Evaluation of Linear Solvers
for an Astrophysics Problem

P.B. Vasconcelos

[@PORTO .
e =\ B- SR

CMUP

Centro de Matematica
Universidade do Porto




Description of the astrophysics problem

Solve

T(D =Z@Q -+ f integral equation

T integral operator defined on X = L' (I ), [l = lO,T*J

(Tx (1) = jg(]’[ — T )x(z")dz"
— T 1s the . of a stellar atmosphere
- T of the atmosphere

— z 1s on the resolvent set of T
~ fe L'(I) is the source term
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Description of the astrophysics problem

T —
. o "
« gisthe defined by g(T):z;El(T), O0<7<T7T
— @ €]0,]] is the and
— E| is the first and it belongs
to the family
E (7):= r eXp(:T‘u) du,7>0,v=>1
ELa(8)==E,(0) E,(0) = ——v >
— g1s in the sense that
lim g(7) =+ ge C*(0,7" ) x; S ]f g(lr-thdr'<e
7—0% TE O,T*

g(t)>0forallze b,T*J; g decreasing function on JO,T*J
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Projection method: Kantorovich

* Approximate T(D =Z@ + f by Tn¢n =z, + f

— consider a grid _ _
 ofin g 0=7,,<7,,<--<7,,,<7,,=7
7'-n,O 7’-n,l Tni 1 Tni Tn,n

X, —Span{e o J =1 } e, , €X

n

- Let & be the projection op. 7, x = Z <x,e .>en’j

n,j
J=1
n

I' x=m Tx = Z <x,€n,j>enj,€n’j:T*e:,]

n n
J=1

*
— where €, ; isthe adjointbasisof €, ; inX~
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Matrix formulation

* The solution of the approximate problem

ro,=z¢,+f
* leads to the solution of a linear system with n eq’s and »
unknowns

(An o Z[n )xn = bn
— A, 1s the restriction of 7, to X,,,:An = (<en,j9€n,i>)-1 _

b=(r), x =t

| ,
* werecover @, fromx, by @, = —(Z X, (])en,j — f)
z\ o
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Matrix coefficients: A,

grid (Tn,j)iodeﬁned on [O,‘L'*], for i, je [1,n]

J
i) == [ [ Ele= e, (eharas
%[EB(dn,i—l,j) E3(dnz L 1)+ E3(dnu 1) E3(dnai’f')]’ L=
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Typical coefficient matrix

A —zI , z=1
band and sparse matrix

strong decay 1n
magnitude from the
diagonal
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Approximate solution
. T

How to solve 1,0, =z@, + f when the associated

coefficient matrix A, — z[  has large dimension?
° One can use:

— direct methods,

— preconditioned nonstationary iterative methods, or

— 1terative refinement methods (Newton-type method):

given x

{x(kﬂ) = x® —(T—z1)" (Tx® — 2x® — 1)
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Iterative refinement methods

» Jacobian (T — zI )™ can be approximated by

— scheme A ( ’s algorithm): (T =zl )_1
— scheme B ( ’s algorithm): (T (T, - zI )y =1 )/ z
— scheme C ( algorithm): ((T =zl )_1 r -1 )/ z
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Iterative refinement methods

=

e

-~

 In practice T is not used. The problem is restricted the
to X, , m>>n ,considering a finer projection
discretization of 7, T, (mxm)

« T restrictedto X : |4

« T restricted to X : C = (<€m,ja gnz>y‘ni

(nxm)

mxn)

/N

o T restrictedto X : | D= (<€n, I m,»ﬂ’i
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Atkinson’s scheme

given A,, A, C, D, mgj)

repeat until convergence

Un = Aﬂm?glk) — C:}f}&f)
band block LU solve|( A, — 21) w, = v,

(0)

::I:m:z

P

or <
sparse iterative methods

(k+1) )

prolong. w,

update

o — o o / Xn andxm
(k+1) )

S = Ty + W,

k=k—+1
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Solving the problem in the m-D space

- Wecansolve T, . =z@ + [ forthe finer grid

approximated matricial problem 4 —zI =0b

*  Our goal 1s to experiment with robust and portable algorithm

implementations (from the )

* Direct methods:

* Preconditioned nonstationary iterative methods:
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Problem specification

orid 7 " nonuniform orid (4 zones)
parameters: z= 1, @ =0.75 and @ =0.9; tol : £<107"

machines: located at LBNL/NERSC
— : 32 64-bit 1.4 GHz Intel Itanium-2 processors, with 192
GBytes of shared memory
— : 356 dual-processor nodes, 2.2 GHz/node,
6 GB/node, interconnected with a high-speed InfiniBand network
— : 380 compute nodes with 16 Power 3+ processors/node,
16 GB memory/node.
software:
— MPI, F77 & F95, PETSc, SuperLU
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Normalized times for the generation phase and system solution

with SuperLU, for various matrix siz

S———

i

-— =

“.“I“ generation solution
m factor solve
1000 3,26E+03 6,95E+01 1,00E+00
2000 2,12E+04 1,65E+02 3,00E+00
4000 9,71E+04 3,59E+01 6,00E+00
8000 4,26E+05 7,51E+02 1,80E+01
16000 1,80E+06 1,54E+03 3,00E+01
32000 7,36E+06 3,12E+03 5,35E+01
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Normalized times and nb. it. for various matrix sizes (m) on

