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CUMULVS USER’S GUIDE
COMPUTATIONAL STEERING AND INTERACTIVE VISUALIZATION
IN DISTRIBUTED APPLICATIONS

James Arthur Kohl and Philip M. Papadopoulos

Abstract

CUMULVS is an infrastructure library that allows a programmer to easily ex-
tract data from a running parallel simulation and send the data to a visualization
package. CUMULVS includes the capability to steer user-defined parameters in a
distributed simulation. An additional feature being added to CUMULVS is the abil-
ity to perform user-directed checkpointing and restarts of parallel programs across a
heterogeneous network. The interface is kept as simple as possible. The program-
mer merely defines the decomposition of parallel data and the number and types of
scalar parameters. CUMULVS supports the simultaneous viewing of multiple dynam-
ically attached front-end visualization programs. A single interface routine handles
the attachment/detachment protocols, the selection and sending of data, and updat-
ing steering parameters. CUMULVS allows each viewer to interactively select the
granularity and extent of data that it desires to see. This allows the user to effectively
visualize large datasets without exhausting the network bandwidth. CUMULVS also
supports user-directed checkpointing and restarts across a heterogeneous machine.
The visualization and checkpointing features of CUMULVS are independent.



1. Introduction

CUMULVS is an infrastructure library that allows a programmer to add interactive steer-
ing and visualization to an existing parallel or serial program. From the application code
perspective, the setup is very simple. After describing how data fields are decomposed
across processors, and which parameters are adjustable from the front-end, the program
make a single subroutine call in the body of the main loop. This call directs when CU-
MULVS can communicate with and send data to attached viewers. The return status from
this subroutine can be queried to determine if the viewer program has adjusted (steered)
any parameters. CUMULVS guarantees that all nodes in the parallel program will receive
updated parameters at the exact same timestep as long as all nodes call the interface sub-
routine at each timestep. The subroutine consumes very little overhead when no viewers
are attached — the cost of a single message probe.

CUMULVS “understands” standard HPF-style block and block-cyclic decompositions
as well as particle decompositions. The system allows a viewer to examine the data
in a parallel program as if it were available as a large monolithic array. The software
manages all the details of what data to pack and send to a front end and all the details of
attaching a viewer to a running program. Currently, CUMULVS uses PVM as its message
passing substrate. The essential ingredient in PVM is the allowance for anonymous tasks
to communicate with each other without both tasks being started at the same time.
CUMULVS can be ported to any other messaging system that allows these dynamics. A
name registry is used so that a viewer needs only to know the “name” of the code in order
to start communicating with it.

This user guide explains how CUMULVS interprets data decompositions, how viewers
interact with a running program and gives manual pages for the supported user interface

routines.

2. How to Use CUMULVS

CUMULVS is intended for programmers to easily add real-time visualization and steer-
ing to iterative programs. A large number of problems fall into this category making
CUMULVS a widely applicable but not universal tool. The pseudo-code in Figure 1 illus-
trates the typical statement sequence that a programmer would follow to define distributed
data fields, steerable parameters, and enable visualization.

The predominant complication is setting up CUMULVS to understand the user’s dis-
tribution of data so that the software can automatically select subsets as required by an
attached front-end. Once this setup is complete, “all the action” occurs in a single sub-
routine call, stv_sendToFE(). The programmer never worries about how a visualization
package attaches to a CUMULVS program. Steering parameters are guaranteed to be
updated at the same iteration across the entire parallel program as long as the program-
mer calls stv_sendToFE() at each iteration. The following section documents the data



Initialize CUMULVS data structures (stv_init())

Define data decomposition (stv_decompDefine())

Define data field with a previously defined decomposition (stv_fieldDefine())
Define steering parameters (stv_paramDefine())

Start main iterative loop

<usual calculation>
nchanged = stv_sendToFE()

<program response to nchanged steered parameters>

End of main iterative loop

Figure 1: Typical execution order for a CUMULVS program
decompositions that CUMULVS understands.

3. Data Decompositions

CUMULVS understands regular block decompositions, block-cyclic decompositions a la
HPF, particle decompositions, overlapping block decompositions, and a user-defined block

decomposition. To define any decomposition, a program must supply:
o The dimension of decomposition (1D, 2D, 3D) (dim)
e The global upper and lower bounds of the data array (glb, gub)
¢ The dimension of logical processor decomposition (prank < dim)
e How each axis of the array is decomposed (azisinfo)

Data is decomposed onto a logical array of processors. For example, a three-dimensional
array might be decomposed onto a two-dimensional array of processors. This means that
one axis of the array lies entirely within a single process. Sometimes

3.1. Block Decompositions: stvBlock

The stvBlock data decomposition distributues data in a block manner across logical pro-
cessors. Blocks of data do not wrap. The number of data elements assigned per processor
is based on the formula

n=[N/p]
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where n is the number of elements assigned to a processor, p is the number of processors
for this coordinate, N is the total number of elements. CUMULVS will assign n elements
to processors until the total number of elements has been exhausted. This formula only
poses difficulties when IV is not evenly divisible by p. For example, in an extreme case
where N = 11 and p = 10 then the first five processors will be assigned 2 elements each,
the sixth processor will be assigned one element, and the remaining will be assigned none.
If the user desires a different block-type decomposition, the stvExplicit may have to be
used.

3.2. Block-Cyclic Decompositions: stvCyclic

The stvCyclic assigns blocks of datain a cyclic manner to processors. The default cycle size
is 1, but is user selectable. Blocks of size ¢ are assigned to processors until the number of
processors is exhausted. The assignment wraps and continues starting at logical processor
0. For example, if the number of processors p is 5, the number of elements N is 14 and

the cycle size ¢ is 2, then processors 0 — 4 will be assigned the following array indices:
proc0 {0,1,10,11}

procl {2,3,12,13}

proc2 {4,5}

proc3 {6,7}

procd {8,9}

Note that that above example uses C 0-based indexing. Fortran 1-based indexing would
have each array index increased by one.

3.3. Explicit Decompositions: stvExplicit

If neither of the above decomposition schemes statisfy the user requirements, then and
uneven or explicit decomposition may be used. In this scheme the user specifies an lower
and upper bound of array indices that held on each processor. Returning to the example
in the subsection 3.1, suppose that one desires processor 0 hold the first two array indices
and the remainder should hold on index each. Then, lower and upper bounds of the explict

decomposition per processor my be specified as.

lower; = 14+ 1if¢ # 0. 0 otherwise.
upper; = 1+2 1 # 0. 1 otherwise.

The explicit data decomposition should be used only when other decompositions will not
work.
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3.4. Collapsed or On-processor Decompositions: stvCollapse

If all the indices for a coordinate should reside on a single processor, the decomposition is
said to be collapsed. In this case, the user should use the decomposition type stvCollapse.

4. Parameters

CUMULVS supports scalar steering parameters. The programmer declares the type (e.g.,
float, int) of the parameter, name and a storage location. Front-end viewers. Once the
parameter is declared, it will only be changed during a call to stv_sendToFE. This routine
returns the number of parameters that have been called. A programmer may query to
check if a parameter has been changed by callind stv_isParamChanged.

5. CUMULVS Viewers

This section describes the construction of front-end “viewer” programs for use with CU-
MULVS. The CUMULVS package already comes with a standard text-only viewer, a
standard AVS-compatible viewer, and a sample custom TCL / TK viewer for a particle-
based CUMULVS game called “FLYME.” These viewers should be sufficient for typical
user needs, and special custom viewers need not be created. However, if a special viewer
is desired, these example viewers represent the best source of information for designing a
custom user viewer. The provided viewers constitute complete working examples of how
viewers interact with user applications using CUMULVS. The code in these viewers is
given freely, to be copied and used as needed for the construction of other viewers, as long
as the enclosed copyright statements are included.

