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What is the DOE ACTS Collection?

• Advanced CompuTational Software
• Tools for developing parallel applications

• Developed (primarily) at DOE Labs
• Separate projects originally
• ~ 20 tools

• ACTS is an “umbrella” project
• Leverage numerous independently funded projects
• Collect tools in a toolkit

http://acts.nersc.gov
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ACTS: Project Goals

• Extended support for experimental software
• Make ACTS tools available on DOE computers 
• Provide technical support (acts-support@nersc.gov)
• Maintain ACTS information center 

(http://acts.nersc.gov)
• Coordinate efforts with other supercomputing centers
• Enable large scale scientific applications
• Educate and train 
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Related Activities

• Software Repositories:
• Netlib: http://www.netlib.org
• HPC-Netlib: http://www.nhse.org/hpc-netlib
• National HPCC Software Exchange NHSE: http://www.nhse.org
• Guide to Available Mathematical Software: http://gams.nist.gov
• MGNet: http://www.mgnet.org
• NEOS: http://www-fp.mcs.anl.gov/otc/Guide
• OO Numerics:  http://oonumerics.org/oon

• Portable timing routines, tools for debugging, compiler technologies:
• Ptools: http://www.ptools.org
• Center for Programming Models for Scalable Parallel Computing: http://www.pmodels.org

• Education:
• Computational Science Educational Project:  http://csep1.phy.ornl.gov
• UCB’s Applications of Parallel Computers:

http://www.cs.berkeley.edu/~demmel/cs267_Spr99
• MIT’s Applied Parallel Computing: http://www.mit.edu/~cly/18.337
• Dictionary of algorithms, data structures and related definitions: 

http://www.nist.gov/dads
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Why is ACTS unique?

• Extended support for tools
• Accumulates the expertise and user feedback on the use of 

the software tools and scientific applications that used them: 
• independent software evaluations
• participation in the developer user groups e-mail list
• presentation of a gallery of applications 
• leverage between tool developers and tool users 
• workshops and tutorials
• tool classification
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ACTS: levels of support

• High
• Intermediate level
• Tool expertise
• Conduct tutorials

• Intermediate
• Basic level
• Provide a higher level of support to users of the tool

• Basic
• Basic knowledge of the tools
• Help with installation 
• Compilation of user’s reports (acts-support@nersc.gov)



Agenda, 
accomplishments, 
conferences, 
releases, etc

http://acts.nersc.gov

Tool descriptions, 
installation details, 
examples, etc

Goals and other 
relevant information

Points of 
contact

Search engine
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Large Scientific Codes: 
A Common Programming Practice

Large Scientific Codes: 
A Common Programming Practice

Tuned and machine
Dependent  modules

Application
Data Layout

Control I/O

Algorithmic Implementations
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Using today's hardware to tackle 
today's Grand Challenges

---
Q.  Why is it still difficult to obtain 

High Performance?
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• Technology
• Memory latency
• Algorithms
• Programming Practices

Some common and interesting answersSome common and interesting answers

:
:
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GFLOPS - TFLOPS

PFLOPS

Motivation - Example I
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Motivation - Example I

Duffy et. al., 
Lawrence Livermore National Laboratory

• CCM3 - spectral truncations of T170 and T239
• 50 Km spatial resolution is 32 times more grid cells and takes 

roughly 200 times longer to run
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• Non-linear demand for resources (CPU - Memory) 
• Multi-disciplinary application is more demanding

AGCM/ACM
2.5 long x 2 lat, 30 layers

25-chemical species

AGCM/ACM
2.5 long x 2 lat, 30 layers

2-chemical species

Motivation - Example II
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The Hardware
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Evolution of 
High Performance Computers
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-10 years

1x109 GFLOPS:
Vector

Shared Memory

Today

1x1012 TFLOPS:
Highly Parallel

Distributed Processing

1x1015
PFLOPS and Beyond:

Grids + HPC

-20 years

1x106 MFLOPS:
Scalar based

Cray 1S: weather forecast accurate for < 12 hours

Cray X-MP: weather forecast accurate for < 48 hours
plasma modeling in 2D became feasible

Cray 2: weather forecast accurate for < 48 hours
chemical dynamics and Higgs Boson Mass addressed

