
ORNL�TM������

Computer Science and Mathematics Division

Mathematical Sciences Section

CUMULVS USER�S GUIDE

COMPUTATIONAL STEERING AND INTERACTIVE VISUALIZATION

IN DISTRIBUTED APPLICATIONS

James Arthur Kohl and Philip M� Papadopoulos

Oak Ridge National Laboratory
P�O� Box ����� Bldg ����� MS �	�

Oak Ridge� TN 	
�	���	�

Date Published� February ����

Research supported by the Applied Mathematical Sciences
subprogram of the O�ce of Energy Research� U�S� Depart�
ment of Energy�

Prepared by the
Oak Ridge National Laboratory
Oak Ridge� Tennessee 	
�	�

managed by
Martin Marietta Energy Systems� Inc�

for the
U�S� DEPARTMENT OF ENERGY

under Contract No� DE�AC����OR�����

Contents

� Introduction �
� How to Use CUMULVS �
	 Data Decompositions �

	�� Block Decompositions� stvBlock �
	�� Block�Cyclic Decompositions� stvCyclic � 	
	�	 Explicit Decompositions� stvExplicit � 	
	�� Collapsed or On�processor Decompositions� stvCollapse � � � � � � � � � � � �

� Parameters �
 CUMULVS Viewers �

�� Data Field Collection �
�� Steering Computations �

�	 Other Viewer Utility Functions ��

� User Library Manual Pages ��
stv�nit� stv init ��
stvfdecompde�ne� stv decompDe�ne �	
stvfdump�eld� stv dumpField ��
stv�eldde�ne� stv �eldDe�ne ��
stvfparamde�ne� stv paramDe�ne ��
stv vparamDe�ne ��
stv�sparamchanged� stv isParamChanged ��
stvfparticlede�ne� stv particleDe�ne ��
stvfp�eldde�ne� stv p�eldDe�ne � 	�
stvfparticle�eldde�ne� stv particleFieldDe�ne ��
stvfsendtofe� stv sendToFE ��
stvfversion� stv version �

 Viewer Library Man Pages ��

�� Viewer Steering Library Man Pages ��

�� Viewer Utility Library Man Pages �

�	 Message Passing Library Man Pages �

� iii �

CUMULVS USER�S GUIDE

COMPUTATIONAL STEERING AND INTERACTIVE VISUALIZATION

IN DISTRIBUTED APPLICATIONS

James Arthur Kohl and Philip M� Papadopoulos

Abstract

CUMULVS is an infrastructure library that allows a programmer to easily ex�

tract data from a running parallel simulation and send the data to a visualization

package� CUMULVS includes the capability to steer user�de�ned parameters in a

distributed simulation� An additional feature being added to CUMULVS is the abil�

ity to perform user�directed checkpointing and restarts of parallel programs across a

heterogeneous network� The interface is kept as simple as possible� The program�

mer merely de�nes the decomposition of parallel data and the number and types of

scalar parameters� CUMULVS supports the simultaneous viewing of multiple dynam�

ically attached front�end visualization programs� A single interface routine handles

the attachmentdetachment protocols� the selection and sending of data� and updat�

ing steering parameters� CUMULVS allows each viewer to interactively select the

granularity and extent of data that it desires to see� This allows the user to e�ectively

visualize large datasets without exhausting the network bandwidth� CUMULVS also

supports user�directed checkpointing and restarts across a heterogeneous machine�

The visualization and checkpointing features of CUMULVS are independent�

� v �

�� Introduction

CUMULVS is an infrastructure library that allows a programmer to add interactive steer�

ing and visualization to an existing parallel or serial program� From the application code

perspective� the setup is very simple� After describing how data �elds are decomposed

across processors� and which parameters are adjustable from the front�end� the program

make a single subroutine call in the body of the main loop� This call directs when CU�

MULVS can communicate with and send data to attached viewers� The return status from

this subroutine can be queried to determine if the viewer program has adjusted �steered�

any parameters� CUMULVS guarantees that all nodes in the parallel program will receive

updated parameters at the exact same timestep as long as all nodes call the interface sub�

routine at each timestep� The subroutine consumes very little overhead when no viewers

are attached � the cost of a single message probe�

CUMULVS �understands� standard HPF�style block and block�cyclic decompositions

as well as particle decompositions� The system allows a viewer to examine the data

in a parallel program as if it were available as a large monolithic array� The software

manages all the details of what data to pack and send to a front end and all the details of

attaching a viewer to a running program� Currently� CUMULVS uses PVM as its message

passing substrate� The essential ingredient in PVM is the allowance for anonymous tasks

to communicate with each other without both tasks being started at the same time�

CUMULVS can be ported to any other messaging system that allows these dynamics� A

name registry is used so that a viewer needs only to know the �name� of the code in order

to start communicating with it�

This user guide explains how CUMULVS interprets data decompositions� how viewers

interact with a running program and gives manual pages for the supported user interface

routines�

�� How to Use CUMULVS

CUMULVS is intended for programmers to easily add real�time visualization and steer�

ing to iterative programs� A large number of problems fall into this category making

CUMULVS a widely applicable but not universal tool� The pseudo�code in Figure � illus�

trates the typical statement sequence that a programmer would follow to de�ne distributed

data �elds� steerable parameters� and enable visualization�

The predominant complication is setting up CUMULVS to understand the user�s dis�

tribution of data so that the software can automatically select subsets as required by an

attached front�end� Once this setup is complete� �all the action� occurs in a single sub�

routine call� stv sendToFE��� The programmer never worries about how a visualization

package attaches to a CUMULVS program� Steering parameters are guaranteed to be

updated at the same iteration across the entire parallel program as long as the program�

mer calls stv sendToFE�� at each iteration� The following section documents the data

� � �

Initialize CUMULVS data structures �stv init���

De�ne data decomposition �stv decompDefine���

De�ne data �eld with a previously de�ned decomposition �stv fieldDefine���

De�ne steering parameters �stv paramDefine���

Start main iterative loop

�usual calculation�

nchanged � stv sendToFE��

�program response to nchanged steered parameters�

End of main iterative loop

Figure �� Typical execution order for a CUMULVS program

decompositions that CUMULVS understands�

�� Data Decompositions

CUMULVS understands regular block decompositions� block�cyclic decompositions a la

HPF� particle decompositions� overlapping block decompositions� and a user�de�ned block

decomposition� To de�ne any decomposition� a program must supply�

� The dimension of decomposition ��D� �D� 	D� �dim�

� The global upper and lower bounds of the data array �glb� gub�

� The dimension of logical processor decomposition �prank � dim�

� How each axis of the array is decomposed �axisInfo�

Data is decomposed onto a logical array of processors� For example� a three�dimensional

array might be decomposed onto a two�dimensional array of processors� This means that

one axis of the array lies entirely within a single process� Sometimes

�	�	 Block Decompositions
 stvBlock

The stvBlock data decomposition distributues data in a block manner across logical pro�

cessors� Blocks of data do not wrap� The number of data elements assigned per processor

is based on the formula

n � dN�pe

� 	 �

where n is the number of elements assigned to a processor� p is the number of processors

for this coordinate� N is the total number of elements� CUMULVS will assign n elements

to processors until the total number of elements has been exhausted� This formula only

poses di�culties when N is not evenly divisible by p� For example� in an extreme case

where N � �� and p � �� then the �rst �ve processors will be assigned � elements each�

the sixth processor will be assigned one element� and the remaining will be assigned none�

If the user desires a di�erent block�type decomposition� the stvExplicit may have to be

used�

�	�	 Block�Cyclic Decompositions
 stvCyclic

The stvCyclic assigns blocks of data in a cyclic manner to processors� The default cycle size

is �� but is user selectable� Blocks of size c are assigned to processors until the number of

processors is exhausted� The assignment wraps and continues starting at logical processor