In addition to the sample viewers, several key viewer routines are documented, in
Section 7, with standard man pages. It should be noted that there is presently only a
C language interface for CUMULVS viewers, with no Fortran or other language support.
It is assumed that the functionality of viewers is best executed in traditional C or C++
programming. While it is certainly possible to invoke the provided viewer routines from
other languages, there is no specific support provided for doing this with CUMULVS.

There are several classes of functions provided for use with CUMULVS viewers, to
support the collection of data field values, to provide computational steering, and to assist
the viewer writer with other viewer utilities. A typical viewer consists of some subset of
these viewer library functions. The following subsections describe the viewer library in
more detail.

5.1. Data Field Collection

The primary use of CUMULVS is for the interactive collection of data field values from
a running application, to support graphical animations or other analyses. There are a
number of functions provided in CUMULVS for handling the necessary data field opera-



-5-

tions in viewers, including initializing communication with the user application, requesting
data fields, collecting data frames, allocating data frame storage, and dumping data field
values.

All viewers must call stv_viewer_init (). This function initializes a link with a specific
user application and gathers information about the data fields and parameters that are
available from that application. The call to stv_viewer_init() returns an STV_VIEWER
instance which is used in subsequent viewer routine calls to identify the specific application
being “viewed” (thereby allowing a single viewer to connect to multiple applications if
desired).

Once / if CUMULVS finds the desired application, the viewer may select some num-
ber of data fields to be requested for collection. The stv_clear view field select()
routine resets this selection, and then individual STV_VIEW_FIELD elements can be cho-
sen for a data field request. The STV_VIEW FIELD elements are obtained by name using
the stv_get view field name() routine, and each can then be selected by setting the
STV_VIEW FIELD—>selected flag to stvTrue. The set of fields selected for a particular
field request is considered a “view field group” (see STV_VIEW_FIELD_GROUP below).

The viewer can select a specific data type for each data field in a view field group
(VFG). The value of STV_VIEW FIELD—>view_type for a given data field can be set to any
of the supported CUMULVS data types. This data type can be different than the original
type defined for the field in the application. For example, if a simulation used double
floating point data for its computation, a viewer could request the data in single precision
or even integer format, which might be more suitable for simple graphical presentations.
Similarly, the viewer can specify the storage order for each field in a VFG by setting the
value of STV_VIEW FIELD—>view_storage_order (stvColumnMajor for standard Fortran
storage order, or stvRowMajor for standard C storage order). The data values will then
be rearranged accordingly during collection to support the desired array addressing in
the viewer. So, for example, an application written in C language can be viewed more
naturally using AVS, which assumes a Fortran storage order.

If the data type or storage order are not specified before requesting the view field group,
then the data field will be collected and provided to the viewer using the original data
type or storage order, as declared in the actual user application. Otherwise, CUMULVS
automatically converts the data type and storage order at each task of the application
before the data is transferred to the viewer.

For each view field group, the viewer must specify the portion of the computational
space which is to be collected for viewing. This area is referred to as the “visualization
region,” or “vis region” for short. The vis region consists of a set of upper and lower
coordinate bounds for each axis of the computational domain, as well as a “cell size”
for each dimension. The cell size indicates the granularity of data values which are to
be returned. For example, a cell size of “2” for the “X” axis corresponds to collecting
every other data value along that axis. Then combining this with a cell size of “3” for
the “Y” axis would result in collecting 1 out of every 6 data values. So a complete vis
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region specification might include the set of data values between 10 and 50 along the “X”
axis with a cell size of 5 (every fifth data value - 10, 15, 20...), and those between 30 and
40 along the “Y” axis with a cell size of 2 (every other data value - 30, 32, 34...), thus
resulting in 54 total data values (including data points addressed as (10,30), (10,32),...;
(15,30), (15,32)...; etc). The vis region bounds and cell sizes for each axis then determine
precisely which data points will be collected for each viewer “data frame.”

Note that a single vis region specifies the collection area for the entire group of data
fields in a VFG. If different vis regions are desired for different data fields they must be
requested in separate VFGs. A given data field can, however, occur repeatedly in any
number of view field groups.

Once the desired data fields have been selected and the vis region has been specified,
a field request is sent to the application tasks using the stv_viewer request field()
routine. This routine returns an STV_VIEW FIELD GROUP instance that represents the group
of data fields requested. The STV_VIEW_FIELD_GROUP is used in other viewer routines to
manipulate aspects of the incoming data frames, as well as to terminate or release the
interactive data field connection with the application.

Before a data frame can be received by a viewer, the appropriate storage must be
allocated. The viewer must calculate the total storage necessary for each field in a data
frame and save this information in a special array. This is accomplished automatically
using the stv_allocate Field arrayDecl() routine. If the actual data frame storage is
to be allocated by CUMULVS (as is done with the sample text-only viewer), then the
stv_allocate Field Data() routine is called for each field in the group. This routine is
used only for those fields in the VFG with regular contiguous data decompositions. For
fields that are particle fields, the space for each particle is automatically allocated for the
viewer by CUMULVS. Afetr a data frame has been used by the viewer, it can be freed
using the stv_free field array() routine. Any particles allocated can be freed by a call
to the stv_reset Field Particles() routine.

If a viewer needs to use externally allocated memory for storing its data frames (as
is true with the AVS viewer), then the viewer need only set the proper pointer to that
memory in the VFG structure. Specifically, VFG—>field values[ field_index ] must
be assigned the address of the pre-allocated memory, where field index is the index
of the particular data field in the group list. It should be noted that this VF'G pointer
setting must be cleared (back to (STV_VALUE) NULL) before recycling the VFG with a new
stv_viewer_init() call. Otherwise, CUMULVS will assume that it had allocated that
memory and will attempt to free it.

To actually receive a data frame, the viewer calls the stv_viewer_receive frame()
routine. This routine returns the VFG of the received frame (in case there are several
VFGs), a restart flag, and a return status code. There are several return status val-
ues depending on the outcome of the data frame collection with the application. If an
stvStatusOk is returned, then the VFG argument contains a handle to the view field
group that has collected a complete data frame. If a stvStatusBadFrame is returned it
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means that all tasks in the application have sent their data, but some were not completely
up-to-date with the last requested vis region resulting in an inconsistent data frame. In
this case the data frame can simply be discarded. Otherwise, something catastrophic has
happened and the viewer should disconnect from the application. If the restart flag has
been set (to stvTrue) then the application has merely reconfigured, and the viewer should
disconnect and try to re-attach to the same data fields.

Once a complete data frame has been received, the viewer needs to send the ap-
plication an “XON” to release it for the next iteration. This is done using the
stv_viewer send XON() routine. The sooner the XON is sent, the less intrusion and
overhead is expended by the application in waiting for it. l.e. it is a good idea to send
the XON immediately, before processing the new data frame. If the iteration time for the
application is sufficiently large (and the size of the data frame is not too immense), the
application might not wait for the XON at all. The XON could already be there waiting
for the application when it polls for permission to continue with the next iteration.

The vis region for a VFG can be modified on-the-fly by a viewer using the
stv_viewer_set_VisRegion() routine. This routine records the new set of region bounds
and cell sizes and sends the application an update message with the new vis region.
CUMULVS takes care of verifying that the next data frame is collected using the
proper vis region, and will return a stvStatusBadFrame return code if any of the ap-
plication tasks did not receive the update in time. The frequency of data frames
(counted in number of application iterations between frames) can be modified using the
stv_viewer_set_VisFrequency() routine. CUMULVS insures that the relative timing be-
tween the application and the viewer is maintained, to support the loose synchronization
required for computational steering.