Cray Y-MP: weather forecast accurate for < 72 hours
2D non-linear hydrodynamics

• Earth Simulator (NEC)
•ASCI White Pacific (IBM)
•Intel ASCI Red (Xeor)
• ASCI Blue Pacific SST
•SGI ASCI Blue Mountain

•Fujitsu VP-2600
• CRAY YMP

2 GFLOPS

35.8 TFLOPS



16

Large Scientific Codes: 
A Common Programming Practice

Large Scientific Codes: 
A Common Programming Practice

Tuned and machine
Dependent  modules

Application
Data Layout

Control I/O

Algorithmic Implementations
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Memory Latency

Shared 
Memory

Distributed
Memory

Memory M1 M2

P2P1

Mn

PnP2P1 Pn

Different interconnection 
mechanisms

Hybrid-Model
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Memory Hierarchy

• Where is the data? Why is data locality important?

CPU

registers

O
n-Chip
Cache

1’s ns
100’s 
bytes

10’s ns
Kbytes

SRAM

Main
Memory
DRAM

100’s ns
Mbytes

•Secondary 
Storage
(Disk),

•Distributed
Memory

.1’s -10’s ms
Gbytes

Tertiary
Storage
(Disk or
Tape),

Remote
Cluster
Memory

10’s s
Tbytes

Speed
Size
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CPU vs. DRAM Performance

• Since 1980’s, µProcs performance has increased at a rate of 
almost 60%/year 

• Since 1980’s, DRAM (latency) has improved at a rate of 
almost 9%/year

Grows
50%/year
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Shared 
Memory

Distributed
Memory

Memory M1 M2

P2P1

Mn

PnP2P1 Pn

• Data parallelism

• Message Passing

• easier to implement 
• shared memory space
• mutual exclusion, contention

• shared area is use for sending 
and receiving data

• virtual shared memory
• data is implicitly available to 
all

• Implicit mutual exclusion
• Only explicit synch
• Depends on Memory 
Hierarchy and Network

Parallel Programming ParadigmsParallel Programming Paradigms
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ShortcomingsShortcomings

Tuned and machine
Dependent  modules

Application
Data Layout

Control I/O

Algorithmic Implementations

New Architecture or S/W
• Extensive tuning
• May require new programming 
paradigms
• Difficult to maintained!

New Architecture:
• Extensive re-rewriting
New or extended Physics:
• Extensive re-rewriting or 
increase overhead

New Architecture:
• May or may not need re-
rewriting
New Developments:
• Difficult to compare

New Architecture:
• Minimal to Extensive rewriting
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Alternative Programming ApproachAlternative Programming Approach

USER's APPLICATION CODE 
(Main Control)

Tuned and machine
Dependent  modules

Application
Data Layout I/OAlgorithmic 

Implementations

AVAILABLE

LIBRARIES & PACKAGES

AVAILABLE

LIBRARIES & PACKAGES

AVAILABLE

LIBRARIES 
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Hardware - Middleware - Firmware

• Programming Languages
•Code Optimization

•Algorithms•Data Structures
•O/S - Compilers

• General Purpose Libraries 
• Templates • Scientific Computing Tools

• Simulation codes

• Data Analysis codes 

• Scientific or 
engineering context

• Domain expertise

Software Development 
Levels of abstraction

Software Development 
Levels of abstraction
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ScaLAPACK

What needs to be computed?

bAx =
zAz λ= TVUA Σ=

ODEsPDEs

SuperLU
Aztec/Trilinos

HyprePETSc
TAO SUNDIALS

OPT++
min 1

2 r(x) 2: xl ≤ x ≤ xu{ }J. Meza(21)

J. Demmel (16)

J. Demmel(18)

Today Today
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What codes are being developed?

Parallel programs that use 
large distributed arrays

Support for Grids
and meshes

Language 
Interoperability

Infrastructure 
for distributed 

computing On-line 
visualization and 
computational 

stearing

Coupling distributed 
applications

Performance analysis 
and monitoringChasm

Global Arrays

Overture

CUMULVS
TAU

PAWS

Globus
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Portable, Extensible Toolkit for Scientific 
Computation

PETSc

The PETSc Development Team
Argonne National Laboratory

Mathematics and Computer Science Division
http://www-fp.mcs.anl.gov/petsc/

• Satish Balay
• Kris Buschelman
• Bill Gropp
• Dinesh Kaushik

• Mathew Knepley
• Lois Curfman-McInnes
• Barry Smith
• Hong Zhang
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What  is PETSc?