�� For example� if the number of processors p is � the number of elements N is �� and

the cycle size c is �� then processors � � � will be assigned the following array indices�

proc� f�� �� ��� ��g

proc� f�� 	� ��� �	g

proc� f�� g

proc	 f��
g

proc� f�� �g

Note that that above example uses C ��based indexing� Fortran ��based indexing would

have each array index increased by one�

�	�	 Explicit Decompositions
 stvExplicit

If neither of the above decomposition schemes statisfy the user requirements� then and

uneven or explicit decomposition may be used� In this scheme the user speci�es an lower

and upper bound of array indices that held on each processor� Returning to the example

in the subsection 	��� suppose that one desires processor � hold the �rst two array indices

and the remainder should hold on index each� Then� lower and upper bounds of the explict

decomposition per processor my be speci�ed as�

loweri � i� � if i �� �� � otherwise�

upperi � i� � i �� �� � otherwise�

The explicit data decomposition should be used only when other decompositions will not

work�

� � �

�	�	 Collapsed or On�processor Decompositions
 stvCollapse

If all the indices for a coordinate should reside on a single processor� the decomposition is

said to be collapsed� In this case� the user should use the decomposition type stvCollapse�

�� Parameters

CUMULVS supports scalar steering parameters� The programmer declares the type �e�g��

�oat� int� of the parameter� name and a storage location� Front�end viewers� Once the

parameter is declared� it will only be changed during a call to stv sendToFE� This routine

returns the number of parameters that have been called� A programmer may query to

check if a parameter has been changed by callind stv isParamChanged�

�� CUMULVS Viewers

This section describes the construction of front�end �viewer� programs for use with CU�

MULVS� The CUMULVS package already comes with a standard text�only viewer� a

standard AVS�compatible viewer� and a sample custom TCL � TK viewer for a particle�

based CUMULVS game called �FLYME�� These viewers should be su�cient for typical

user needs� and special custom viewers need not be created� However� if a special viewer

is desired� these example viewers represent the best source of information for designing a

custom user viewer� The provided viewers constitute complete working examples of how

viewers interact with user applications using CUMULVS� The code in these viewers is

given freely� to be copied and used as needed for the construction of other viewers� as long

as the enclosed copyright statements are included�

In addition to the sample viewers� several key viewer routines are documented� in

Section
� with standard man pages� It should be noted that there is presently only a

C language interface for CUMULVS viewers� with no Fortran or other language support�

It is assumed that the functionality of viewers is best executed in traditional C or C��

programming� While it is certainly possible to invoke the provided viewer routines from

other languages� there is no speci�c support provided for doing this with CUMULVS�

There are several classes of functions provided for use with CUMULVS viewers� to

support the collection of data �eld values� to provide computational steering� and to assist

the viewer writer with other viewer utilities� A typical viewer consists of some subset of

these viewer library functions� The following subsections describe the viewer library in

more detail�

�	�	 Data Field Collection

The primary use of CUMULVS is for the interactive collection of data �eld values from

a running application� to support graphical animations or other analyses� There are a

number of functions provided in CUMULVS for handling the necessary data �eld opera�

� �

tions in viewers� including initializing communication with the user application� requesting

data �elds� collecting data frames� allocating data frame storage� and dumping data �eld

values�

All viewers must call stv viewer init��� This function initializes a link with a speci�c

user application and gathers information about the data �elds and parameters that are

available from that application� The call to stv viewer init�� returns an STV VIEWER

instance which is used in subsequent viewer routine calls to identify the speci�c application

being �viewed� �thereby allowing a single viewer to connect to multiple applications if

desired��

Once � if CUMULVS �nds the desired application� the viewer may select some num�

ber of data �elds to be requested for collection� The stv clear view field select��

routine resets this selection� and then individual STV VIEW FIELD elements can be cho�

sen for a data �eld request� The STV VIEW FIELD elements are obtained by name using

the stv get view field name�� routine� and each can then be selected by setting the

STV VIEW FIELD��selected �ag to stvTrue� The set of �elds selected for a particular

�eld request is considered a �view �eld group� �see STV VIEW FIELD GROUP below��

The viewer can select a speci�c data type for each data �eld in a view �eld group

�VFG�� The value of STV VIEW FIELD��view type for a given data �eld can be set to any

of the supported CUMULVS data types� This data type can be di�erent than the original

type de�ned for the �eld in the application� For example� if a simulation used double

�oating point data for its computation� a viewer could request the data in single precision

or even integer format� which might be more suitable for simple graphical presentations�

Similarly� the viewer can specify the storage order for each �eld in a VFG by setting the

value of STV VIEW FIELD��view storage order �stvColumnMajor for standard Fortran

storage order� or stvRowMajor for standard C storage order�� The data values will then

be rearranged accordingly during collection to support the desired array addressing in

the viewer� So� for example� an application written in C language can be viewed more

naturally using AVS� which assumes a Fortran storage order�

If the data type or storage order are not speci�ed before requesting the view �eld group�

then the data �eld will be collected and provided to the viewer using the original data

type or storage order� as declared in the actual user application� Otherwise� CUMULVS

automatically converts the data type and storage order at each task of the application

before the data is transferred to the viewer�

For each view �eld group� the viewer must specify the portion of the computational

space which is to be collected for viewing� This area is referred to as the �visualization

region�� or �vis region� for short� The vis region consists of a set of upper and lower

coordinate bounds for each axis of the computational domain� as well as a �cell size�

for each dimension� The cell size indicates the granularity of data values which are to

be returned� For example� a cell size of ��� for the �X� axis corresponds to collecting

every other data value along that axis� Then combining this with a cell size of �	� for

the �Y� axis would result in collecting � out of every � data values� So a complete vis

� � �

region speci�cation might include the set of data values between �� and � along the �X�

axis with a cell size of �every �fth data value � ��� �� ������� and those between 	� and

�� along the �Y� axis with a cell size of � �every other data value � 	�� 	�� 	������ thus

resulting in � total data values �including data points addressed as ����	��� ����	�������

���	��� ���	������ etc�� The vis region bounds and cell sizes for each axis then determine

precisely which data points will be collected for each viewer �data frame��

Note that a single vis region speci�es the collection area for the entire group of data

�elds in a VFG� If di�erent vis regions are desired for di�erent data �elds they must be

requested in separate VFGs� A given data �eld can� however� occur repeatedly in any

number of view �eld groups�

Once the desired data �elds have been selected and the vis region has been speci�ed�

a �eld request is sent to the application tasks using the stv viewer request field��

routine� This routine returns an STV VIEW FIELD GROUP instance that represents the group

of data �elds requested� The STV VIEW FIELD GROUP is used in other viewer routines to

manipulate aspects of the incoming data frames� as well as to terminate or release the

interactive data �eld connection with the application�

Before a data frame can be received by a viewer� the appropriate storage must be

allocated� The viewer must calculate the total storage necessary for each �eld in a data

frame and save this information in a special array� This is accomplished automatically

using the stv allocate Field arrayDecl�� routine� If the actual data frame storage is

to be allocated by CUMULVS �as is done with the sample text�only viewer�� then the

stv allocate Field Data�� routine is called for each �eld in the group� This routine is

used only for those �elds in the VFG with regular contiguous data decompositions� For

�elds that are particle �elds� the space for each particle is automatically allocated for the

viewer by CUMULVS� Afetr a data frame has been used by the viewer� it can be freed

using the stv free field array�� routine� Any particles allocated can be freed by a call

to the stv reset Field Particles�� routine�

If a viewer needs to use externally allocated memory for storing its data frames �as

is true with the AVS viewer�� then the viewer need only set the proper pointer to that

memory in the VFG structure� Speci�cally� VFG��field values� field index � must

be assigned the address of the pre�allocated memory� where field index is the index

of the particular data �eld in the group list� It should be noted that this VFG pointer

setting must be cleared �back to �STV VALUE� NULL� before recycling the VFG with a new

stv viewer init�� call� Otherwise� CUMULVS will assume that it had allocated that

memory and will attempt to free it�

To actually receive a data frame� the viewer calls the stv viewer receive frame��

routine� This routine returns the VFG of the received frame �in case there are several