When a data frame is collected, CUMULVS can be set to automatically dump out a
textual representation of the data it has received. This is done in the viewer using the
stv_setopt() routine with either of the stvOptDump or stvOptDumpAll options. The
stvOptDump option dumps only the final data frame, where the stvOptDumpAll option
dumps all intermediate data frame states, as they occur after each individual appli-
cation task sends its piece of the data frame. If the viewer needs to otherwise dump
the data field values, then the stv_dump field array() routine (or one of its variants,
stv_dump vfg field array() for viewers, or stv_dump_user field array() for user ap-
plications) can be called to display any complete data frame.

5.2. Steering Computations

Aside from collecting data frames from running applications, CUMULVS viewers can
also remotely modify an application’s computational parameters on-the-fly. This process
is known as “computational steering.” Often this is a useful capability when the user
desires to experiment with various parameters in a computation. Or perhaps viewing
the intermediate results of a computation can reveal a problem or a new opportunity to
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manipulate the application. Such interactive control can save countless hours of wasted
computation time waiting for final application results that might have begun experiencing
problems in the first few iterations.

Before a viewer can initiate steering with a user application it must invoke the
stv_viewer_steering init() routine. This routine performs the equivalent of a special
data field request, creating a loosely synchronized connection with the user application.
The viewer uses the connection to transfer updated steering parameters to the applica-
tion. The loose synchronization guarantees that all tasks in the application will apply

? or point in the computation. Note that because this

those updates at the same “time,
steering connection utilizes a type of field request, the viewer must process the incoming
data field protocol using repeated calls to stv_viewer receive frame(). This routine
automatically maintains the steering connection by returning XONs to the application
when all tasks have sent their acknowledgements for a given iteration. Failure to call
stv_viewer receive frame() while steering will result in the application hanging (wait-
ing for XONs). The viewer should not explicitly send a steering XON.

Once steering has been successfully initialized, a specific steering parameter can be
controlled by acquiring the appropriate steering token. The parameters can be looked
up by name using stv_get_view parammname(), which returns a STV_VIEW_PARAM in-
stance. The steering token for a particular parameter is then obtained using the
stv_viewer_steering request () routine. If the token for a parameter is not already in a
viewer’s possession, then the STV_VIEW PARAM— >token value will be set to stvSteerToken
upon return from the request call.

If, however, the token is already in use, then the value of token will either be
stvSteerRqstd or stvSteerNot. The stvSteerRqstd value means that the steering re-
quest was successfully submitted but the token is unavailable. In this case, when the viewer
which currently has the token releases it, CUMULVS will broadcast a message inform-
ing all the requesting viewers. So subsequent calls to stv_viewer_steering request()
merely check for that release message and, if found, attempt again to acquire the steer-
ing token. Note that calling stv_viewer_steering request() with the block flag set
to stvTrue can result in deadlock if the token does not become available. This is due
to the application starving for steering connection XONs. If the viewer is not assured of
obtaining a given steering token, then, while waiting for a steering token, a viewer should
alternate between a non-blocking call to stv_viewer_steering request() and a call tp
stv_viewer receive frame().

If the value of STV_VIEW PARAM—>token is stvSteerNot after a call to
stv_viewer_steering request (), then some error has occurred, such as an internal sys-
tem error or an incorrect invocation parameter. In this case, the steering parameter
will not likely be obtained, and the viewer should disconnect from the application using
stv_viewer send FieldHaltGroup(), stv_viewer _send FieldHaltAl1() or by exiting.
For steering-only viewers that do not have other view field groups for data field collection,
the external symbol extern STV_VIEW FIELD _GROUP STV_STEER_VFG can be used in either



of the FieldHalt library calls.

To actually set the value of a steering parameter for which the steering token has been
obtained, the viewer can call either stv_viewer steer parameter() for scalar parame-
ters or stv_viewer_steer vparameter() for vector parameters. These routines copy the
viewer data, in the form of an STV_VALUE data value pointer, over into the viewer pa-
rameter structure, and then sets the changed flag for that parameter. When all steering
parameter values have been set as desired, the stv_viewer_send NewParams() routine is
called to pass the new parameter values to the application tasks. This routine checks the
changed flags for each parameter and updates only those parameters with new values.

When all changes to a steering parameter have been completed, a viewer can release the
steering token with a call to stv_viewer_steering release(). This call will relinquish
the steering token and, as stated above, will broadcast a message to any other viewers that
have requested the given steering parameter and are waiting for the token. If a viewer
exits without releasing control of a steering parameter, the token should be automatically
freed by CUMULVS.

Aside from traditional scalar and vector computational steering parameters, CU-
MULVS also supports a special type of steering parameter known as an “indexed” pa-
rameter. For certain kinds of simulations, especially particle-based applications, there
may be many replicated objects or entities to be steered. If it is necessary to manipulate
individual instances of these objects, or if the number of instances in the application can
grow or shrink, then indexed steering parameters are essential. Using indexed parame-
ters, only one set of steering parameters are defined for a single object instance. Then
in addition to the regular application parameters, one additional “index” parameter is
defined. When a set of steering parameters is passed to the application, the index value is
extracted first to determine which object instance is to be steered, and then the remaining
parameter values are applied only to that one instance.

The special index parameter is defined by including the stvIndex flag with the regular
parameter data type in the call to stv_paramDefine() (or stv_vparamDefine(), as in
stvInt | stvIndex. The index parameter can be of any legal CUMULVS data type,
and its value is not interpreted internally by CUMULVS. It is left to the application to
properly utilize the custom index value in referencing its object instances.

It should be noted that the process of acquiring steering tokens still applies to in-
dexed steering parameters. In fact, steering tokens are granted for each desired value of
a particular steering index, so that different instances from the same object set can be
simultaneously steered. For example, if one viewer wishes to steer an object instance “A”,
and another viewer wishes to steer a different instance “B” from the same object set,
then each viewer will obtain their own “indexed token.” Note that steering tokens are
not generated until they are requested, so CUMULVS need not know the entire range of
possible index values, nor allocate them all, to properly coordinate the tokens.



5.3. Other Viewer Utility Functions

6. User Library Manual Pages
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stvfinit() stv_init()

Initialize CUMULVS data structures and declare the name that viewer front-ends will look

for to communicate with the application

Synopsis

C int info = stv_init( char *appname, int msgtag,
int nproc, int nodeid )
FORTRAN  stvfinit( appname, msgtag, nproc, nodeid )

Parameters
appname — name of the application. Used by front-end viewers to look
up and connect to the running CUMULVS application. This
name does not have to be the same as the executable name.
msgtag — message tag for CUMULVS to use for communication with
the application. The user’s code must not receive an mes-
sages with type msgtag.
nproc — number of processors that make up the entire application.
nodeid - mnode number of the calling process. Must be in the range
[0, nproc — 1]
info — return status parameter
Discussion

The routine stv_init initializes CUMULVS data structures and declares the size
and name of the user application. All tasks must call stv_init once. The call
is not collective, but viewing front-ends will not be able to communicate with the
application until all tasks have called this routine.

CUMULVS uses a single message tag to communicate with the program. All tasks
must use the same user-specified tag. A tagis needed for messaging systems that do
not implement context (like PVM). Unpredictable behavior will occur if the user’s
code receives messages intended for the CUMULVS library. Most notably, com-
plete wild-card receives (e.g., pvmrecv(-1,-1) will cause programs to fail. “Semi-
wildcard” receives (e.g., pvm_recv(-1,tid) or pvm_recv(tag,-1)

CUMULVS needs to know how many processes or tasks make up a parallel applica-
tion. Each task must have a unique node id that is in the range of 0 to nproc — 1.