-

up to 32 processors (p) on the Opteron cluster

-~

generation GMRES BiCGStab
m p 22 iterations 14 iterations
10000 1 5 40E+03 7,54E+00 7.95E+00
2 2,67E+03 4,02E+00 4,58E-+00
4 1,39E+03 2,32E+00 2,56E+00
8 6,90E+02 1,80E+00 1,97E+00
16 3,51E+02 1,15E+00 1,25E+00
32 1,79E+02 1,15E+00 1,36E+00
25000 4 8,41E+03 5,42E+00 5,61E+00
:
16 2,16E+03 2,05E+00 1,83E+00
32 1,07E+03 1,00E+00 1,15E+00
0000 16 8,57E+03
32 1,53E+00 1,86E+00
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Normalized times and nb. it. for various matrix sizes (m) on

up to 32 processors (p) on the Opteron cluster
e .

. GMRES . BiCGStab

o =0.90 generation
m p 24 iterations 37 iterations

10000 1 2,83E+03 6,14E+00 6,99E+00
2 1,36E+03 3,62E+00 4,12E+00

4 7,20E+02 0E+00 2,31E+00

8 3,59E+02 +00 1,76 E+00

16 1,80E+0 1,11E+00 1,30E+00

32 9,1 1,02E+00 1,00E+00

25000 4 2, 4,96E+00 5,37E+00
2,22E+03 2,96E+00 3,39E+00

16 1,11E+03 1,78 E+00 2,11E+00

32 5,55E+02 1,33E+00 1,46E+00

50000 16 4,36E+03 2,82E+00 3,14E+00
32 2.21E+03 2.15E+00 2,05E+00
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Speedup up to 32 processors on the Opteron cluster

g E d = = B - E— b e

t, =clapsed time using p processors

4 1
p 32
tp

28

24

m =10000 20 |

——ideal
——generation
——solver

Speedup
>

0 4 8 12 16 20 24 28 32

number of processors
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m = 50000

Normalized times for Jacobi and block Jacobi

el

e -

preconditioners on the Opteron cluster

1,10E+01
1,00E+01
9,00E+00 -
8,00E+00 -
7,00E+00 -
6,00E+00 -
5,00E+00 -
4,00E+00 -
3,00E+00 -
2,00E+00 ~

1,00E+00
0

12

—— gmres(jacobi) — — - - gmres(bjacobi)

bcgs(jacobi) — - — - bcgs(bjacobi) ‘

16
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Conclusions

*  We discussed the numerical solution of a radiative transfer
equation for modelling the emission of photons in stellar
atmospheres.

* The parallelization of the generation phase greatly reduces the
time to solution and enables the solution of large systems.

* The selection of appropriate linear solvers is important for
delivering performance and portability.

« Compared to iterative refinement techniques, the present
approach

— leads to 40% savings in time in the generation phase (for
m=50000 and np=5)

— reduces the number of communications required for mapping the
coarse problem into the fine one (up to 5x for Atkinson and 4x
for Brakhage and Ahues’ schemes for m=50000 and np=5)
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Motivation

* In this work we consider the numerical solution of a
radiative transfer equation for modeling the emission
of photons in stellar atmospheres.

» Mathematically, the problem 1s formulated in terms of
a weakly singular Fredholm integral equation defined
on a Banach space.

« Computational approaches to solve the problem are
discussed, using direct and iterative strategies that are
implemented 1n open source packages.

18-21 June 2006 PARA'06 29



Atkinson’s parallel scheme

< = = T |
. 0y (0 . . : .
given A, m?(l. ), quqlgn:l:, z given A, i, Cli|, Dli|, =, m,gj), m&?)
repeat until convergence repeat until convergence

(%)

receive C[i] * @, [i] from all P; < compute C[i] * xp,

- Aﬂm; Z Cla] * 2l compute A,,[i] * mg?{f )

Yn
solve (A, — zI) w, = v,
( )( ) / receive (wﬂ — m&kj) from Py

k
compute w, — Ty /

receive A, [i] * 2 compute D] (wﬂ_ — mglk))

~1 - (k) .
Y = Ym — D i Amli] * 2 / receive m&kﬂ) and m£f+l) from Fj
receive Di] (wﬂ — mf)) from all P,

k=k+1

in location w,[(t — 1) * n+1: 7 % n

_ 1 -
W, = = (Wi, — Ups) send
25 = 2 L 2 =20 4,
L=l broadcast
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