VFGs�� a restart �ag� and a return status code� There are several return status val�

ues depending on the outcome of the data frame collection with the application� If an

stvStatusOk is returned� then the VFG argument contains a handle to the view �eld

group that has collected a complete data frame� If a stvStatusBadFrame is returned it

�
 �

means that all tasks in the application have sent their data� but some were not completely

up�to�date with the last requested vis region resulting in an inconsistent data frame� In

this case the data frame can simply be discarded� Otherwise� something catastrophic has

happened and the viewer should disconnect from the application� If the restart �ag has

been set �to stvTrue� then the application has merely recon�gured� and the viewer should

disconnect and try to re�attach to the same data �elds�

Once a complete data frame has been received� the viewer needs to send the ap�

plication an �XON� to release it for the next iteration� This is done using the

stv viewer send XON�� routine� The sooner the XON is sent� the less intrusion and

overhead is expended by the application in waiting for it� I�e� it is a good idea to send

the XON immediately� before processing the new data frame� If the iteration time for the

application is su�ciently large �and the size of the data frame is not too immense�� the

application might not wait for the XON at all� The XON could already be there waiting

for the application when it polls for permission to continue with the next iteration�

The vis region for a VFG can be modi�ed on�the��y by a viewer using the

stv viewer set VisRegion�� routine� This routine records the new set of region bounds

and cell sizes and sends the application an update message with the new vis region�

CUMULVS takes care of verifying that the next data frame is collected using the

proper vis region� and will return a stvStatusBadFrame return code if any of the ap�

plication tasks did not receive the update in time� The frequency of data frames

�counted in number of application iterations between frames� can be modi�ed using the

stv viewer set VisFrequency�� routine� CUMULVS insures that the relative timing be�

tween the application and the viewer is maintained� to support the loose synchronization

required for computational steering�

When a data frame is collected� CUMULVS can be set to automatically dump out a

textual representation of the data it has received� This is done in the viewer using the

stv setopt�� routine with either of the stvOptDump or stvOptDumpAll options� The

stvOptDump option dumps only the �nal data frame� where the stvOptDumpAll option

dumps all intermediate data frame states� as they occur after each individual appli�

cation task sends its piece of the data frame� If the viewer needs to otherwise dump

the data �eld values� then the stv dump field array�� routine �or one of its variants�

stv dump vfg field array�� for viewers� or stv dump user field array�� for user ap�

plications� can be called to display any complete data frame�

�	�	 Steering Computations

Aside from collecting data frames from running applications� CUMULVS viewers can

also remotely modify an application�s computational parameters on�the��y� This process

is known as �computational steering�� Often this is a useful capability when the user

desires to experiment with various parameters in a computation� Or perhaps viewing

the intermediate results of a computation can reveal a problem or a new opportunity to

� � �

manipulate the application� Such interactive control can save countless hours of wasted

computation time waiting for �nal application results that might have begun experiencing

problems in the �rst few iterations�

Before a viewer can initiate steering with a user application it must invoke the

stv viewer steering init�� routine� This routine performs the equivalent of a special

data �eld request� creating a loosely synchronized connection with the user application�

The viewer uses the connection to transfer updated steering parameters to the applica�

tion� The loose synchronization guarantees that all tasks in the application will apply

those updates at the same �time�� or point in the computation� Note that because this

steering connection utilizes a type of �eld request� the viewer must process the incoming

data �eld protocol using repeated calls to stv viewer receive frame��� This routine

automatically maintains the steering connection by returning XONs to the application

when all tasks have sent their acknowledgements for a given iteration� Failure to call

stv viewer receive frame�� while steering will result in the application hanging �wait�

ing for XONs�� The viewer should not explicitly send a steering XON�

Once steering has been successfully initialized� a speci�c steering parameter can be

controlled by acquiring the appropriate steering token� The parameters can be looked

up by name using stv get view param name��� which returns a STV VIEW PARAM in�

stance� The steering token for a particular parameter is then obtained using the

stv viewer steering request�� routine� If the token for a parameter is not already in a

viewer�s possession� then the STV VIEW PARAM��token value will be set to stvSteerToken

upon return from the request call�

If� however� the token is already in use� then the value of token will either be

stvSteerRqstd or stvSteerNot� The stvSteerRqstd value means that the steering re�

quest was successfully submitted but the token is unavailable� In this case� when the viewer

which currently has the token releases it� CUMULVS will broadcast a message inform�

ing all the requesting viewers� So subsequent calls to stv viewer steering request��

merely check for that release message and� if found� attempt again to acquire the steer�

ing token� Note that calling stv viewer steering request�� with the block �ag set

to stvTrue can result in deadlock if the token does not become available� This is due

to the application starving for steering connection XONs� If the viewer is not assured of

obtaining a given steering token� then� while waiting for a steering token� a viewer should

alternate between a non�blocking call to stv viewer steering request�� and a call tp

stv viewer receive frame���

If the value of STV VIEW PARAM��token is stvSteerNot after a call to

stv viewer steering request��� then some error has occurred� such as an internal sys�

tem error or an incorrect invocation parameter� In this case� the steering parameter

will not likely be obtained� and the viewer should disconnect from the application using

stv viewer send FieldHaltGroup��� stv viewer send FieldHaltAll�� or by exiting�

For steering�only viewers that do not have other view �eld groups for data �eld collection�

the external symbol extern STV VIEW FIELD GROUP STV STEER VFG can be used in either

� � �

of the FieldHalt library calls�

To actually set the value of a steering parameter for which the steering token has been

obtained� the viewer can call either stv viewer steer parameter�� for scalar parame�

ters or stv viewer steer vparameter�� for vector parameters� These routines copy the

viewer data� in the form of an STV VALUE data value pointer� over into the viewer pa�

rameter structure� and then sets the changed �ag for that parameter� When all steering

parameter values have been set as desired� the stv viewer send NewParams�� routine is

called to pass the new parameter values to the application tasks� This routine checks the

changed �ags for each parameter and updates only those parameters with new values�

When all changes to a steering parameter have been completed� a viewer can release the

steering token with a call to stv viewer steering release��� This call will relinquish

the steering token and� as stated above� will broadcast a message to any other viewers that

have requested the given steering parameter and are waiting for the token� If a viewer

exits without releasing control of a steering parameter� the token should be automatically

freed by CUMULVS�

Aside from traditional scalar and vector computational steering parameters� CU�

MULVS also supports a special type of steering parameter known as an �indexed� pa�

rameter� For certain kinds of simulations� especially particle�based applications� there

may be many replicated objects or entities to be steered� If it is necessary to manipulate

individual instances of these objects� or if the number of instances in the application can

grow or shrink� then indexed steering parameters are essential� Using indexed parame�

ters� only one set of steering parameters are de�ned for a single object instance� Then

in addition to the regular application parameters� one additional �index� parameter is

de�ned� When a set of steering parameters is passed to the application� the index value is

extracted �rst to determine which object instance is to be steered� and then the remaining

parameter values are applied only to that one instance�

The special index parameter is de�ned by including the stvIndex �ag with the regular

parameter data type in the call to stv paramDefine�� �or stv vparamDefine��� as in

stvInt � stvIndex� The index parameter can be of any legal CUMULVS data type�

and its value is not interpreted internally by CUMULVS� It is left to the application to

properly utilize the custom index value in referencing its object instances�

It should be noted that the process of acquiring steering tokens still applies to in�

dexed steering parameters� In fact� steering tokens are granted for each desired value of

a particular steering index� so that di�erent instances from the same object set can be

simultaneously steered� For example� if one viewer wishes to steer an object instance �A��

and another viewer wishes to steer a di�erent instance �B� from the same object set�

then each viewer will obtain their own �indexed token�� Note that steering tokens are

not generated until they are requested� so CUMULVS need not know the entire range of

possible index values� nor allocate them all� to properly coordinate the tokens�

� �� �

�	�	 Other Viewer Utility Functions

�� User Library Manual Pages

� �� �

stv�nit�� stv init��

Initialize CUMULVS data structures and declare the name that viewer front�ends will look