Examples

C:

info = stv_init( "csimple", 1000, nproc, i );
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FORTRAN:

call stvfinit( ’csimple’, 1000, nproc, i, info )

Errors

Error conditions that can be returned by stv_init.

Name Possible cause

stvStatusBadParam Could not store application name for lookup

See Also

stv_fieldDefine, stv_vParamDefine, stv_isParamChanged, stv_sendToFE



- 13 -

stvfdecompdefine() stv_decompDefine()

Defines a data decomposition. CUMULVS needs to know the nature of a data field’s

distributed data decomposition to know how to extract data for a front-end viewer.

Synopsis

C int decompld = stv_decompDefine( int dim, int *axisType,
int *axisInfo, int *axisInfo2,
int *glb, int *gub,
int procRank, int *procShape )

FORTRAN  stvfdecompdefine( dim, axisType, axisInfo
axisInfo2, glb, gub,
procRank, procShape, decompId )

Parameters

dim — integer specifying the data dimension of the distributed
array.

axisType — integer array (of size dim) specifying the decomposition
type of each particular axis of the array. Valid type val-
ues are: stvBlock, stvCyclic, stvCollapse, and stvFzplicit.

axisInfo — integer array (of size dim) that specifies the details for
each corresponding axisType type value. Entry ¢ in the
axisInfo array corresponds to entry ¢ in the axisType ar-
ray (see below).

axisInfo2 — integer array (of size dim) that specifies more details for
certain decomposition types in axisType. Entry ¢ in the
axisInfo2 array corresponds to entry ¢ in the axisType
array. Currently, the axisInfo2 array is only referenced
for decompositions of type stvFzplicit for a particular axis.

glb — integer array (of size dim) that specifies the global lower
bounds of the decomposed data field.

gub — integer array (of size dim) that specifies the global upper
bounds of the decomposed data field.

procRank  — integer that specifies the rank (number of dimensions) of
the logical processor topology array.

procShape — integer array (of size procRank) that specifies the extent
(number of processors) of the logical processor topology ar-
ray in each dimension.

decompId — integer identifier returned for this decomposition. Used in
stv_fieldDefine.
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Discussion

The routine stv_decompDefine defines all parameters needed to describe a decom-
position to CUMULVS. The elements of an array can be decomposed in different
ways on the different axes. For example, a three-dimensional array might be decom-
posed in a block manner in the first dimension, cyclic in the second dimension, and
on-processor (or collapsed) in the third dimension (see below). CUMULVS supports
arbitrary mixing of these decomposition types. The global lower and upper bounds
are used to specify the complete extent of the effective global array (as if it were
available in a single processor’s memory). For arrays where data is decomposed
across some number of processors (e.g. stvBlock, stvCyclic, or stvFzplicit), the num-
ber of processors in that dimension must also be specified for CUMULVS using the
pshape argument. Note that the first entry in pshape corresponds to the number
of processors used for the first axis that has a distributed data decomposition, not
necessarily the first data axis. Any remaining entries in pshape correspond in turn
to any remaining decomposed axes, skipping over any collapsed axes.

There are four decomposition types currently supported by CUMULVS:

stvBlock The array is block decomposed along this axis, meaning that each proces-
sor stores a contiguous number of array elements along the axis, in a single
grouping per processor. The user can specify the number of elements, or the
block size, using the appropriate entry in the axisInfo array, or can leave
the value as stvDefault for an "even” distribution. If the size of the array
along the partiuclar axis is not evenly divisible by the number of processors,
then the block size is set to the ceiling of the number of elements in the axis
divided by the number of processors, with the last processor being allocated
a lesser number of elements as appropriate.

stvCyclic  The array is cyclically decomposed along this axis, meaning that sets of con-
tiguous array elements, of a fixed size (the cycle size), are incrementally as-
signed to successive processors. After each processor has been assigned its
first “cycle set” of array elements, the allocation begins again with the first
processor, continuing to assign one set per processor in order until all elements
have been allocated. The user may specify the cycle size using the axisInfo
array, or can leave the value as stvDefault for a cycle size of 1.

stvFzplicit The array is explicitly decomposed into potentially non-uniform blocks in
this axis. The axisInfo array contains the lower bound index (in global
coordinates) for the array block, and the axisInfo2 array contains the upper
bound index (in global coordinates).

stvCollapse The array is not decomposed along this axis. All elements, within the range
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of elements dictated by the decompositions of the other axes, reside on each

single processor.

For the cases where the axisInfo2 array is not required, the stvDefaultInfo constant
can be used in its place in the stv_decompDefine argument list. Similarly, for local
arrays that are not decomposed across a set of processors, the stvLocalArray constant
can be used for each of the axisType, axisInfo, axisInfo2 and pshape arguments to
stv_decompDefine.

Examples

1. A 100x 100 two-dimensional array is decomposed in a block manner in its first axis on
a linear array of 10 processors. The second axis is not decomposed, so each processor
has all the elements along this axis, within the corresponding block of indices for
the first axis. Specifically, the array elements on processor 0 are {1 : 10,1 : 100},
{11:20,1:100} on processor 1, and so on.

dim = 2
axisType = { stvBlock, stvCollapse }
axisInfo = { stvDefault, stvDefault }

axisInfo2 = stvDefaultInfo

glb = {1, 1}
gub = { 100, 100 }
prank = 1

pshape = { 10 }

2. A 100 x 100 two-dimensional array is collapsed in its first axis but decomposed in a

block manner in its second axis on a linear array of 10 processors.

Same as above except
axisType = { stvCollapse, stvBlock }

3. A 100 x 200 x 300 three-dimensional array is decomposed in a block manner in
the first axis with 4 logical processors in that dimension, collapsed in the second
axis, and cyclic decomposed with a cycle size of 12 in the third axis across 8 logical
processors. This means that the array is decomposed over 32 total processors. Hence,
for example, the processor with logical address [0,1] has array elements {1 : 25,1 :
200, {13:24,109: 120,205 : 216} } while the processor with logical address [3,5] has
array elements {76 : 100, 1 : 200, {61 : 72,157 : 168,253 : 264} } .

dim = 3
axisType = { stvBlock, stvCollapse, stvCyclic }
{ stvDefault, stvDefault, 10 }

axisInfo
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axisInfo2 = stvDefaultInfo
glb={1, 1, 1}

{ 100, 200, 300 }
prank = 2

pshape = { 4, 8 }

gub

4. A 100x200x300 three-dimensional array is collapsed in the first axis but decomposed
explicitly in the second and third axes, over a 2 by 3 logical processor topology.
Suppose that logical processor [0,1] has array elements {0 : 92,150 : 200}, and
processor [2,3] has elements {158 : 200,275 : 300}, etc:

processor [0,1]:
dim = 3
axisType = { stvCollapse, stvExplicit, stvExplicit }
axisInfo = { stvDefault, 0, 150 }
axisInfo2 = { stvDefault, 92, 200 }
glb = {1, 1,1}
{ 100, 200, 300 }
prank = 2
pshape = { 2, 3 }

gub

processor [2,3]:
dim = 3
axisType = { stvCollapse, stvExplicit, stvExplicit }
axisInfo = { stvDefault, 158, 275 }
axisInfo2 = { stvDefault, 200, 300 }
glb={1, 1,1}
gub = { 100, 200, 300 }
prank = 2
pshape = { 2, 3 }

5. A 10 x 10 two-dimensional array is kept locally on a single processor (or replicated
on each of a set of processors). Note that prank is still set to 1 for the single scalar

processor.

dim = 2
axisType = stvlocalArray

axisInfo = stvlocalArray
axisInfo2 = stvLocalArray
glb = {1, 17

gub = { 10, 10 }
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prank = 1
pshape = stvlocalArray
Errors

Error conditions can be returned by stv_decompDefine.