• A toolkit that eases the difficulties of developing 
parallel, non-trivial PDE solvers that deliver high 
performance (not a PDE solver black-box!)

• Freely available (well documented + lots examples and 
tutorials!)

• Portable to any parallel system supporting MPI

• Begun in 1991. Over 8,500 downloads. Current version 
2.1.3
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Structure of PETSc

Computation and Communication Kernels
MPI, MPI-IO, BLAS, LAPACK

Profiling Interface

PETSc PDE Application Codes

Object-Oriented
Matrices, Vectors, Indices

Grid
Management

Linear Solvers
Preconditioners + Krylov Methods

Nonlinear Solvers,
Unconstrained Minimization

ODE Integrators Visualization

Interface
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Structure of PETSc

Computation and Communication Kernels
MPI, MPI-IO, BLAS, LAPACK

Profiling Interface

PETSc PDE Application Codes

Object-Oriented
Matrices, Vectors, Indices

Grid
Management

Linear Solvers
Preconditioners + Krylov Methods

Nonlinear Solvers,
Unconstrained Minimization

ODE Integrators Visualization

Interface

How to specify the 
mathematics of the 
problem?

Data Objects



30

Structure of PETSc

Computation and Communication Kernels
MPI, MPI-IO, BLAS, LAPACK

Profiling Interface

PETSc PDE Application Codes

Object-Oriented
Matrices, Vectors, Indices

Grid
Management

Linear Solvers
Preconditioners + Krylov Methods

Nonlinear Solvers,
Unconstrained Minimization

ODE Integrators Visualization

Interface

How to solve the 
problem?

Solvers
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Structure of PETSc

Computation and Communication Kernels
MPI, MPI-IO, BLAS, LAPACK

Profiling Interface

PETSc PDE Application Codes

Object-Oriented
Matrices, Vectors, Indices

Grid
Management

Linear Solvers
Preconditioners + Krylov Methods

Nonlinear Solvers,
Unconstrained Minimization

ODE Integrators Visualization

Interface

How to handle Parallel 
computations?

Support for
structured and 

unstructured meshes
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Structure of PETSc

Computation and Communication Kernels
MPI, MPI-IO, BLAS, LAPACK

Profiling Interface

PETSc PDE Application Codes

Object-Oriented
Matrices, Vectors, Indices

Grid
Management

Linear Solvers
Preconditioners + Krylov Methods

Nonlinear Solvers,
Unconstrained Minimization

ODE Integrators Visualization

Interface

What debugging and 
monitoring aids it 
provides?

Correctness and 
Performance 
Debugging 
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PETSc Numerical Components

Compressed
Sparse Row

(AIJ)

Blocked Compressed
Sparse Row

(BAIJ)

Block
Diagonal
(BDIAG)

Dense Other

Indices Block Indices Stride Other
Index Sets

Vectors

Line Search Trust Region

Newton-based Methods
Other

Nonlinear Solvers

Additive
Schwartz

Block
Jacobi Jacobi ILU ICC LU

(Sequential only) Others
Preconditioners

Euler Backward
Euler

Pseudo Time
Stepping Other

Time Steppers

GMRES CG CGS Bi-CG-STAB TFQMR Richardson Chebychev Other
Krylov Subspace Methods

Matrices

Distributed Arrays

Matrix-free
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Vectors (basic operations) 

• Each process locally owns a subvector of contiguously numbered 
global indices

• Types: Sequential, MPI or SHARED

proc 3

proc 2

proc 0

proc 4

proc 1

–VecCreate(MPI_Comm Comm,Vec * v)
• comm - MPI_Comm of processors that share the 
vector
• v = vector

–VecSetType(Vec,VecType)
• Where VecType is 

–VEC_SEQ, VEC_MPI, or VEC_SHARED
–VecSetSizes(Vec *v,int n, int N)

� Where n or N (not both) can be PETSC_DECIDE
– VecDestroy(Vec *)
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Selected Vector Operations

