving a preconditioned linear system
M-1A x = M-1 b
M = diag(A11, A22, A33)

 use SuperLU_DIST for
each diagonal block

 Create 3 process grids, same logical ranks (0:3),
but different physical ranks
 Each grid has its own MPI communicator

A22

A33

A110 1
2 3

4 5
6 7

8 9
1011

SuperLU tutorial 35

Two ways to create a process grid

 superlu_gridinit(MPI_Comm Bcomm, int nprow,
int npcol, gridinfo_t *grid);

 Maps the first {nprow, npcol} processes in the MPI communicator
Bcomm to SuperLU 2D grid

 superlu_gridmap(MPI_Comm Bcomm, int nprow,
int npcol, int usermap[], int ldumap, gridinfo_t *grid);
 Maps an arbitrary set of {nprow, npcol } processes in the MPI

communicator Bcomm to SuperLU 2D grid. The ranks of the selected
MPI processes are given in usermap[] array.
For example:

11 12 13
14 15 16

0 1 2
0

1

SuperLU tutorial 36

Performance of larger matrices

 Sparsity ordering: MeTis applied to structure of A’+A

Name Application Data
type

N |A| / N
Sparsity

|L\U|
(10^6)

Fill-ratio

matrix211 Fusion,
MHD eqns
(M3D-C1)

Real 801,378 161 1276.0 9.9

cc_linear2 Fusion,
MHD eqns
(NIMROD)

Complex 259,203 109 199.7 7.1

matick Circuit sim.
MNA method
(IBM)

Complex 16,019 4005 64.3 1.0

cage13 DNA
electrophoresis

Real 445,315 17 4550.9 608.5

SuperLU tutorial 37

Strong scaling (fixed size): Cray XE6 (hopper@nersc)

Up to 1.4 Tflops factorization rate

 #5 on the Top500 Supercomputer list
 2 x 12-core AMD 'MagnyCours’ per node, 2.1 GHz processor

SuperLU tutorial

ILU Interface

 Available in serial SuperLU 4.0, June 2009
 Similar to ILUTP [Saad]: “T” = threshold, “P” = pivoting
 among the most sophisticated, more robust than structure-

based dropping (e.g., level-of-fill)
 ILU driver: SRC/dgsisx.c

ILU factorization routine: SRC/dgsitrf.c
GMRES driver: EXAMPLE/ditersol.c
 Parameters:
 ilu_set_default_options (&options)

• options.ILU_DropTol – numerical threshold (τ)
• options.ILU_FillFactor – bound on the fill-ratio (γ)

38

SuperLU tutorial

Result of Supernodal ILU (S-ILU)

 New dropping rules S-ILU(τ, γ)
 supernode-based thresholding (τ)
 adaptive strategy to meet user-desired

fill-ratio upper bound (γ)

 Performance of S-ILU
 For 232 test matrices, S-ILU + GMRES converges with 138

cases (~60% success rate)
 S-ILU + GMRES is 1.6x faster than scalar ILU + GMRES

i

SuperLU tutorial

S-ILU for extended MHD (fusion energy sim.)

 AMD Opteron 2.4 GHz (Cray XT5)
 ILU parameters: τ = 10-4, Υ = 10
 Up to 9x smaller fill ratio, and 10x faster

Problems order Nonzeros
(millions)

SuperLU
Time fill-ratio

S-ILU
time fill-ratio

GMRES
Time Iters

matrix31 17,298 2.7 m 33.3 13.1 8.2 2.7 0.6 9

matrix41 30,258 4.7 m 111.1 17.5 18.6 2.9 1.4 11

matrix61 66,978 10.6 m 612.5 26.3 54.3 3.0 7.3 20

matrix121 263,538 42.5 m x x 145.2 1.7 47.8 45

matrix181 589,698 95.2 m x x 415.0 1.7 716.0 289

SuperLU tutorial 41

Tips for Debugging Performance

 Check sparsity ordering
 Diagonal pivoting is preferable
 E.g., matrix is diagonally dominant, . . .

 Need good BLAS library (vendor, ATLAS, GOTO, . . .)
 May need adjust block size for each architecture

(Parameters modifiable in routine sp_ienv())
• Larger blocks better for uniprocessor
• Smaller blocks better for parallellism and load balance

 Open problem: automatic tuning for block size?