Name Possible cause

stvStatusBadParam Invalid argument
stvStatusNoMem unable to malloc memory

See Also

stv_fieldDefine, stv_paramDefine, stv_sendToFE
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stvfdumplocalfieldbounds() stv_dumpLocalFieldBounds()

Prints out in a human readable form the global coordinate indices that are mapped to the
calling processor of a field that has been described to CUMULVS using stv_fieldDefine.

Synopsis
C int info = stv_dumplocalFieldBounds( int fieldId )
FORTRAN  stvfdumplocalfieldbounds( fieldId, info )
Parameters
fieldId - integer specifying the Id of the decomposed field
info — integer error return value
Discussion

The routine stv_dumpLocalFieldBounds prints out the global indices that CU-
MULVS believes to reside in the calling process for a particular decomposed field.
This is a useful debugging routine so that that programmer can verify agreement
between the user’s code and CUMULVS internals.

Examples

C:
info = stv_dumplLocalFieldBounds( fieldId );

FORTRAN:
call stvfdumplocalfieldbounds( fieldId, info )

Example Output:

Global Array Bounds for Field "density":
[1-601[1-601[1-120]1]

Logical array of processors is:
2 X 2

Local processor address is:

{0,01}
Local Portion of Global Space for Field "density":

Bounds for Axis #1:
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[ 1-30]

Bounds for Axis #2:
[ 31 - 60 1]

Bounds for Axis #3:
[ 1-120]

Errors
Error conditions that can be returned by stv_decompDefine.

Name Possible cause

stvStatusBadParam Invalid argument, usually a bad field identifier

See Also

stv_fieldDefine, stv_.decompDefine



- 920 -

stvffielddefine() stv_fieldDefine()

Defines a field of data to CUMULVS with a particular decomposition as set in the routine
stv_decompDefine.

Synopsis

C #include "stv.h"
int fieldId = stv_fieldDefine( void *var, char *name,
int decompld, int *arrayoffset,
int *arraydecl, int type,
int #*paddr, int aflag )
FORTRAN include ’fstv.h’
stvffielddefine( var, name, decompIld, arrayoffset,

arraydecl, type, paddr, aflag )

Parameters



var

name

decompId

arrayoffset

arraydecl

type

paddr

aflag

fieldId

Discussion

The routine stv_fieldDefine defines a field to CUMULVS. Fields are assigned
string names so that they are easily identified on the viewer front-end. The data
decomposition of the field must first be defined using the routine stv_decompDefine.
CUMULVS must be told how the array storage has been declared by the program so
it can properly extract data elements from the user’s data space. CUMULVS must
also be given the virtual processor address so that the system can properly match
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pointer to a processors local storage for the decomposed
array of data

string name of the variable so that a viewer program can
identify the program variable as something meaningful.
integer identifier returned from the rou-
tine stv_decompDefine. Tells CUMULVS how this array
has been decomposed across processors. Several arrays can
share the same decomposition.

integer array that indicates the offset, if any, to the first
valid data element in the local storage array; used with
arraydecl below to index into memory to select data ele-
ments. This array must be dim long as specified in the call
to stv_decompDefine.

integer array that informs CUMULVS of the declared size
of the local storage array so that it can properly index into
memory to select data elements. This array must be dim
long as specified in the call to stv_decompDefine.

integer specifying the data type of the field. The data type
can be any of the CUMULVS standard data types (see
below).

integer array that holds the address of this processor in the
virtual processor array. This array should have prank en-
tries as specified in the call to stv_decompDefine. Pro-
cess address element ¢ must be in the range 0..pshape;
where pshape; is element 7 of the array pshape as passed
to stv_decompDefine.

integer option flag that is the sum of the desired options:
stvvisonly

returned integer handle that identifies this field.

global storage coordinates to local storage coordinates.

The following data types are supported by CUMULVS:
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CUMULVS type | C FORTRAN
stvint int integer*4
stvFloat float real*4
stvCplx — complex*8
stvDouble double real*8
stvDceplx — complex*16
stvLong long —
stvShort short integer*4
stvStr char * character
stvUshort unsigned short | —

stvUint unsigned int —
stvUlong unsigned long | —

stvByte char character

The local array storage offsets in arrayoffset are intended for use with any decompositions
that are utilized with overlapping boundaries or other storage restrictions. For the case
where there is no offset to the first valid data element in the storage area, there are
predefined constants provided with CUMULVS to signify this default array offset:

C FORTRAN
stvNoFieldOffsets | STVNOFIELDOFFSETS

Examples

1. The array p is 100 x 100 two-dimensional array that is decomposed in a block manner
in its first dimension on a linear array of 10 processors. The following fragments will
properly define this array to CUMULVS.

float p[10]1[100];
int arrayDecl[2] = {10,100%};
int addr;

decompId = stv_decompDefine(dim, axisType, axisInfo, glb, gub,
prank, pshape);

/* on processor n */
addr = n;
fieldId = stv_fieldDefine( p, "pressure", decompld, stvFloat,
stvNoFieldOffsets, arrayDecl, &addr, stvVisOnly);

FORTRAN:
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real p(10,100)
integer arrayDecl(2), addr
data arrayDecl /10,100/

call stvfdecompdefine(dim, axisType, axisInfo, glb, gub, prank,
pshape, decompId)
C on processor n
call stvffielddefine( p, "pressure", decompId, STVFLOAT,
STVNOFIELDOFFSETS, arrayDecl, n, STVVISONLY, fieldId)

Errors
Error conditions can be returned by stv_fieldDefine.

Name Possible cause

stvStatusBadParam Invalid argument. Usually an invalid decomposi-
tion Id.

stvStatusNoMem unable to malloc memory

See Also

stv_particleFieldDefine, stv_paramDefine, stv_sendToFE
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stviparamdefine() stv_paramDefine()

Defines a scalar steering parameter for a CUMULVS front-end viewer to modify

Synopsis

C int paramId = stv_paramDefine( char *name, void * var,
int type, int flag )
FORTRAN  stvfparamdefine( name, var, type, flag, paramId )

Parameters
name — name of the parameter as it should appear to a front-end
viewer
var — pointer to the variable where CUMULVS will deposit new
parameter values.
type — identifies the type of parameter. See the pvm fieldDefine
for the mapping of CUMULVS types to C or Fortran types.
flag — identifies sub-actions for CUMULVS. Currently, only the
flag stvVisOnly is recognized.
paramId - parameter Id that is used as a handle for the internal data
structure that holds the parameter information.
Discussion

The routine stv_paramDefine allows a programmer to define a steering parameter.
After each call to stv_sendToFE, a defined steering parameter may have been up-
dated by a front-end viewer. CUMULVS insures that a parameter is updated at
the same iteration (logical time) for each node in the parallel program. The routine
stv_sendToFE returns the number of parameters that were changed. A program-
mer may call stv_isParamChanged to determine if a particular parameter has been

updated.
Examples

C:
paramId = stv_paramDefine( "Velocity", v, stvFloat, stvVisOnly );

FORTRAN:
call stvfparamdefine( ’Velocity’, v, STVFLOAT, STVVISONLY, paramid )

Errors
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Error conditions that can be returned by stv_paramDefine.