for to communicate with the application

Synopsis

C int info � stv�init� char 	appname
 int msgtag

int nproc
 int nodeid �

FORTRAN stvfinit� appname
 msgtag
 nproc
 nodeid �

Parameters

appname � name of the application� Used by front�end viewers to look

up and connect to the running CUMULVS application� This

name does not have to be the same as the executable name�

msgtag � message tag for CUMULVS to use for communication with

the application� The user�s code must not receive an mes�

sages with type msgtag�

nproc � number of processors that make up the entire application�

nodeid � node number of the calling process� Must be in the range

��� nproc� ��

info � return status parameter

Discussion

The routine stv init initializes CUMULVS data structures and declares the size

and name of the user application� All tasks must call stv init once� The call

is not collective� but viewing front�ends will not be able to communicate with the

application until all tasks have called this routine�

CUMULVS uses a single message tag to communicate with the program� All tasks

must use the same user�speci�ed tag� A tag is needed for messaging systems that do

not implement context �like PVM�� Unpredictable behavior will occur if the user�s

code receives messages intended for the CUMULVS library� Most notably� com�

plete wild�card receives �e�g�� pvm recv���
��� will cause programs to fail� �Semi�

wildcard� receives �e�g�� pvm recv���
tid� or pvm recv�tag
���

CUMULVS needs to know how many processes or tasks make up a parallel applica�

tion� Each task must have a unique node id that is in the range of � to nproc� ��

Examples

C

info � stv�init� �csimple�
 ����
 nproc
 i ��

� �� �

FORTRAN

call stvfinit� �csimple�
 ����
 nproc
 i
 info �

Errors

Error conditions that can be returned by stv init�

Name Possible cause

stvStatusBadParam Could not store application name for lookup

See Also

stv fieldDefine� stv vParamDefine� stv isParamChanged� stv sendToFE

� �	 �

stvfdecompde�ne�� stv decompDe�ne��

De�nes a data decomposition� CUMULVS needs to know the nature of a data �eld�s

distributed data decomposition to know how to extract data for a front�end viewer�

Synopsis

C int decompId � stv�decompDefine� int dim
 int 	axisType

int 	axisInfo
 int 	axisInfo�

int 	glb
 int 	gub

int procRank
 int 	procShape �

FORTRAN stvfdecompdefine� dim
 axisType
 axisInfo

axisInfo�
 glb
 gub

procRank
 procShape
 decompId �

Parameters

dim � integer specifying the data dimension of the distributed

array�

axisType � integer array �of size dim� specifying the decomposition

type of each particular axis of the array� Valid type val�

ues are� stvBlock� stvCyclic� stvCollapse� and stvExplicit�

axisInfo � integer array �of size dim� that speci�es the details for

each corresponding axisType type value� Entry i in the

axisInfo array corresponds to entry i in the axisType ar�

ray �see below��

axisInfo� � integer array �of size dim� that speci�es more details for

certain decomposition types in axisType� Entry i in the

axisInfo� array corresponds to entry i in the axisType

array� Currently� the axisInfo� array is only referenced

for decompositions of type stvExplicit for a particular axis�

glb � integer array �of size dim� that speci�es the global lower

bounds of the decomposed data �eld�

gub � integer array �of size dim� that speci�es the global upper

bounds of the decomposed data �eld�

procRank � integer that speci�es the rank �number of dimensions� of

the logical processor topology array�

procShape � integer array �of size procRank� that speci�es the extent

�number of processors� of the logical processor topology ar�

ray in each dimension�

decompId � integer identi�er returned for this decomposition� Used in

stv fieldDefine�

� �� �

Discussion

The routine stv decompDefine de�nes all parameters needed to describe a decom�

position to CUMULVS� The elements of an array can be decomposed in di�erent

ways on the di�erent axes� For example� a three�dimensional array might be decom�

posed in a block manner in the �rst dimension� cyclic in the second dimension� and

on�processor �or collapsed� in the third dimension �see below�� CUMULVS supports

arbitrary mixing of these decomposition types� The global lower and upper bounds

are used to specify the complete extent of the e�ective global array �as if it were

available in a single processor�s memory�� For arrays where data is decomposed

across some number of processors �e�g� stvBlock� stvCyclic� or stvExplicit�� the num�

ber of processors in that dimension must also be speci�ed for CUMULVS using the

pshape argument� Note that the �rst entry in pshape corresponds to the number

of processors used for the �rst axis that has a distributed data decomposition� not

necessarily the �rst data axis� Any remaining entries in pshape correspond in turn

to any remaining decomposed axes� skipping over any collapsed axes�

There are four decomposition types currently supported by CUMULVS�

stvBlock The array is block decomposed along this axis� meaning that each proces�

sor stores a contiguous number of array elements along the axis� in a single

grouping per processor� The user can specify the number of elements� or the

block size� using the appropriate entry in the axisInfo array� or can leave

the value as stvDefault for an �even� distribution� If the size of the array

along the partiuclar axis is not evenly divisible by the number of processors�

then the block size is set to the ceiling of the number of elements in the axis

divided by the number of processors� with the last processor being allocated

a lesser number of elements as appropriate�

stvCyclic The array is cyclically decomposed along this axis� meaning that sets of con�

tiguous array elements� of a �xed size �the cycle size�� are incrementally as�

signed to successive processors� After each processor has been assigned its

�rst �cycle set� of array elements� the allocation begins again with the �rst

processor� continuing to assign one set per processor in order until all elements

have been allocated� The user may specify the cycle size using the axisInfo

array� or can leave the value as stvDefault for a cycle size of ��

stvExplicit The array is explicitly decomposed into potentially non�uniform blocks in

this axis� The axisInfo array contains the lower bound index �in global

coordinates� for the array block� and the axisInfo� array contains the upper

bound index �in global coordinates��

stvCollapse The array is not decomposed along this axis� All elements� within the range

� � �

of elements dictated by the decompositions of the other axes� reside on each

single processor�

For the cases where the axisInfo� array is not required� the stvDefaultInfo constant

can be used in its place in the stv decompDefine argument list� Similarly� for local

arrays that are not decomposed across a set of processors� the stvLocalArray constant

can be used for each of the axisType� axisInfo� axisInfo� and pshape arguments to

stv decompDefine�

Examples

�� A ������� two�dimensional array is decomposed in a block manner in its �rst axis on

a linear array of �� processors� The second axis is not decomposed� so each processor

has all the elements along this axis� within the corresponding block of indices for

the �rst axis� Speci�cally� the array elements on processor � are f� � ��� � � ���g�

f�� � ��� � � ���g on processor �� and so on�

dim � �

axisType � � stvBlock
 stvCollapse �

axisInfo � � stvDefault
 stvDefault �

axisInfo� � stvDefaultInfo

glb � � �
 � �

gub � � ���
 ��� �

prank � �

pshape � � �� �

�� A ���� ��� two�dimensional array is collapsed in its �rst axis but decomposed in a

block manner in its second axis on a linear array of �� processors�

Same as above except

axisType � � stvCollapse
 stvBlock �

	� A ��� � ��� � 	�� three�dimensional array is decomposed in a block manner in

the �rst axis with � logical processors in that dimension� collapsed in the second

axis� and cyclic decomposed with a cycle size of �� in the third axis across � logical

processors� This means that the array is decomposed over 	� total processors� Hence�

for example� the processor with logical address ����� has array elements f� � �� � �

���� f�	 � ��� ��� � ���� �� � ���gg while the processor with logical address �	�� has

array elements f
� � ���� � � ���� f�� �
�� �
 � ���� �	 � ���gg �

dim � �

axisType � � stvBlock
 stvCollapse
 stvCyclic �

axisInfo � � stvDefault
 stvDefault
 �� �

� �� �

axisInfo� � stvDefaultInfo

glb � � �
 �
 � �

gub � � ���
 ���
 ��� �

prank � �

pshape � � �
 � �

�� A ��������	�� three�dimensional array is collapsed in the �rst axis but decomposed

explicitly in the second and third axes� over a � by 	 logical processor topology�

Suppose that logical processor ����� has array elements f� � ��� �� � ���g� and

processor ���	� has elements f�� � ���� �
 � 	��g� etc�

processor ��
��

dim � �

axisType � � stvCollapse
 stvExplicit
 stvExplicit �

axisInfo � � stvDefault
 �
 ��� �

axisInfo� � � stvDefault
 ��
 ��� �

glb � � �
 �
 � �

gub � � ���
 ���
 ��� �

prank � �

pshape � � �
 � �

processor ��
��

dim � �

axisType � � stvCollapse
 stvExplicit
 stvExplicit �

axisInfo � � stvDefault
 ���
 ��� �

axisInfo� � � stvDefault
 ���
 ��� �

glb � � �
 �
 � �

gub � � ���
 ���
 ��� �

prank � �

pshape � � �
 � �

� A ��� �� two�dimensional array is kept locally on a single processor �or replicated

on each of a set of processors�� Note that prank is still set to � for the single scalar

processor�

dim � �

axisType � stvLocalArray

axisInfo � stvLocalArray

axisInfo� � stvLocalArray

glb � � �
 � �

gub � � ��
 �� �

� �
 �

prank � �

pshape � stvLocalArray

Errors

Error conditions can be returned by stv decompDefine�

Name Possible cause

stvStatusBadParam Invalid argument

stvStatusNoMem unable to malloc memory

See Also

stv fieldDefine� stv paramDefine� stv sendToFE

� �� �

stvfdumplocal�eldbounds�� stv dumpLocalFieldBounds��

Prints out in a human readable form the global coordinate indices that are mapped to the

calling processor of a �eld that has been described to CUMULVS using stv fieldDefine�

Synopsis

C int info � stv�dumpLocalFieldBounds� int fieldId �

FORTRAN stvfdumplocalfieldbounds� fieldId
 info �

Parameters

fieldId � integer specifying the Id of the decomposed �eld

info � integer error return value

Discussion

The routine stv dumpLocalFieldBounds prints out the global indices that CU�

MULVS believes to reside in the calling process for a particular decomposed �eld�

This is a useful debugging routine so that that programmer can verify agreement

between the user�s code and CUMULVS internals�

Examples

C

info � stv�dumpLocalFieldBounds� fieldId ��

FORTRAN

call stvfdumplocalfieldbounds� fieldId
 info �

Example Output

Global Array Bounds for Field �density�

� � � �� �� � � �� �� � � ��� �

Logical array of processors is

� X �

Local processor address is

� �
 � �

Local Portion of Global Space for Field �density�

Bounds for Axis ��

� �� �

� � � �� �

Bounds for Axis ��

� �� � �� �

Bounds for Axis ��

� � � ��� �

Errors

Error conditions that can be returned by stv decompDefine�

Name Possible cause

stvStatusBadParam Invalid argument� usually a bad �eld identi�er

See Also

stv fieldDefine� stv decompDefine

� �� �

stv�eldde�ne�� stv �eldDe�ne��

De�nes a �eld of data to CUMULVS with a particular decomposition as set in the routine

stv decompDefine�

Synopsis

C �include �stv�h�

int fieldId � stv�fieldDefine� void 	var
 char 	name

int decompId
 int 	arrayoffset

int 	arraydecl
 int type

int 	paddr
 int aflag �

FORTRAN include �fstv�h�

stvffielddefine� var
 name
 decompId
 arrayoffset

arraydecl
 type
 paddr
 aflag �

Parameters

� �� �

var � pointer to a processors local storage for the decomposed

array of data

name � string name of the variable so that a viewer program can

identify the program variable as something meaningful�

decompId � integer identi�er returned from the rou�

tine stv decompDefine� Tells CUMULVS how this array

has been decomposed across processors� Several arrays can

share the same decomposition�

arrayoffset � integer array that indicates the o�set� if any� to the �rst

valid data element in the local storage array� used with

arraydecl below to index into memory to select data ele�

ments� This array must be dim long as speci�ed in the call

to stv decompDefine�

arraydecl � integer array that informs CUMULVS of the declared size

of the local storage array so that it can properly index into

memory to select data elements� This array must be dim

long as speci�ed in the call to stv decompDefine�

type � integer specifying the data type of the �eld� The data type

can be any of the CUMULVS standard data types �see

below��

paddr � integer array that holds the address of this processor in the

virtual processor array� This array should have prank en�

tries as speci�ed in the call to stv decompDefine� Pro�

cess address element i must be in the range ���pshapei
where pshapei is element i of the array pshape as passed

to stv decompDefine�

aflag � integer option �ag that is the sum of the desired options�

stvvisonly

fieldId � returned integer handle that identi�es this �eld�

Discussion

The routine stv fieldDefine de�nes a �eld to CUMULVS� Fields are assigned

string names so that they are easily identi�ed on the viewer front�end� The data

decomposition of the �eld must �rst be de�ned using the routine stv decompDefine�

CUMULVS must be told how the array storage has been declared by the program so

it can properly extract data elements from the user�s data space� CUMULVS must

also be given the virtual processor address so that the system can properly match

global storage coordinates to local storage coordinates�

The following data types are supported by CUMULVS�

� �� �

CUMULVS type C FORTRAN

stvInt int integer �

stvFloat �oat real �

stvCplx ! complex �

stvDouble double real �

stvDcplx ! complex ��

stvLong long !

stvShort short integer �

stvStr char character

stvUshort unsigned short !

stvUint unsigned int !

stvUlong unsigned long !

stvByte char character

The local array storage o�sets in arrayo�set are intended for use with any decompositions

that are utilized with overlapping boundaries or other storage restrictions� For the case

where there is no o�set to the �rst valid data element in the storage area� there are

prede�ned constants provided with CUMULVS to signify this default array o�set�

C FORTRAN

stvNoFieldO�sets STVNOFIELDOFFSETS

Examples

�� The array p is ������� two�dimensional array that is decomposed in a block manner

in its �rst dimension on a linear array of �� processors� The following fragments will

properly de�ne this array to CUMULVS�

C

float p����������

int arrayDecl��� � ���
�����

int addr�

decompId � stv�decompDefine�dim
 axisType
 axisInfo
 glb
 gub

prank
 pshape��

�	 on processor n 	�

addr � n�

fieldId � stv�fieldDefine� p
 �pressure�
 decompId
 stvFloat

stvNoFieldOffsets
 arrayDecl
 �addr
 stvVisOnly��

FORTRAN

� �	 �

real p���
����

integer arrayDecl���
 addr

data arrayDecl ���
����

call stvfdecompdefine�dim
 axisType
 axisInfo
 glb
 gub
 prank

pshape
 decompId�

C on processor n

call stvffielddefine� p
 �pressure�
 decompId
 STVFLOAT

STVNOFIELDOFFSETS
 arrayDecl
 n
 STVVISONLY
 fieldId�

Errors

Error conditions can be returned by stv fieldDefine�

Name Possible cause

stvStatusBadParam Invalid argument� Usually an invalid decomposi�

tion Id�

stvStatusNoMem unable to malloc memory

See Also

stv particleFieldDefine� stv paramDefine� stv sendToFE

� �� �

stvfparamde�ne�� stv paramDe�ne��

De�nes a scalar steering parameter for a CUMULVS front�end viewer to modify

Synopsis

C int paramId � stv�paramDefine� char 	name
 void 	 var

int type
 int flag �

FORTRAN stvfparamdefine� name
 var
 type
 flag
 paramId �

Parameters

name � name of the parameter as it should appear to a front�end

viewer

var � pointer to the variable where CUMULVS will deposit new

parameter values�

type � identi�es the type of parameter� See the pvm fieldDefine

for the mapping of CUMULVS types to C or Fortran types�

flag � identi�es sub�actions for CUMULVS� Currently� only the

�ag stvVisOnly is recognized�

paramId � parameter Id that is used as a handle for the internal data

structure that holds the parameter information�

Discussion

The routine stv paramDefine allows a programmer to de�ne a steering parameter�

After each call to stv sendToFE� a de�ned steering parameter may have been up�

dated by a front�end viewer� CUMULVS insures that a parameter is updated at

the same iteration �logical time� for each node in the parallel program� The routine