SuperLU tutorial

Exercise of SuperLU_DIST

42

 http://crd.lbl.gov/~xiaoye/SuperLU/slu_hands_on.html

SuperLU tutorial 43

Examples in EXAMPLE/

 pddrive.c: Solve one linear system
 pddrive1.c: Solve the systems with same A but different right-

hand side at different times
 Reuse the factored form of A

 pddrive2.c: Solve the systems with the same pattern as A
 Reuse the sparsity ordering

 pddrive3.c: Solve the systems with the same sparsity pattern
and similar values
 Reuse the sparsity ordering and symbolic factorization

 pddrive4.c: Divide the processes into two subgroups (two
grids) such that each subgroup solves a linear system
independently from the other.

SuperLU tutorial 44

SuperLU_DIST Example Program

 SuperLU_DIST_2.5/EXAMPLE/pddrive.c

 Five basic steps
1. Initialize the MPI environment and SuperLU process grid
2. Set up the input matrices A and B
3. Set the options argument (can modify the default)
4. Call SuperLU routine PDGSSVX
5. Release the process grid, deallocate memory, and terminate the MPI

environment

SuperLU tutorial 45

EXAMPLE/pddrive.c

#include "superlu_ddefs.h“

main(int argc, char *argv[])
{

superlu_options_t options;
SuperLUStat_t stat;
SuperMatrix A;
ScalePermstruct_t ScalePermstruct;
LUstruct_t LUstruct;
SOLVEstruct_t SOLVEstruct;
gridinfo_t grid;

· · · · · ·
/* Initialize MPI environment */

MPI_Init(&argc, &argv);

· · · · · ·
/* Initialize the SuperLU process grid */

nprow = npcol = 2;
superlu_gridinit(MPI_COMM_WORLD,

nprow, npcol, &grid);

/* Read matrix A from file, distribute it, and set up
the right-hand side */

dcreate_matrix(&A, nrhs, &b, &ldb, &xtrue,
&ldx, fp, &grid);

/* Set the options for the solver. Defaults are:
options.Fact = DOFACT;
options.Equil = YES;
options.ColPerm = MMD_AT_PLUS_A;
options.RowPerm = LargeDiag;
options.ReplaceTinyPivot = YES;
options.Trans = NOTRANS;
options.IterRefine = DOUBLE;
options.SolveInitialized = NO;
options.RefineInitialized = NO;
options.PrintStat = YES;

*/
set_default_options_dist(&options);

SuperLU tutorial 46

EXAMPLE/pddrive.c (cont.)

/* Initialize ScalePermstruct and LUstruct. */
ScalePermstructInit (m, n,
&ScalePermstruct);
LUstructInit (m, n, &LUstruct);

/* Initialize the statistics variables. */
PStatInit(&stat);

/* Call the linear equation solver. */
pdgssvx (&options, &A, &ScalePermstruct,
b, ldb, nrhs, &grid, &LUstruct,
&SOLVEstruct, berr, &stat, &info);

/* Print the statistics. */

PStatPrint (&options, &stat, &grid);

/* Deallocate storage */

PStatFree (&stat);
Destroy_LU (n, &grid, &LUstruct);
LUstructFree (&LUstruct);

/* Release SuperLU process grid */
superlu_gridexit (&grid);

/* Terminate MPI execution environment */
MPI_Finalize ();

}

SuperLU tutorial 47

Fortran 90 Interface

 SuperLU_DIST_2.5/FORTRAN/
 All SuperLU objects (e.g., LU structure) are opaque for F90
 They are allocated, deallocated and operated in the C side and not

directly accessible from Fortran side.

 C objects are accessed via handles that exist in Fortran’s user
space
 In Fortran, all handles are of type INTEGER
 Example:

0.12,0.18,0.5,0.16,0.21,0.19 ,

 lrepus

rll
ue

pl
ul

uus

A

SuperLU tutorial 48

SuperLU_DIST_2.5/FORTRAN/f_5x5.f90

program f_5x5
use superlu_mod
include 'mpif.h'
implicit none
integer maxn, maxnz, maxnrhs
parameter (maxn = 10, maxnz = 100,
maxnrhs = 10)
integer colind(maxnz), rowptr(maxn+1)
real*8 nzval(maxnz), b(maxn),
berr(maxnrhs)
integer n, m, nnz, nrhs, ldb, i, ierr, info, iam
integer nprow, npcol
integer init
integer nnz_loc, m_loc, fst_row
real*8 s, u, p, e, r, l

integer(superlu_ptr) :: grid
integer(superlu_ptr) :: options
integer(superlu_ptr) :: ScalePermstruct
integer(superlu_ptr) :: LUstruct
integer(superlu_ptr) :: SOLVEstruct
integer(superlu_ptr) :: A
integer(superlu_ptr) :: stat

! Initialize MPI environment
call mpi_init(ierr)