Name Possible cause

stvStatusNoMem could not allocate memory for internal data
structures

See Also

stv_fieldDefine, stv_vParamDefine, stv_isParamChanged, stv_sendToFE
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stv_vparamDefine()

Defines a vector of steering parameter for a CUMULVS front-end viewer to modify. Avail-
able only from C.
Synopsis

C int paramId = stv_vparamDefine( char *name, void #** vars,
char **pnames, int *types,
int num, int aflag )

Parameters
name — name of the parameter as it should appear to a front-end
viewer
vars — array of pointers to variables where CUMULVS will deposit
new parameter values.
type — identifies the type of parameter. See the pvm fieldDefine
for the mapping of CUMULVS types to C or Fortran types.
pnames — array of parameter names as they should appear to a front-
end viewer
types — array of types for parameters
num — number of parameters represented in this “vectored”
parameter
flag — identifies sub-actions for CUMULVS. Currently, only the
flag stvVisOnly is recognized.
paramId - parameter Id that is used as a handle for the internal data
structure that holds the parameter information.
Discussion

The routine stv_vparamDefine allows a programmer to define a vector of steering
parameters. The parameters in the vector are individually steerable but are referred
to collectively by the name of the entire vector.

After each call to stv_sendToFE, a defined steering parameter may have been up-
dated by a front-end viewer. CUMULVS insures that a parameter is updated at
the same iteration (logical time) for each node in the parallel program. The routine
stv_sendToFE returns the number of parameters that were changed. A program-
mer may call stv_isParamChanged to determine if a particular parameter has been
updated.

Examples

C:
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paramId = stv_vparamDefine( "State Vector', vars, names, types, num,
stvVisOnly );

Errors

Error conditions that can be returned by stv_vparamDefine.

Name Possible cause

stvStatusNoMem could not allocate memory for internal data
structures

See Also

stv_fieldDefine, stv_paramDefine, stv_isParamChanged, stv_sendToFE
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stvfisparamchanged() stv_isParamChanged()

Tells whether a parameter has been changed by a CUMULVS front-end viewer.
Synopsis

C int info = stv_isParamChanged( int paramId )
FORTRAN  stvfisparamchanged( paramId, info )

Parameters
paramId - parameter Id handle as returned from stv_paramDefine.
info — 0 if parameter is unchanged. Non-zero if parameter
changed.
Discussion

The routine stv_isParamChanged tells the program if a particular parameter was
changed during the most recent call to stv_sendToFE. Calling stv_isParamChanged
resets the status variable. This means that a second call to this subroutine with
the same parameter Id will always return false, unless stv_sendToFE has been called

and the parameter was again updated.
Examples

C:
changed = stv_isParamChanged( paramId ) ;

FORTRAN:
call stvfisparamchanged( paramid, changed )

See Also

stv_isDefineParam, stv_sendToFE
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stviparticledefine() stv_particleDefine()

Defines a “particle” composition domain for particle-based computations

Synopsis

C int particleld = stv_particleDefine( char #*name, int dim,
int *glb, int *gub, int nproc,
STV_GET_PARTICLE get_particle,
STV_MAKE_PARTICLE make_particle )

FORTRAN stvfparticledefine( name, dim, glb, gub, nproc,
get_particle, make_particle,
particleId )

Parameters

name — name of the particle domain as it should appear to a front-
end viewer.

dim — integer specifying the dimension of the particle computa-
tional domain.

glb — integer array that specifies the global lower bounds of the
particle computational domain.

gub — integer array that specifies the global upper bounds of the
particle computational domain.

nproc — integer specifying the number of processors computing in
the particle domain.

get particle()  — wuser provided routine for looking up particular particles in
the computational domain (see below).

make particle() — user provided routine for creating new particles in the com-
putational domain, required for checkpointing only (see
below).

particleId — returned particle Id that is used as a handle for the internal
CUMULVS data structure that holds the particle domain
information.

Discussion

The routine stv_particleDefine() allows a programmer to define a particle compu-
tation space for CUMULVS. This “particle” domain serves the same function as a de-
composition does for a contiguous computational domain (see stv_decompDefine()),
by describing the space within which particles can exist, and how CUMULVS

can obtain information regarding specific particles. The “particle Id” returned by
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stv_particleDefine() is used in subsequent calls to stv_particleFieldDefine()
to declare the actual data fields that exist within each particle.

Unfortunately, there are no standard, well-defined particle computational domain
structures, and each user application can maintain collections of particle data in
a unique manner. Therefore CUMULVS cannot provide any automated particle
accessor functions like those used with contiguous decompositions. It is the respon-
sibility of the user to provide an accessor routine, get_particle(), that will return

a user-defined particle handle for CUMULVS.

The format of the user’s get_particle() routine is:

C: void get_particle( int index, STV_REGION R,
STV_PARTICLE_ID *id, int *coords )

Fortran: fgetparticle( index, R, id, coords )

The index value is intended to select a specific particle from the user’s collection
on a given application task. The STV_REGION defines a portion of the particle space
in which to search for particles, and the index refers to which of the particles in
that region is desired (by order of occurrence). The stv_particle_in region()
routine assists the user by indicating whether the coordinates of a particle lie in the
desired region. The search order of the particles in the region is arbitrary, and at
the discretion of the user.

The STV_PARTICLE_ID returned by get_particle() should be some user-defined
value that can be used subsequently to identify the given particle when accessing its
data field values. The STV_PARTICLE_ID could be an integer index into an array of
particles, or perhaps a pointer to a particle structure, at the user’s discretion. The
user must also set the values of the CUMULVS-provided integer array coords to
hold the coordinates of the returned particle.

It should be noted that, for efliciency only, CUMULVS will initially invoke
get particle() with an index value of -1 when beginning to collect each new set of
particle Ids. This is intended as a convenience for the user, to allow the saving and
resetting of search state in get_particle() routines. CUMULVS will always request
particles with increasing index values, so better performance can be obtained by be-
ginning each search where the previous search had stopped. CUMULVS ignores the
values returned for a -1 index value.

In addition to a get_particle() routine, the user can define an additional
make particle() routine, for future releases of CUMULVS which will support check-
pointing. This (currently optional) routine will be used when CUMULVS needs to
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“load” the checkpoint data into user application tasks to restart them from a check-
point. The format of the user’s make particle() routine is:

C: void make_particle( int *coords,
STV_PARTICLE_ID *id )

Fortran: fmakeparticle( coords, id )

Here, CUMULVS passes in an array of coordinates and the user is expected to
allocate or initialize a new particle which is located at those given coordinates. The
user-defined handle for this new particle should be returned in the STV_PARTICLE_ID
id.

Examples

C:

void get_helicopter __STV_Prototype__(( int, STV_REGION,
STV_PARTICLE_ID *, int * ));

particleId = stv_particleDefine( "Helicopter", 3, glb, gub, nprocs,
get_helicopter, (STV_MAKE_PARTICLE) NULL );

void get_helicopter( hnum, R, id, coords )
int hnum;

STV_REGION R;

STV_PARTICLE_ID *id;

int *coords;

{
static HELI H_save = (HELI) NULL;
static int count_save = -1;
HELI H;

int hcoords[3];
int count;

/* Reset */
if ( hn == -1 )

{
*id = (STV_PARTICLE_ID) NULL;
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H_save = (HELI) NULL;

count_save = -1;
/* Restore */
if ( hnum >= count_save && count_save != -1 )
{

H = H_save;

count = count_save;

/* Fresh Search */

else
{
H = HELIS;
count = 0;
}

/* Search for Helicopter */

while ( H != NULL )

{
hcoords[0] = H->loc_x;
hcoords[1] = H->loc_y;
hcoords[2] = H->loc_z;

if ( stv_particle_in_region( R, hcoords, 3 ) )
{
if ( ++count == hnum )

{
*id = (STV_PARTICLE_ID) H;

coords[0] = hcoords[0];
coords[1] = hcoords[1];
coords[2] = hcoords[2];
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H_save = H->next;
count_save = count;

return;

H = H->next;

/* Helicopter Not Found */
*id = (STV_PARTICLE_ID) NULL;

H_save = (HELI) NULL;
count_save = -1;

FORTRAN:
call stvfparticledefine( ’Helicopter’, 3, glb, gub, nprocs,
get_helicopter, 0, particleid )

subroutine get_helicopter( hnum, R, id, coords )
integer hnum;

integer R(8);

integer id;

integer coords(3);

Errors

Error conditions that can be returned by stv_particleDefine().