Function Name Operation

VecAXPY(Scalar *a, Vec x, Vec y) y = y + a*x
VecAYPX(Scalar *a, Vec x, Vec y) y = x + a*y
VecWAXPY(Scalar *a, Vec x, Vec y, Vec w) w = a*x + y
VecScale(Scalar *a, Vec x) x = a*x
VecCopy(Vec x, Vec y) y = x
VecPointwiseMult(Vec x, Vec y, Vec w) w_i = x_i *y_i
VecMax(Vec x, int *idx, double *r) r = max x_i
VecShift(Scalar *s, Vec x) x_i = s+x_i
VecAbs(Vec x) x_i = |x_i |
VecNorm(Vec x, NormType type , double *r) r = ||x||
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Matrices (basic operations) 

• Fundamental objects for storing linear operators (e.g.,
Jacobians)

• Types: 
• default sparse AIJ: MPIAIJ, SEQAIJ
• block sparse AIJ (for multi-component PDEs): MPIAIJ, 

SEQAIJ
• symmetric block sparse AIJ: MPISBAIJ, SAEQSBAIJ
• block diagonal: MPIBDIAG, SEQBDIAG
• dense: MPIDENSE, SEQDENSE
• matrix-free

–MatCreate(MPI_Comm Comm, m,n,M,N, Mat * Mat) 
•MPI_Comm - processors that share the matrix
•number of local (m x n)/global (M x N) rows and columns

–MatSetType(Mat,MatType)
–MatDestroy(Mat)
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Matrices (basic ops) 

• Single user interface, e.g.,
• Matrix assembly

• MatSetValues()
• Matrix-vector multiplication

• MatMult()
• Matrix viewing

• MatView()
• Multiple underlying implementations

• AIJ, block AIJ, symmetric block AIJ, block diagonal, 
dense, matrix-free, etc.
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PETSc Linear Solvers

Goal:  Support the solution of linear systems,
Ax=b,

particularly for sparse, parallel problems arising 
within PDE-based models

User provides:
• Code to evaluate  A, b
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PETSc Linear Solvers 
(Preconditioning)

Given the linear system of equations:
Ax=b (1)

Krylov Projection Methods (KSP) are strongly dependent 
on the spectrum of A.  Use of preconditioning techniques 
usually accelerate the convergence rate of the iterative 
techniques. 

(ML
−1AMR

−1 )(MRx) = ML
−1b,

r ≡ b − AMR
−1MRx

For ML=I

rL ≡ ML
−1b − ML

−1Ax = ML
−1r

For MR=I
PETSC
Default

KRYLOV SUBSPACE METHODS + PRECONDITIONERS
R. Freund, G. H. Golub, and N. Nachtigal. Iterative Solution of Linear Systems,pp 57-100.
ACTA Numerica. Cambridge University Press, 1992. 
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PETSc

Application
Initialization Evaluation of A and b Post-

Processing

Solve
Ax = b PC KSP

Linear Solvers (SLES)

PETSc codeUser code

Main Routine

PETSc Linear Solvers (SLES)
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PETSc Non-Linear Solvers (SNLES)

PETSc codeUser code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Solve
F(u) = 0



42

Time Dependent PDE Solution

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

PC KSP

PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

Solve
U t = F(U,Ux,Uxx)

Post-
Processing
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• 3D incompressible Euler
• Tetrahedral grid
• Up to 11 million unknowns 
• Based on a legacy NASA code, FUN3d, 

developed by W. K. Anderson
• Fully implicit steady-state
• Primary PETSc tools: nonlinear solvers 

(SNES)  and vector scatters 
(VecScatter)

Results courtesy of Dinesh Kaushik
and David Keyes, Old Dominion 
Univ., partially funded by NSF and 
ASCI level 2 grant

CFD Application using 
PETSc 
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Dimension=11,047,096

Fixed-size Parallel Scaling Results (GFlop/s)

CFD Application using 
PETSc 
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(Time in seconds)

Fixed-size Parallel Scaling Results

CFD Application using 
PETSc 
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TAO
Toolkit for Advanced Optimization 

S. Benson, L. Curfman-McInnes, J. More and J. Sarich
Argonne National Laboratory 
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hypre 

Hypre TEAM
Lawrence Livermore National Laboratory

• Rob Falgout (project leader)
• Guillermo Castilla
• Edmond Chow
• Andy Cleary
• Van Emden Henson
• Jim Jones
• Mike Lambert
• Barry Lee
• Jeff Painter
• Charles Tong
• Tom Treadway
• Panayot Vassilevski
• Ulrike Meier Yang
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Hypre's Multiple interfaces 

Data Layout
structured composite block-struc unstruc CSR

Linear Solvers
GMG, ... FAC, ... Hybrid, ... AMGe, ... ILU, ...