! Create Fortran handles for the C structures used
! in SuperLU_DIST
call f_create_gridinfo(grid)
call f_create_options(options)
call f_create_ScalePermstruct(ScalePermstruct)
call f_create_LUstruct(LUstruct)
call f_create_SOLVEstruct(SOLVEstruct)
call f_create_SuperMatrix(A)
call f_create_SuperLUStat(stat)

! Initialize the SuperLU_DIST process grid
nprow = 1
npcol = 2
call f_superlu_gridinit

(MPI_COMM_WORLD,
nprow, npcol, grid)

call get_GridInfo(grid, iam=iam)

SuperLU tutorial 49

f_5x5.f90 (cont.)
! Set up the input matrix A
! It is set up to use 2 processors:
! processor 1 contains the first 2 rows
! processor 2 contains the last 3 rows

m = 5
n = 5
nnz = 12
s = 19.0
u = 21.0
p = 16.0
e = 5.0
r = 18.0
l = 12.0

if (iam == 0) then
nnz_loc = 5
m_loc = 2
fst_row = 0 ! 0-based indexing
nzval (1) = s
colind (1) = 0 ! 0-based indexing
nzval (2) = u
colind (2) = 2
nzval (3) = u
colind (3) = 3
nzval (4) = l
colind (4) = 0
nzval (5) = u
colind (5) = 1
rowptr (1) = 0 ! 0-based indexing
rowptr (2) = 3
rowptr (3) = 5

else
nnz_loc = 7
m_loc = 3
fst_row = 2 ! 0-based indexing
nzval (1) = l
colind (1) = 1
nzval (2) = p
colind (2) = 2
nzval (3) = e
colind (3) = 3
nzval (4) = u
colind (4) = 4
nzval (5) = l
colind (5) = 0
nzval (6) = l
colind (6) = 1
nzval (7) = r
colind (7) = 4
rowptr (1) = 0 ! 0-based indexing
rowptr (2) = 2
rowptr (3) = 4
rowptr (4) = 7

endif

SuperLU tutorial 50

f_5x5.f90 (cont.)

! Create the distributed compressed row
! matrix pointed to by the F90 handle
call f_dCreate_CompRowLoc_Matrix_dist

(A, m, n, nnz_loc, m_loc, fst_row, &
nzval, colind, rowptr, LU_NR_loc, &
SLU_D, SLU_GE)

! Setup the right hand side
nrhs = 1
call get_CompRowLoc_Matrix

(A, nrow_loc=ldb)
do i = 1, ldb

b(i) = 1.0
enddo

! Set the default input options
call f_set_default_options(options)

! Modify one or more options
Call set_superlu_options

(options,ColPerm=NATURAL)
call set_superlu_options

(options,RowPerm=NOROWPERM)

! Initialize ScalePermstruct and LUstruct
call get_SuperMatrix (A,nrow=m,ncol=n)
call f_ScalePermstructInit(m, n,

ScalePermstruct)
call f_LUstructInit(m, n, LUstruct)

! Initialize the statistics variables
call f_PStatInit(stat)

! Call the linear equation solver
call f_pdgssvx(options, A, ScalePermstruct, b,

ldb, nrhs, grid, LUstruct, SOLVEstruct,
berr, stat, info)

! Deallocate the storage allocated by SuperLU_DIST
call f_PStatFree(stat)
call f_Destroy_SuperMatrix_Store_dist(A)
call f_ScalePermstructFree(ScalePermstruct)
call f_Destroy_LU(n, grid, LUstruct)
call f_LUstructFree(LUstruct)

SuperLU tutorial 51

f_5x5.f90 (cont.)

! Release the SuperLU process grid
call f_superlu_gridexit(grid)

! Deallocate the C structures pointed to by the
! Fortran handles
call f_destroy_gridinfo(grid)
call f_destroy_options(options)
Call f_destroy_ScalePermstruct(ScalePermstruct)
call f_destroy_LUstruct(LUstruct)
call f_destroy_SOLVEstruct(SOLVEstruct)
call f_destroy_SuperMatrix(A)
call f_destroy_SuperLUStat(stat)

! Terminate the MPI execution environment
call mpi_finalize(ierr)

Stop
end

SuperLU tutorial 52

Summary

 Sparse LU, ILU are important kernels for science and engineering
applications, used in practice on a regular basis
 Performance more sensitive to latency than dense case
 Continuing developments funded by DOE SciDAC projects
 Integrate into more applications
 Hybrid model of parallelism for multicore/vector nodes, differentiate

intra-node and inter-node parallelism
 Hybrid programming models, hybrid algorithms

 Parallel HSS precondtioners
 Parallel hybrid direct-iterative solver based on domain decomposition