Name Possible cause
stvStatusNoMem could not allocate memory for internal data
structures

stvStatusBadParam invalid values passed or required arguments
omitted

See Also

stv_particleFieldDefine(), stv_particle_in region(), stv_decompDefine()
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stvipfielddefine() stv_pfieldDefine()

Defines a data field within a “particle” composition domain
Synopsis

C int pfieldId = stv_pfieldDefine( char #*name,
int particleld, int type,
STV_GET_PFIELD get_pfield,
STV_VALUE get_pfield_arg,
STV_SET_PFIELD set_pfield,
STV_VALUE set_pfield_arg,
int aflag )

FORTRAN  stvfpfielddefine( name, particleld, type,
get_pfield, get_pfield_arg,
set_pfield, set_pfield_arg,
aflag, pfieldId )

Parameters



name

particleld

type

get pfield()

get pfield_arg

set pfield()

set_pfield._arg

aflag

pfieldld

Discussion
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name of the particle data field as it should appear to a
front-end viewer.

particle computational domain handle as returned from a
call to stv_particleDefine() or stvfparticledefine().
Provides bounds of the computational domain for CU-
MULVS. Each particle domain can have any number of data
fields defined for it.

integer specifying the data type of the particle data field.
The type can be set to any of the CUMULVS standard data
types (see below).

user provided routine for extracting the data value for this
data field within a particle (see below). The specific par-
ticle is identified by a user-defined handle as returned by
an invocation of the user’s get_particle() routine (see
stv_particleDefine().

user provided argument for invocation of the get pfield()
routine, to potentially allow handling of several particle
fields by a single handler routine. User can pass any pointer
or constant value via this argument.

user provided routine for setting the value of this data field
in a particle, required for checkpointing only (see below).
user provided argument for invocation of the set_pfield()
routine, to potentially allow handling of several particle
fields by a single handler routine. User can pass any pointer
or constant value via this argument.

integer option flag that is the sum of the desired op-
tions. Currently the only option available is stvVisOnly /
STVVISONLY, but CUMULVS checkpointing will ulitmately
utilize the stvCpOnly / STVCPONLY options as well.
returned particle field Id that identifies this field.

The routine stv_pfieldDefine() allows a programmer to define individual data

fields for the particles in a particle computation space for CUMULVS. Each particle
will have its own set of values for each defined particle data field. CUMULVS allows
access to any desired subset of particle fields for visualization. The “pfield Id”

returned by stv_pfieldDefine() identifies the data field for any other operations

or options.

The data field can be of any CUMULVS data type. The following data types are
currently supported:
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CUMULVS type | C FORTRAN
stvint int integer*4
stvFloat float real*4
stvCplx — complex*8
stvDouble double real*8
stvDceplx — complex*16
stvLong long —
stvShort short integer*4
stvStr char * character
stvUshort unsigned short | —

stvUint unsigned int —
stvUlong unsigned long | —

stvByte char character

Unfortunately, there are no standard, well-defined particle domain computation
structures, and user applications can maintain collections of particle data using
unique, application-specific approaches. Therefore CUMULVS cannot provide any
automated particle data accessor functions like those used with contiguously decom-
posed data fields (see stv_fieldDefine()). It is the responsibility of the user to
provide an accessor routine, get pfield(), that will return the actual value of a

data field for CUMULVS.

The format of the user’s get_pfield() routine is:

C: void get_pfield( STV_PARTICLE_ID id,
STV_VALUE userData, STV_VALUE *value )

Fortran: fgetpfield( id, userdata, value )

The STV PARTICLE_ID id is a user-defined particle handle returned by a call
to the wuser’s get_particle() routine for the given particle domain (see
stv_particleDefine()). The userData argument is also user defined, and is an
arbitrary data pointer or constant value to be used in handling get_pfield() re-
quests (see below example). CUMULVS allocates the proper amount of memory for
the generic STV_VALUE value pointer, so the user’s get_pfield() routine need only
assign it the proper value before returning.

In addition to a get_pfield() routine, the user can define an additional
set_pfield() routine, for releases of CUMULVS which support checkpointing. This
(optional) routine will be used when CUMULVS needs to “load” the checkpoint data
into user application tasks to restart them from a checkpoint. The format of the

user’s set_pfield() routine is:
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C: void set_pfield( STV_PARTICLE_ID id,
STV_VALUE userData, STV_VALUE *value )

Fortran: fsetpfield( id, value )

Here, CUMULVS passes in the generic STV_VALUE value which holds the checkpoint
data for the given particle data field. The user is expected to assign that value to
the data field for the particle referenced by STV_PARTICLE_ID id, using the user-
provided userData pointer or constant value for this particle field to do so.

Examples

C:

void get_helicopter_pfield __STV_Prototype__{( STV_PARTICLE_ID,
STV_VALUE, STV_VALUE * ));

particleId = stv_particleDefine( '"Helicopter", ... );

pfieldId = stv_pfieldDefine( "Heading", particleld, stvDouble,
get_helicopter_pfield, (STV_VALUE) PF_HEADING,
(STV_SET_PFIELD) NULL, (STV_VALUE) NULL,
stvVisOnly );

void
get_helicopter_heading( id, field, value )
STV_PARTICLE_ID id;
STV_VALUE field;
STV_VALUE value;
{
HELTI H;

long fid;

H = (HELI) id;

fid = (long) field;
switch ( fid )

{

case PF_HEADING:
*value = (STV_VALUE) &(H->heading);
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break;
default:
xvalue = (STV_VALUE) NULL;
break;
+
+
FORTRAN:
call stvfparticledefine( ’Helicopter’, ..., particleld )

call stvfpfielddefine( ’Heading’, particleld, STVDOUBLE,
get_helicopter_heading, 3, 0, O, STVVISONLY )

subroutine get_helicopter_heading( id, field, value )
integer id;
integer field;
real*8 value
if ( field .eq. O ) then
else if ( field .eq. 3 ) then
value = heli_heading( id )
endif

return

end

Errors

Error conditions that can be returned by stv_pfieldDefine().
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Name Possible cause
stvStatusNoMem could not allocate memory for internal data
structures

stvStatusBadParam invalid values passed or required arguments

omitted
See Also

stv_particleDefine(), stv_fieldDefine()
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stviparticlefielddefine() stv_particleFieldDefine()

(Obsolete! See stv_pfieldDefine()) Defines a data field within a “particle” composition

domain

Synopsis

C int pfieldId = stv_particleFieldDefine( char #*name,
int particleld, int type,
STV_GET_PFIELD get_pfield,
STV_SET_PFIELD set_pfield,
int aflag )

FORTRAN  stvfparticlefielddefine( name, particleld,
type, get_pfield, set_pfield,
aflag, pfieldId )

Parameters
name — name of the particle data field as it should appear to a
front-end viewer.
particleId — particle computational domain handle as returned from a

call to stv_particleDefine() or stvfparticledefine().
Provides bounds of the computational domain for CU-
MULVS. Each particle domain can have any number of data
fields defined for it.

type — integer specifying the data type of the particle data field.
The type can be set to any of the CUMULVS standard data
types (see below).

get pfield() — wuser provided routine for extracting the data value for this
data field within a particle (see below). The specific par-
ticle is identified by a user-defined handle as returned by
an invocation of the user’s get_particle() routine (see
stv_particleDefine().

set pfield() — wuser provided routine for setting the value of this data field
in a particle, required for checkpointing only (see below).

aflag — integer option flag that is the sum of the desired op-
tions. Currently the only option available is stvVisOnly /
STVVISONLY, but CUMULVS checkpointing will ulitmately
utilize the stvCpOnly / STVCPONLY options as well.

pfieldId — returned particle field Id that identifies this field.