stv sendToFE returns the number of parameters that were changed� A program�

mer may call stv isParamChanged to determine if a particular parameter has been

updated�

Examples

C

paramId � stv�paramDefine� �Velocity�
 v
 stvFloat
 stvVisOnly ��

FORTRAN

call stvfparamdefine� �Velocity�
 v
 STVFLOAT
 STVVISONLY
 paramid �

Errors

� � �

Error conditions that can be returned by stv paramDefine�

Name Possible cause

stvStatusNoMem could not allocate memory for internal data

structures

See Also

stv fieldDefine� stv vParamDefine� stv isParamChanged� stv sendToFE

� �� �

stv vparamDe�ne��

De�nes a vector of steering parameter for a CUMULVS front�end viewer to modify� Avail�

able only from C�

Synopsis

C int paramId � stv�vparamDefine� char 	name
 void 		 vars

char 		pnames
 int 	types

int num
 int aflag �

Parameters

name � name of the parameter as it should appear to a front�end

viewer

vars � array of pointers to variables where CUMULVS will deposit

new parameter values�

type � identi�es the type of parameter� See the pvm fieldDefine

for the mapping of CUMULVS types to C or Fortran types�

pnames � array of parameter names as they should appear to a front�

end viewer

types � array of types for parameters

num � number of parameters represented in this �vectored�

parameter

flag � identi�es sub�actions for CUMULVS� Currently� only the

�ag stvVisOnly is recognized�

paramId � parameter Id that is used as a handle for the internal data

structure that holds the parameter information�

Discussion

The routine stv vparamDefine allows a programmer to de�ne a vector of steering

parameters� The parameters in the vector are individually steerable but are referred

to collectively by the name of the entire vector�

After each call to stv sendToFE� a de�ned steering parameter may have been up�

dated by a front�end viewer� CUMULVS insures that a parameter is updated at

the same iteration �logical time� for each node in the parallel program� The routine

stv sendToFE returns the number of parameters that were changed� A program�

mer may call stv isParamChanged to determine if a particular parameter has been

updated�

Examples

C

� �
 �

paramId � stv�vparamDefine� �State Vector�
 vars
 names
 types
 num

stvVisOnly ��

Errors

Error conditions that can be returned by stv vparamDefine�

Name Possible cause

stvStatusNoMem could not allocate memory for internal data

structures

See Also

stv fieldDefine� stv paramDefine� stv isParamChanged� stv sendToFE

� �� �

stv�sparamchanged�� stv isParamChanged��

Tells whether a parameter has been changed by a CUMULVS front�end viewer�

Synopsis

C int info � stv�isParamChanged� int paramId �

FORTRAN stvfisparamchanged� paramId
 info �

Parameters

paramId � parameter Id handle as returned from stv paramDefine�

info � � if parameter is unchanged� Non�zero if parameter

changed�

Discussion

The routine stv isParamChanged tells the program if a particular parameter was

changed during the most recent call to stv sendToFE� Calling stv isParamChanged

resets the status variable� This means that a second call to this subroutine with

the same parameter Id will always return false� unless stv sendToFE has been called

and the parameter was again updated�

Examples

C

changed � stv�isParamChanged� paramId ��

FORTRAN

call stvfisparamchanged� paramid
 changed �

See Also

stv isDefineParam� stv sendToFE

� �� �

stvfparticlede�ne�� stv particleDe�ne��

De�nes a �particle� composition domain for particle�based computations

Synopsis

C int particleId � stv�particleDefine� char 	name
 int dim

int 	glb
 int 	gub
 int nproc

STV�GET�PARTICLE get�particle

STV�MAKE�PARTICLE make�particle �

FORTRAN stvfparticledefine� name
 dim
 glb
 gub
 nproc

get�particle
 make�particle

particleId �

Parameters

name � name of the particle domain as it should appear to a front�

end viewer�

dim � integer specifying the dimension of the particle computa�

tional domain�

glb � integer array that speci�es the global lower bounds of the

particle computational domain�

gub � integer array that speci�es the global upper bounds of the

particle computational domain�

nproc � integer specifying the number of processors computing in

the particle domain�

get particle�� � user provided routine for looking up particular particles in

the computational domain �see below��

make particle�� � user provided routine for creating new particles in the com�

putational domain� required for checkpointing only �see

below��

particleId � returned particle Id that is used as a handle for the internal

CUMULVS data structure that holds the particle domain

information�

Discussion

The routine stv particleDefine�� allows a programmer to de�ne a particle compu�

tation space for CUMULVS� This �particle� domain serves the same function as a de�

composition does for a contiguous computational domain �see stv decompDefine����

by describing the space within which particles can exist� and how CUMULVS

can obtain information regarding speci�c particles� The �particle Id� returned by

� 	� �

stv particleDefine�� is used in subsequent calls to stv particleFieldDefine��

to declare the actual data �elds that exist within each particle�

Unfortunately� there are no standard� well�de�ned particle computational domain

structures� and each user application can maintain collections of particle data in

a unique manner� Therefore CUMULVS cannot provide any automated particle

accessor functions like those used with contiguous decompositions� It is the respon�

sibility of the user to provide an accessor routine� get particle��� that will return

a user�de�ned particle handle for CUMULVS�

The format of the user�s get particle�� routine is�

C void get�particle� int index
 STV�REGION R

STV�PARTICLE�ID 	id
 int 	coords �

Fortran fgetparticle� index
 R
 id
 coords �

The index value is intended to select a speci�c particle from the user�s collection

on a given application task� The STV REGION de�nes a portion of the particle space

in which to search for particles� and the index refers to which of the particles in

that region is desired �by order of occurrence�� The stv particle in region��

routine assists the user by indicating whether the coordinates of a particle lie in the

desired region� The search order of the particles in the region is arbitrary� and at

the discretion of the user�

The STV PARTICLE ID returned by get particle�� should be some user�de�ned

value that can be used subsequently to identify the given particle when accessing its

data �eld values� The STV PARTICLE ID could be an integer index into an array of

particles� or perhaps a pointer to a particle structure� at the user�s discretion� The

user must also set the values of the CUMULVS�provided integer array coords to

hold the coordinates of the returned particle�

It should be noted that� for e�ciency only� CUMULVS will initially invoke

get particle�� with an index value of �� when beginning to collect each new set of

particle Ids� This is intended as a convenience for the user� to allow the saving and

resetting of search state in get particle�� routines� CUMULVS will always request

particles with increasing index values� so better performance can be obtained by be�

ginning each search where the previous search had stopped� CUMULVS ignores the

values returned for a �� index value�

In addition to a get particle�� routine� the user can de�ne an additional

make particle�� routine� for future releases of CUMULVS which will support check�

pointing� This �currently optional� routine will be used when CUMULVS needs to

� 	� �

�load� the checkpoint data into user application tasks to restart them from a check�

point� The format of the user�s make particle�� routine is�

C void make�particle� int 	coords

STV�PARTICLE�ID 	id �

Fortran fmakeparticle� coords
 id �

Here� CUMULVS passes in an array of coordinates and the user is expected to

allocate or initialize a new particle which is located at those given coordinates� The

user�de�ned handle for this new particle should be returned in the STV PARTICLE ID