Linear System Interfaces
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hypre conceptual interfaces

• Structured-Grid Interface (Struct)
• applications with logically rectangular grids

• Semi-Structured-Grid Interface (SStruct)
• applications with grids that are mostly—but not entirely—

structured (e.g., block-structured, structured AMR, 
overset)

• Finite Element Interface (FEI)
• unstructured-grid, finite element applications

• Linear-Algebraic Interface (IJ)
• applications with sparse linear systems
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CUMULVS
Development Team: Oak Ridge National Laboratory

Lead Pis: J. Kohl and Philip Papadopoulous
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• Collaborative User Migration, User Library for 
Visualization and Steering

• Enables parallel programming with the integration 
of:
• Interactive visualization (local and remote)

• Multiple views
• Fault Tolerance
• Computational Steering

CUMULVS
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• Setup input parameters to be steered 
• Specify the nature and decomposition  of the data fields 

to be visualized. Standard data decompositions: Block, 
Block-Cyclic, particle decompositions  and User defined 
decompositions

• Use existing interfacing to visualization packages or 
define a custom viewer on top of other visualization 
tools.

• Setup checkpoint/restart mechanism

CUMULVS



53

CUMULVS
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The GRID

• A large pool of resources
• Computers
• Networks
• Software
• Databases
• Instruments
• people

Requirements from GRID implementation:
• Ubiquitous: ability to interface to the grid at any point and leverage 
whatever is available
• Resource Aware: manage heterogeneity of resources
• Adaptive: tailored to obtain maximum performance from resources
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Globus
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• High throughput computing
• Schedule many tasks
• Bag of resources for the Grid, offering:

• Resource discovery
• Data Access
• Scheduling
• Reservation
• Security
• Accounting
• Code management

Globus
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TAU

• Profiling of Fortran 90, C, C++, HPF, and HPC++ 
codes

• Detailed information (much more than 
prof/gprof)

• C++: per-class and per-instance profiling
• Graphical display of profiling results (built-in 

viewers, interface to Vampir)
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• Profiling of Fortran 90, C, C++, HPF, and HPC++ 
codes

• Detailed information (much more than 
prof/gprof)

• C++: per-class and per-instance profiling
• Graphical display of profiling results (built-in 

viewers, interface to Vampir)

TAU
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• COSY: COmpile manager Status displaY
• FANCY: File ANd Class displaY
• CAGEY: CAll Graph Extended displaY
• CLASSY: CLASS hierarchY browser
• RACY: Routine and data ACcess profile displaY
• SPEEDY: Speedup and Parallel Execution Extrapolation DisplaY

TAU
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TAU (Speedy)
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How much effort is involved in 
using these tools?
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• Must of the tools provide interfaces 
(calling functions and subroutines) from 
Fortran and C

• Best approach is to start with examples 
for beginners!

• Several efforts are targeting Tool 
Interoperability!

Using the ACTS CollectionUsing the ACTS Collection
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ScaLAPACK

PETSc

Trilinos

SUNDIALS

Hypre

SuperLU

TAO

Overture

Global Arrays PAWSGlobus CUMULVSTAU

Chombo

OPT++

CCA

PhiPAC

ATLAS

Robust and High Performing Tools for Scientific Computing
Lawrence Berkeley National Laboratory - September 4-7, 2002
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To download electronic versions of the material covered in this 
workshop, please visit:

http://acts.nersc.gov/events/Workshop2002/program.html

The material includes pdf files with tutorials on the ACTS tools, 
example codes and uses.  It also contains many references to 
applications that have benefited from the use of the ACTS 
Collection.



acts-support@nersc.gov

http://acts.nersc.gov