Discussion

The routine stv_particleFieldDefine() allows a programmer to define individual

data fields for the particles in a particle computation space for CUMULVS. Each
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particle will have values for each defined particle data field. CUMULVS allows access
to any desired subset of particle fields for visualization. The “pfield Id” returned
by stv_particleFieldDefine() identifies the data field for any other operations or

options.

The data field can be of any CUMULVS data type. The following data types are

currently supported:

CUMULVS type | C FORTRAN
stvint int integer*4
stvFloat float real*4
stvCplx — complex*8
stvDouble double real*8
stvDceplx — complex*16
stvLong long —
stvShort short integer*4
stvStr char * character
stvUshort unsigned short | —

stvUint unsigned int —
stvUlong unsigned long | —

stvByte char character

Unfortunately, there are no standard, well-defined particle computational domain
structures, and each user application can maintain collections of particle data in a
unique manner. Therefore CUMULVS cannot provide any automated particle data
accessor functions like those used with contiguously decomposed data fields. It is
the responsibility of the user to provide an accessor routine, get_pfield(), that will
return the actual value of a data field for CUMULVS.

The format of the user’s get_pfield() routine is:

C: void get_pfield( STV_PARTICLE_ID id, STV_VALUE *value )

Fortran: fgetpfield( id, value )

The STV PARTICLE_ID id is a user-defined particle handle returned by a call
to the wuser’s get_particle() routine for the given particle domain (see
stv_particleDefine()). CUMULVS allocates the proper amount of memory for
the generic STV_VALUE value pointer, so the user’s get_pfield() routine need only

assign it the proper value before returning.
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In addition to a get_pfield() routine, the user can define an additional
set pfield() routine, for future releases of CUMULVS which will support check-
pointing. This (currently optional) routine will be used when CUMULVS needs
to “load” the checkpoint data into user application tasks to restart them from a
checkpoint. The format of the user’s set_pfield() routine is:

C: void set_pfield( STV_PARTICLE_ID id, STV_VALUE *value )

Fortran: fsetpfield( id, value )

Here, CUMULVS passes in the generic STV_VALUE value which holds the checkpoint
data for the given particle data field. The user is expected to assign that value to
the data field for the particle referenced by STV_PARTICLE_ID id.

Examples

C:
void get_helicopter_heading __STV_Prototype__(( STV_PARTICLE_ID,
STV_VALUE * ));

particleId = stv_particleDefine( '"Helicopter", ... );

pfieldId = stv_particleFieldDefine( "Heading", particleld,
stvDouble, get_helicopter_heading, (STV_SET_PFIELD) NULL,
stvVisOnly );

void get_helicopter_heading( id, value )
STV_PARTICLE_ID id;
STV_VALUE value;

{
*value = (STV_VALUE) &( ((HELI) id)->heading );
+
FORTRAN:
call stvfparticledefine( ’Helicopter’, ..., particleld )

call stvfparticlefielddefine( ’Heading’, particleId, STVDOUBLE,
get_helicopter_heading, O, STVVISONLY )
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subroutine get_helicopter_heading( id, value )
integer id;

real*8 value

value = heli_heading( id )

return

end

Errors

Error conditions that can be returned by stv_particleFieldDefine().

Name Possible cause
stvStatusNoMem could not allocate memory for internal data
structures

stvStatusBadParam invalid values passed or required arguments

omitted
See Also

stv_particleDefine(), stv_fieldDefine()
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stvfsendtofe() stv_sendToFE()

Listen for new viewing front-ends to attach to a program. Send data to any attached

front ends. Get steering parameters from front ends.

Synopsis

C int info = stv_sendToFE( )
FORTRAN stvfsendtofe( info )

Parameters
info — 0 if parameters have not changed. Positive return value
indicates that parameters have changed. Negative value is
an error.
Discussion

The routine stv_sendToFE handles all of the details of attaching a front-end viewer
to a program, sending data to a front-end and getting steering parameters back
from a front-end viewer. Fields must have been defined by stv_fieldDefine and
parameters must have been defined by stv_paramDefine. This routine returns the
number of user-defined steering parameters that have been updated during the call.

Negative values indicate an error.

This routine must be called by all nodes in a parallel program, whether or not data
is being sent. CUMULVS uses a loosely synchronous model of computation with
flow control. This means that stv_sendToFE will not block a task unless data from
a previous iteration has not been transmitted completely to an attached front-end
by all node programs. Otherwise, CUMULVS does not explicitly synchronize tasks

in stv_sendToFE.

If a front-end viewer detaches at any time from a running computation, a task will
not block in stv_sendToFE.

Examples

C:

nchanged= stv_sendToFE();

FORTRAN:

call stvfsendtofe( nchanged )

See Also

stv_paramDefine, stv_fieldDefine, stv_isParamChanged
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stvfversion() stv_version()

Return the version of CUMULVS that is being used.
Synopsis

C char * verstring = stv_version()
FORTRAN  stvfversion( verstring )

Parameters
verstring — string that contains the current CUMULVS version number.

Discussion

The routine stv_version returns a string containing the version number of CU-
MULVS. The most recent version number is at least “1.0.0”.

Examples

C:

verstring = stv_version();

FORTRAN:

call stvfversion( verstring )
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7. Viewer Library Man Pages

Man Pages to be added:
stv_viewer_init()
stv_clear_view _field _select()
stv_get_view_field_name()
stv_viewer_request field()
stv_allocate_Field_arrayDecl()
stv_allocate_Field_Data()
stv_free_field_array()
stv_reset_Iield _Particles()
stv_viewer_receive_frame()
stv_viewer_send _XON()
stv_viewer_set_VisRegion()
stv_viewer_set_VisFrequency()
stv_dump_field_array()
stv_dump_vfg field _array()
stv_dump_user_field_array()
stv_viewer_send_FieldHalt Group( )
stv_viewer_send_FieldHalt All()

7.1. Viewer Steering Library Man Pages
Man Pages to be added:

stv_viewer_steering_init()

stv_get_view_param_name( )
stv_viewer_steering_request()
stv_viewer_steer_parameter()
stv_viewer_steer_vparameter( )
stv_viewer_send _NewParams()

stv_viewer_steering_release( )
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7.2. Viewer Utility Library Man Pages

Man Pages to be added:
stv_copy _converted _data()
stv_str_of_typed_data()
stv_init_region()
stv_copy _region( )
stv_init_cell()
stv_copy _cell()
stv_memcheck()
stv_copystr()
stv_setopt()

stv_getopt()

7.3. Message Passing Library Man Pages
Man Pages to be added:

stv_myid()
stv_mp_err()

Somebuddy gots ta do dis.