id�

Examples

C

void get�helicopter ��STV�Prototype���� int
 STV�REGION

STV�PARTICLE�ID 	
 int 	 ���

particleId � stv�particleDefine� �Helicopter�
 �
 glb
 gub
 nprocs

get�helicopter
 �STV�MAKE�PARTICLE� NULL ��

void get�helicopter� hnum
 R
 id
 coords �

int hnum�

STV�REGION R�

STV�PARTICLE�ID 	id�

int 	coords�

�

static HELI H�save � �HELI� NULL�

static int count�save � ���

HELI H�

int hcoords����

int count�

�	 Reset 	�

if � hnum �� �� �

�

	id � �STV�PARTICLE�ID� NULL�

� 	� �

H�save � �HELI� NULL�

count�save � ���

�

�	 Restore 	�

if � hnum � count�save �� count�save !� �� �

�

H � H�save�

count � count�save�

�

�	 Fresh Search 	�

else

�

H � HELIS�

count � ��

�

�	 Search for Helicopter 	�

while � H !� NULL �

�

hcoords��� � H� loc�x�

hcoords��� � H� loc�y�

hcoords��� � H� loc�z�

if � stv�particle�in�region� R
 hcoords
 � � �

�

if � ""count �� hnum �

�

	id � �STV�PARTICLE�ID� H�

coords��� � hcoords����

coords��� � hcoords����

coords��� � hcoords����

� 		 �

H�save � H� next�

count�save � count�

return�

�

�

H � H� next�

�

�	 Helicopter Not Found 	�

	id � �STV�PARTICLE�ID� NULL�

H�save � �HELI� NULL�

count�save � ���

�

FORTRAN

call stvfparticledefine� �Helicopter�
 �
 glb
 gub
 nprocs

get�helicopter
 �
 particleid �

subroutine get�helicopter� hnum
 R
 id
 coords �

integer hnum�

integer R����

integer id�

integer coords����

� � �

Errors

Error conditions that can be returned by stv particleDefine���

Name Possible cause

stvStatusNoMem could not allocate memory for internal data

structures

stvStatusBadParam invalid values passed or required arguments

omitted

See Also

stv particleFieldDefine��� stv particle in region��� stv decompDefine��

� 	� �

stvfp�eldde�ne�� stv p�eldDe�ne��

De�nes a data �eld within a �particle� composition domain

Synopsis

C int pfieldId � stv�pfieldDefine� char 	name

int particleId
 int type

STV�GET�PFIELD get�pfield

STV�VALUE get�pfield�arg

STV�SET�PFIELD set�pfield

STV�VALUE set�pfield�arg

int aflag �

FORTRAN stvfpfielddefine� name
 particleId
 type

get�pfield
 get�pfield�arg

set�pfield
 set�pfield�arg

aflag
 pfieldId �

Parameters

� 	 �

name � name of the particle data �eld as it should appear to a

front�end viewer�

particleId � particle computational domain handle as returned from a

call to stv particleDefine�� or stvfparticledefine���

Provides bounds of the computational domain for CU�

MULVS� Each particle domain can have any number of data

�elds de�ned for it�

type � integer specifying the data type of the particle data �eld�

The type can be set to any of the CUMULVS standard data

types �see below��

get pfield�� � user provided routine for extracting the data value for this

data �eld within a particle �see below�� The speci�c par�

ticle is identi�ed by a user�de�ned handle as returned by

an invocation of the user�s get particle�� routine �see

stv particleDefine���

get pfield arg � user provided argument for invocation of the get pfield��

routine� to potentially allow handling of several particle

�elds by a single handler routine� User can pass any pointer

or constant value via this argument�

set pfield�� � user provided routine for setting the value of this data �eld

in a particle� required for checkpointing only �see below��

set pfield arg � user provided argument for invocation of the set pfield��

routine� to potentially allow handling of several particle

�elds by a single handler routine� User can pass any pointer

or constant value via this argument�

aflag � integer option �ag that is the sum of the desired op�

tions� Currently the only option available is stvVisOnly �

STVVISONLY� but CUMULVS checkpointing will ulitmately

utilize the stvCpOnly � STVCPONLY options as well�

pfieldId � returned particle �eld Id that identi�es this �eld�

Discussion

The routine stv pfieldDefine�� allows a programmer to de�ne individual data

�elds for the particles in a particle computation space for CUMULVS� Each particle

will have its own set of values for each de�ned particle data �eld� CUMULVS allows

access to any desired subset of particle �elds for visualization� The �p�eld Id�

returned by stv pfieldDefine�� identi�es the data �eld for any other operations

or options�

The data �eld can be of any CUMULVS data type� The following data types are

currently supported�

� 	� �

CUMULVS type C FORTRAN

stvInt int integer �

stvFloat �oat real �

stvCplx ! complex �

stvDouble double real �

stvDcplx ! complex ��

stvLong long !

stvShort short integer �

stvStr char character

stvUshort unsigned short !

stvUint unsigned int !

stvUlong unsigned long !

stvByte char character

Unfortunately� there are no standard� well�de�ned particle domain computation

structures� and user applications can maintain collections of particle data using

unique� application�speci�c approaches� Therefore CUMULVS cannot provide any

automated particle data accessor functions like those used with contiguously decom�

posed data �elds �see stv fieldDefine���� It is the responsibility of the user to

provide an accessor routine� get pfield��� that will return the actual value of a

data �eld for CUMULVS�

The format of the user�s get pfield�� routine is�

C void get�pfield� STV�PARTICLE�ID id

STV�VALUE userData
 STV�VALUE 	value �

Fortran fgetpfield� id
 userdata
 value �

The STV PARTICLE ID id is a user�de�ned particle handle returned by a call

to the user�s get particle�� routine for the given particle domain �see

stv particleDefine���� The userData argument is also user de�ned� and is an

arbitrary data pointer or constant value to be used in handling get pfield�� re�

quests �see below example�� CUMULVS allocates the proper amount of memory for

the generic STV VALUE value pointer� so the user�s get pfield�� routine need only

assign it the proper value before returning�

In addition to a get pfield�� routine� the user can de�ne an additional

set pfield�� routine� for releases of CUMULVS which support checkpointing� This

�optional� routine will be used when CUMULVS needs to �load� the checkpoint data

into user application tasks to restart them from a checkpoint� The format of the

user�s set pfield�� routine is�

� 	
 �

C void set�pfield� STV�PARTICLE�ID id

STV�VALUE userData
 STV�VALUE 	value �

Fortran fsetpfield� id
 value �

Here� CUMULVS passes in the generic STV VALUE value which holds the checkpoint

data for the given particle data �eld� The user is expected to assign that value to

the data �eld for the particle referenced by STV PARTICLE ID id� using the user�

provided userData pointer or constant value for this particle �eld to do so�

Examples

C

void get�helicopter�pfield ��STV�Prototype���� STV�PARTICLE�ID

STV�VALUE
 STV�VALUE 	 ���

particleId � stv�particleDefine� �Helicopter�
 ��� ��

pfieldId � stv�pfieldDefine� �Heading�
 particleId
 stvDouble

get�helicopter�pfield
 �STV�VALUE� PF�HEADING

�STV�SET�PFIELD� NULL
 �STV�VALUE� NULL

stvVisOnly ��

void

get�helicopter�heading� id
 field
 value �

STV�PARTICLE�ID id�

STV�VALUE field�

STV�VALUE value�

�

HELI H�

long fid�

H � �HELI� id�

fid � �long� field�

switch � fid �

�

case PF�HEADING

	value � �STV�VALUE� ��H� heading��

� 	� �

break�

� � �

default

	value � �STV�VALUE� NULL�

break�

�

�

FORTRAN

call stvfparticledefine� �Helicopter�
 ���
 particleId �

call stvfpfielddefine� �Heading�
 particleId
 STVDOUBLE

get�helicopter�heading
 �
 �
 �
 STVVISONLY �

subroutine get�helicopter�heading� id
 field
 value �

integer id�

integer field�

real	� value

if � field �eq� � � then

� � �

else if � field �eq� � � then

value � heli�heading� id �

� � �

endif

return

end

Errors

Error conditions that can be returned by stv pfieldDefine���

� 	� �

Name Possible cause

stvStatusNoMem could not allocate memory for internal data

structures

stvStatusBadParam invalid values passed or required arguments

omitted

See Also

stv particleDefine��� stv fieldDefine��

� �� �

stvfparticle�eldde�ne�� stv particleFieldDe�ne��

�Obsolete" See stv pfieldDefine��� De�nes a data �eld within a �particle� composition

