
Multi-level µ-Finite Element Analysis for Human
Bone Structures

Peter Arbenz, Uche Mennel, Marzio Sala

Institute of Computational Science, ETH Zürich
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The need for µFE analysis of bones

Osteoporosis is disease characterized by low bone mass and
deterioration of bone microarchitecture.

Lifetime risk for osteoporotic fractures in women is estimated
close to 40%; in men risk is 13%

Enormous impact on individual, society and health care social
systems (as health care problem second only to cardiovascular
diseases)

Since global parameters like bone density do not admit to
predict the fracture risk, so patients have to be treated in a
more individual way.

Today’s approach consists of combining 3D high-resolution
CT scans of individual bones with a micro-finite element
(µFE) analysis.



Distal part (20% of the length) of the radius in a human forearm.
Cortical vs. trabecular bone.



Computational domain consists of the union of equal (micro)
cubes. Obtained by means of CT scan.



Mathematical formulation

Equations of linear elasticity (weak formulation):
Find u ∈ [H1

E (Ω)]3 = {v ∈ [H1(Ω)]3 : v|ΓD
= uS} s.t.∫

Ω
[2µε(u) : ε(v) + λ div u div v] dΩ =
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∫
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gt
SvdΓ,

for all v ∈ [H1
0 (Ω)]3 = {v ∈ [H1(Ω)]3 : v|ΓD

= 0},
with Lamé’s constants λ, µ, volume forces f boundary
tractions g, symmetric strains ε(u).

Computational domain Ω is extremely complicated, union of
voxels.

FE approximation: displacements u represented by piecewise
trilinear polynomials.



Solving the system of equations

System of equation

Ax = b

A is large (huge) sparse, symmetric positive definite.

Approach by people at ETH Inst. of Biomedical Engineering:
preconditioned conjugate gradient (PCG) algorithm

element-by-element (EBE) matrix multiplication
diagonal preconditioning (Jacobi)
very memory economic, slow convergence as problems become
large



Solving the system of equations [cont’d]

Our new approach:

PCG with smoothed aggregation (SA) multilevel

preconditioning

AB−1y = b, y = Bx.

Solving with B means applying one multigrid V -cycle.

Buildung the preconditioner requires forming A.
Parallel / scalable implementation.



Multilevel: a simple multigrid V-cycle

1: Approximately solve A`u = b where ` is the current grid level.
2: procedure multilevel(A`,b,u, `)
3: if ` < L then
4: u = S`(A`,b,u);
5: r̂ = R`(b− A`u);
6: A`+1 = R`A`P`; v = 0;
7: multilevel(A`+1, r̂, v, ` + 1); {A`+1 = R`A`P`; }
8: u = u + P`v;
9: else

10: Solve A`u = b;
11: end if

Preconditioner: Call procedure multilevel(A0 = A,b,u = 0, L)



Parallel mesh reading

Mesh file content

A list of node
coordinates (x , y , z)

A list of hexahedra
(8 nodes)

A list of boundary
conditions

Implementation: HDF5 format/library

Binary file format allows for efficient I/O

Allows for parallel I/O

Mesh reading scales with number of processors



Mesh partitioning

Purpose

Load balance: Each processor gets the same number of nodes
Minimize solver communication: Minimize the surface area of
the interprocessor interfaces
Crucial for efficient parallel execution

Implementation

ParMETIS: Parallel library for graph partitioning.
Heuristic multilevel algorithm



Initial partition (left) based on node coordinates
ParMETIS repartition (right)



The Trilinos Software framework

The Trilinos Project is an effort to develop parallel solver
algorithms and libraries within an object-oriented software
framework for the solution of large-scale, complex
multi-physics engineering and scientific applications.

See http://software.sandia.gov/trilinos/

Provides means to distribute (multi)vectors and (sparse)
matrices (Epetra package).

Provides solvers that work on these distributed data.

Iterative solvers and preconditioners (AztecOO/IFPACK).

Smoothed aggregation multilevel preconditioner (ML
package).

Data distribution for parallelization (ParMETIS).

Direct solver on coarsest level (AMESOS)

http://software.sandia.gov/trilinos/


Computational environment

Hardware: Cray XT3 (at Swiss Supercomputer Center CSCS)

1100 2.6 GHz AMD Opteron processors,
1 CPU with 2 GB RAM / node
Cray SeaStar high speed network, bandwidth 7.6 GB/s (4
GB/s sustained)
Peak performance is 5.9 Tflop/s.

Software

UNICOS/lc, MPI-2, Trilinos (latest developers version)



Numerical experiment I: Weak Scalability test

Problem size scales with the number of processors



Weak Scalability test [cont’d]

name nodes elements equations

cube 1 98’381 60’482 295’143
cube 2 774’717 483’856 2’324’151
cube 3 2’609’611 1’633’014 7’828’833
cube 4 6’164’270 3’870’848 18’492’810
cube 5 12’038’629 7’560’250 36’115’887
cube 6 20’766’855 13’064’112 62’300’565
cube 7 32’983’631 20’745’326 98’950’893
cube 8 49’180’668 30’966’784 147’542’004
cube 9 70’042’813 44’091’378 210’128’439

Reduction of residual error by a factor 105, i.e.,
‖rk‖2 = ‖b− Axk‖2 < 10−5‖b‖2.



Weak Scalability test [cont’d]

[With optimal method: execution times stay constant.]



Weak Scalability test [cont’d]



Numerical experiment II: Real world application

Distal part (20% of the length)
of the radius in a human fore-
arm.

7’761’472 nodes

5’438’882 elements

23’284’416 degrees of freedom



Real world application [cont’d]



Real world application [cont’d]



Summary and conclusions

Have described the model and some implementation details for
multi-level µ-finite element analysis of human bone structures.

By using the presented techniques, one can obtain a fully
parallel finite element code.

Numerical results show excellent weak and strong scalability
for both an artificial model problem and a realistic human
bone model.

Future work:

Reduce memory consumption (again)
EBE approach for finest level matrix
Smooth surfaces / interfaces by means of
flexible hexahedral meshes
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