domain

Synopsis

C int pfieldId � stv�particleFieldDefine� char 	name

int particleId
 int type

STV�GET�PFIELD get�pfield

STV�SET�PFIELD set�pfield

int aflag �

FORTRAN stvfparticlefielddefine� name
 particleId

type
 get�pfield
 set�pfield

aflag
 pfieldId �

Parameters

name � name of the particle data �eld as it should appear to a

front�end viewer�

particleId � particle computational domain handle as returned from a

call to stv particleDefine�� or stvfparticledefine���

Provides bounds of the computational domain for CU�

MULVS� Each particle domain can have any number of data

�elds de�ned for it�

type � integer specifying the data type of the particle data �eld�

The type can be set to any of the CUMULVS standard data

types �see below��

get pfield�� � user provided routine for extracting the data value for this

data �eld within a particle �see below�� The speci�c par�

ticle is identi�ed by a user�de�ned handle as returned by

an invocation of the user�s get particle�� routine �see

stv particleDefine���

set pfield�� � user provided routine for setting the value of this data �eld

in a particle� required for checkpointing only �see below��

aflag � integer option �ag that is the sum of the desired op�

tions� Currently the only option available is stvVisOnly �

STVVISONLY� but CUMULVS checkpointing will ulitmately

utilize the stvCpOnly � STVCPONLY options as well�

pfieldId � returned particle �eld Id that identi�es this �eld�

Discussion

The routine stv particleFieldDefine�� allows a programmer to de�ne individual

data �elds for the particles in a particle computation space for CUMULVS� Each

� �� �

particle will have values for each de�ned particle data �eld� CUMULVS allows access

to any desired subset of particle �elds for visualization� The �p�eld Id� returned

by stv particleFieldDefine�� identi�es the data �eld for any other operations or

options�

The data �eld can be of any CUMULVS data type� The following data types are

currently supported�

CUMULVS type C FORTRAN

stvInt int integer �

stvFloat �oat real �

stvCplx ! complex �

stvDouble double real �

stvDcplx ! complex ��

stvLong long !

stvShort short integer �

stvStr char character

stvUshort unsigned short !

stvUint unsigned int !

stvUlong unsigned long !

stvByte char character

Unfortunately� there are no standard� well�de�ned particle computational domain

structures� and each user application can maintain collections of particle data in a

unique manner� Therefore CUMULVS cannot provide any automated particle data

accessor functions like those used with contiguously decomposed data �elds� It is

the responsibility of the user to provide an accessor routine� get pfield��� that will

return the actual value of a data �eld for CUMULVS�

The format of the user�s get pfield�� routine is�

C void get�pfield� STV�PARTICLE�ID id
 STV�VALUE 	value �

Fortran fgetpfield� id
 value �

The STV PARTICLE ID id is a user�de�ned particle handle returned by a call

to the user�s get particle�� routine for the given particle domain �see

stv particleDefine���� CUMULVS allocates the proper amount of memory for

the generic STV VALUE value pointer� so the user�s get pfield�� routine need only

assign it the proper value before returning�

� �� �

In addition to a get pfield�� routine� the user can de�ne an additional

set pfield�� routine� for future releases of CUMULVS which will support check�

pointing� This �currently optional� routine will be used when CUMULVS needs

to �load� the checkpoint data into user application tasks to restart them from a

checkpoint� The format of the user�s set pfield�� routine is�

C void set�pfield� STV�PARTICLE�ID id
 STV�VALUE 	value �

Fortran fsetpfield� id
 value �

Here� CUMULVS passes in the generic STV VALUE value which holds the checkpoint

data for the given particle data �eld� The user is expected to assign that value to

the data �eld for the particle referenced by STV PARTICLE ID id�

Examples

C

void get�helicopter�heading ��STV�Prototype���� STV�PARTICLE�ID

STV�VALUE 	 ���

particleId � stv�particleDefine� �Helicopter�
 ��� ��

pfieldId � stv�particleFieldDefine� �Heading�
 particleId

stvDouble
 get�helicopter�heading
 �STV�SET�PFIELD� NULL

stvVisOnly ��

void get�helicopter�heading� id
 value �

STV�PARTICLE�ID id�

STV�VALUE value�

�

	value � �STV�VALUE� �� ��HELI� id�� heading ��

�

FORTRAN

call stvfparticledefine� �Helicopter�
 ���
 particleId �

call stvfparticlefielddefine� �Heading�
 particleId
 STVDOUBLE

get�helicopter�heading
 �
 STVVISONLY �

� �	 �

subroutine get�helicopter�heading� id
 value �

integer id�

real	� value

value � heli�heading� id �

return

end

Errors

Error conditions that can be returned by stv particleFieldDefine���

Name Possible cause

stvStatusNoMem could not allocate memory for internal data

structures

stvStatusBadParam invalid values passed or required arguments

omitted

See Also

stv particleDefine��� stv fieldDefine��

� �� �

stvfsendtofe�� stv sendToFE��

Listen for new viewing front�ends to attach to a program� Send data to any attached

front ends� Get steering parameters from front ends�

Synopsis

C int info � stv�sendToFE� �

FORTRAN stvfsendtofe� info �

Parameters

info � � if parameters have not changed� Positive return value

indicates that parameters have changed� Negative value is

an error�

Discussion

The routine stv sendToFE handles all of the details of attaching a front�end viewer

to a program� sending data to a front�end and getting steering parameters back

from a front�end viewer� Fields must have been de�ned by stv fieldDefine and

parameters must have been de�ned by stv paramDefine� This routine returns the

number of user�de�ned steering parameters that have been updated during the call�

Negative values indicate an error�

This routine must be called by all nodes in a parallel program� whether or not data

is being sent� CUMULVS uses a loosely synchronous model of computation with

�ow control� This means that stv sendToFE will not block a task unless data from

a previous iteration has not been transmitted completely to an attached front�end

by all node programs� Otherwise� CUMULVS does not explicitly synchronize tasks

in stv sendToFE�

If a front�end viewer detaches at any time from a running computation� a task will

not block in stv sendToFE�

Examples

C

nchanged� stv�sendToFE���

FORTRAN

call stvfsendtofe� nchanged �

See Also

stv paramDefine� stv fieldDefine� stv isParamChanged

� � �

stvfversion�� stv version��

Return the version of CUMULVS that is being used�

Synopsis

C char 	 verstring � stv�version��

FORTRAN stvfversion� verstring �

Parameters

verstring � string that contains the current CUMULVS version number�

Discussion

The routine stv version returns a string containing the version number of CU�

MULVS� The most recent version number is at least ��������

Examples

C

verstring � stv�version���

FORTRAN

call stvfversion� verstring �

� �� �

	� Viewer Library Man Pages

Man Pages to be added�

stv viewer init��

stv clear view �eld select��

stv get view �eld name��

stv viewer request �eld��

stv allocate Field arrayDecl��

stv allocate Field Data��

stv free �eld array��

stv reset Field Particles��

stv viewer receive frame��

stv viewer send XON��

stv viewer set VisRegion��

stv viewer set VisFrequency��

stv dump �eld array��

stv dump vfg �eld array��

stv dump user �eld array��

stv viewer send FieldHaltGroup��

stv viewer send FieldHaltAll��

	�	 Viewer Steering Library Man Pages

Man Pages to be added�

stv viewer steering init��

stv get view param name��

stv viewer steering request��

stv viewer steer parameter��

stv viewer steer vparameter��

stv viewer send NewParams��

stv viewer steering release��

� �
 �

	�	 Viewer Utility Library Man Pages

Man Pages to be added�

stv copy converted data��

stv str of typed data��

stv init region��

stv copy region��

stv init cell��

stv copy cell��

stv memcheck��

stv copy str��

stv setopt��

stv getopt��

	�	 Message Passing Library Man Pages

Man Pages to be added�

stv myid��

stv mp err��

Somebuddy gots ta do dis�

� � �

