Australian National University
Department of Computer Science

PADRE!
User Manual

(describes the MPI Version of padre)

David Hawking
dave@cs.anu.edu.au
Peter Bailey
peterb@cs.anu.edu.au

August 28, 1996

IDevelopment carried out under the ANU - Fujitsu CAP Project and the ACSys Cooperative Research
Centre

Contents

1 INTRODUCTION 4
1.1 A Choice Of Pattern Matching Methods 4
1.1.1 Full Text Scanning Method 4

1.1.2 Memory Resident Index Method 4
1.1.3 Super Dictionary Method oo 4

1.2 Combining the Benefits of FT'S and SD Methods 4
1.3 What Is A Document? e 4
1.4 What Is A Match Set? 5
1.5 Document Sets L 5
1.6 The Match Set Stack L)
2 ELEMENTARY USE OF PADRE 5
2.1 Padre Environment L0 e)
2.2 Starting padre L 5
2.3 Command Line Options it 6
2.4 Quitting padre e 6
2.5 Loading Data for FTS and MRI Methods 6
2.5.1 Loading a Subset of Documents 0oL 6
2.5.2 A Demonstration Document Collection 7
2.5.3 Multiple Text Bases e 7

2.6 Basic Searching in FTS Method 0. 7
2.7 Searching For Multiple Alternate Strings 8
2.8 Case Sensitivity L e 8
2.9 Displaying Results L 8
3 CALCULATING RELEVANCE OF DOCUMENTS 9
3.1 Frequency Based Measures o e 9
3.1.1 Using Alternative Relevance Formulae 9

3.2 Distance Based Measures o e 10
3.2.1 Znear Command (*** Marked for Obsolescence ***) 10

3.3 Alternative Distance Based Formulae00, 10
3.3.1 Span Command e 11

3.4 Forcing Documents to be Considered Relevant or Irrelevant 12
3.5 Gory Details Of Ranking Relevance. 13
4 ADVANCED USE OF PADRE 13
4.1 Changing Padre Behaviour 13
4.2 The Reset and Topic Commands 13
4.3 Regular Expression Matching - FTS Method Only 14
4.4 Proximity Operators 0 e e e e 14
441 Followed By 15
4.42 Not Followed By 15
4.4.3 Preceeded By - (*** NOT IMPLEMENTED ***) 15
444 Not Preceeded By o 15
4.4.5 Near o o e e e e 15
446 Not Near o e 16

4.5 Restricting Searches To Components Of Documents 16

4.5.1 Within. 00 e

4.5.2 Including L
4.6 Operations on Match Sets
4.6.1 Set Operators i e e e e e e
4.6.2 Infix Set Expressions L 0o
4.6.3 Set Names. o i e e
4.6.4 Union L e e e e e e
4.6.5 Intersection L e
4.6.6 Difference
4.6.7 Converting Match Sets oo o oo
4.6.8 Loading and Saving Match Sets o 000
4.7 Creating and Working With Document Sets
4.7.1 Converting a Matchset into a Document Set
4.7.2 Other Ways of Using the Negation Operator
4.7.3 The makedocset Command
4.7.4 Making a Doc Set From a List of Document Names
4.7.5 Using a Doc Set to Filter Matches
4.7.6 Loading Documents Indicated By a DocSet
4.7.7 Listing Titles of Documents In a Docset
4.7.8 Making Wordlists
4.8 Displaying Lexicographic Context L 000
4.81 Print oL e
4.8.2 Sample
4.8.3 Save e e e
4.8.4 Changing the Form of the Output - Print, Sample and Save
4.8.5 Word-based Context
TERM CO-OCCURRENCE CAPABILITIES
5.1 Term-Term Implications (*** Under Construction ***)

FACILITIES FOR TEXT BASE ADMINISTRATORS

6.1 Enabling More Efficient Loading 00,
6.2 Removing entries from atext base Lo oo oL
6.3 Removing components from a collection 00000
6.4 Combining Text Bases e
6.5 Dumping A Text Base L
DBMerging Simulation

7.1 Lightweight Probes
7.2 Setting Cell Masks L

IMPROVING EFFICIENCY
8.1 Load Balance - FTS Methodonly

MEMORY RESIDENT INDEX METHOD

24
24

25
25
25
25
26
26

26
26
26

27
27

27

10 SUPER DICTIONARY METHOD
10.1 Loading a super-dictionaryo
10.2 Searching with a super-dictionary
10.3 Restrictions on Use of Super Dictionaries

A SYNTAX FOR REGULAR EXPRESSIONS
B SUMMARY OF COMMANDS

C SUMMARY OF VARIABLES

27
27
27
28

30

32

35

1 INTRODUCTION

The program padre (PArallel Document Retrieval Engine) is a further evolution of the paddy
and ftr programs. Much of the functionality of paddy was a parallel emulation of similar serial
commands in the pat (version 3.3) program from the University of Waterloo. Padre is currently
implemented only for the Fujitsu AP1000. Various papers listed in the padre WEB page outline
the theory behind PADRE and describe data structures, internal algorithms and the like.

Padre is essentially a parallel pattern matching engine which can work over a large collection
of documents. Once the pattern-matching machinery has found a set of matchpoints in the
textbase, the padre user can display the context in which each (or some) of the matches occurred
(for linguistic or lexicographic purposes) or use relevance measures calculated by padre as the
basis of identifying or retrieving the most relevant documents to their research topic.

1.1 A Choice Of Pattern Matching Methods

Padre provides three different methods for locating matchpoints in the text. Each has advan-
tages and disadvantages.

1.1.1 Full Text Scanning Method

This method loads entire text bases into RAM memory of the cells and performs complete scans
through them in order to locate matchpoints. FTS is slowest at locating simple patterns but
supports regular expression matching and {wsmode any} which the other methods don’t. The
size of textbases is limited by available memory.

1.1.2 Memory Resident Index Method

MRI method is very fast because it keeps a wordstart index in memory as well as the raw text.
Doesn’t support regexp or {wsmode any}. Even more tightly limited by available memory
because the word start index is typically two thirds of the size of the raw text.

1.1.3 Super Dictionary Method

SD method is capable of handling much larger document collections than the other two and
offers the same capabilities as (or better than) MRI method. The textbase size is limited by
available disk space more than memory. Doesn’t support regexp or {wsmode any}.

1.2 Combining the Benefits of FTS and SD Methods

Work is going on in 1996 to try to realise the benefits of both these methods at the same time
when queries can be structured in two phases - a recall phase based on superdictionary method
and a ranking phase. Documents identified in the recall phase are loaded into memory as a
pseudo collection and ranked using the FTS method.

1.3 What Is A Document?

Padre must be given a character string which marks the beginning of every document. The
piece of text starting with the first character of the marker and ending immediately before the
first character of the next one is defined to be a document. Documents are not split across

AP1000 cells.

For retrieval purposes, documents should not be excessively long. If the collection includes
omnibus volumes such as dictionaries or encyclopaedias, each entry should be marked as a
separate document. However, for some purposes, it would be preferable to treat the whole
omnibus as a single document. Future versions of padre are likely to adopt a more flexible
definition of what constitutes a document.

1.4 What Is A Match Set?

Internally, the result of most padre operations is an ordered set of pointers to characters in the

text collection. This is called a match set. If a search is made for the pattern "cat" the result

138}
C

will be a set of pointers to every letter which is followed by “at”. The first pointer will

reference the first occurrence of “cat”, the second pointer will reference the second occurrence
and so on.
Padre allows match sets to be named and referenced again later in the same query.

1.5 Document Sets

Padre includes a number of operators which create special match sets in which the matchpoints
are all pointers to the very first character of each of a subset (possibly the complete set) of
documents.

1.6 The Match Set Stack

As match sets are computed by search operations they are stored on an upwards-growing stack.
Operators which operate on match sets are usually defined to replace the top match set (or the
top m match sets) with a single result set.

2 ELEMENTARY USE OF PADRE

2.1 Padre Environment

Before using padre you should set the environment variable PADREHOME to the appropriate
directory for your system. This can be done in your .cshrc file.

2.2 Starting padre

To start padre, type:

cd $PADREHOME/bin
mpirun -inplace 10000000 padre ftr_cell

You should now see the padre command prompt:
>>

This prompt signifies padre’s readiness to accept a command.
To operate padre in non-interactive mode, supply input and output files via Unix redirection.
ie.

mpirun padre ftr_cell <cmds >cmds.log

2.3 Command Line Options

-trec - format the lists of retrieved documents to suit the TREC competition.
-parl - format the lists of retrieved documents to suit the WAIS server.
-terse - reduce the volume of informational about numbers of matches, times etc.

2.4 Quitting padre

To quit padre type the following command :

>> quit

2.5 Loading Data for FTS and MRI Methods

Before information can be retrieved in these methods, the document collection must be loaded
into memory. The AP1000 consists of a number of cells, ranging from 16 to 1024, each with its
own memory. To load data into the AP1000, padre loads a portion of the data into each cell.

The document collection may be stored either on host disks (either compressed or uncom-
pressed) or on DDV option disks (using the HiDIOS filesystem). There are a number of different
load commands:

>> load "filestem" - uncompressed host file
>> cload "file or directory-name" - compressed host files
>> doload "filestem" - DDV option filesystem

When the load command requires a filestem, padre expects to find the textbase in a file called
filestem.tb. In the case of the load command it also expects to find a companion description
file filestem.info. At the moment, the only information in the .info file is the string which
marks the beginning of a document. The same information is held in a file called .info in the
directory containing compressed text files and in headers stored in the files on DDV disks.

The cload command recursively scans the directory tree starting at the specified directory
and loads as text data every ordinary file which is not called .info or README. If the number of
files to load is not an even multiple of the number of AP1000 cells, the loadbalance command
may be used to distribute the data more evenly.

A variant of the cload command takes a file rather than a directory as its argument. The
first line of the named file is interpreted as the start of document marker (jDOC;, in the case of
TREC data). The first “word” on each subsequent line is treated as the name of a compressed
file to load.

2.5.1 Loading a Subset of Documents

The cload command now takes an optional numeric parameter n:

>> cload "directory-name" 'n"

which allows only a sample of the data to be loaded. Only every nth file encountered in the
directory scan is loaded. This can be useful in performing term implications or collection cate-
gorisations when time or memory limits are imposed.

2.5.2 A Demonstration Document Collection

A sample text base consisting of a directory of compressed Usenet news items is sometimes

supplied with padre. It is usually called /text/news. Each news article starts with the SGML

tag <item>. Acordingly, the file /text/news/.info contains a single line with the string <item>.
Thus, to load the sample text base, use

>> cload "/text/news"

2.5.3 Multiple Text Bases

In the FTS method, Padre makes it possible to have several text bases in memory at once, by
allowing multiple load, cload or doload commands. To switch between the text bases in memory,
change the variable base. For example:

>> {base 3} - switch to the third base in memory

Note that the first textbase loaded is number 1.

2.6 Basic Searching in FTS Method

The simplest padre searches specify a literal pattern which is matched exhaustively against
the entire text base using a modified Boyer-Moore-Gosper algorithm. The pattern can include
spaces, where a space matches a space or any single non-alphanumeric. If the search pattern
contains spaces, the entire pattern must be enclosed by double quotes. By default, matches are
constrained to lie at word starts but this can be changed by changing the value of the wsmode
variable (see example below). Some example searches are:

>> "cat" - matches any word starting with "cat" eg. '"catch"

>> "cat " - matches only the word "cat" (or "CAT", "Cat", etc.)
>> {wsmode any}

>> "cat" - search for every occurrence of "cat" regardless

of word boundaries, eg. "educate"
>> "ize " - matches any word ending in "ize", eg. "sanitize"

>> "cats and dogs - matches the three words separated by single

spaces or single punctuation marks.

Though they may often be omitted, it is a good idea to enclose each search string in quotes
in case the string happens to be the name of a padre command. For example :

>> "load" - search for all occurences of the string load

After a search command has been completed, padre displays the number of matchpoints
found and the time taken to complete the search. Times are measured on the AP1000 host
machine (front-end).

>> textual
9 matches.
Search time: elapsed = 0.03 sec., cpu = 0.033 sec

2.7 Searching For Multiple Alternate Strings

It is often necessary to search for occurrences of any one of a list of alternates. For example,
references to any one of the countries in Europe. The current version of padre includes two
different commands (based on different algorithms) for performing this task in a single scan
through the data. These are the anyof and bmg2 commands. The following example shows two
commands which should produce identical results:

>> anyof '"france |germanyl|england |switzerland |italy spain"
>> bmg2 "‘france |germanyl|england |switzerland |italy spain"

In future versions of padre, the anyof and bmg2 commands are likely to disappear and be
merged with the simple string-searching case:

>> "france |germanylengland |switzerland |italy spain"

2.8 Case Sensitivity

By default, padre searches are not case-sensitive. Ie. “a” matches both “a” and “A”. To make
searches case sensitive, specify:

{casesensitive 1}

2.9 Displaying Results

The command top n lists the n documents judged most relevant to the topic so far (in descending
order of estimated relevance.) If the documents included a <DOCNO> field, the contents of the
field are displayed as a title.

If padre is operating in parliamentary mode (-parl command line switch or mode parl),
the top command lists each document with an identifier of the form [cell num, collection num,
doc num]'. This identifier can be supplied as an argument to the getdoc command in order to
display a particular document.

>> top 3

[35, 2, 54] WSJ870227-0021

[3, 1, 528] WSJ881103-0102

[65, 2, 120] WSJ861222-0120

>> getdoc "[35, 2, 541"

<DOC>

<DOCNO> WSJ870227-0021 </DOCNO>

<HL> Personal Taxes (A Special Report): Work Sheets
By Gay Sands Miller</HL>

The command retrieve n retrieves the text of the n documents judged most relevant to the
topic so far into a file in the current directory called reldocs.topictopicname. Extremely long
documents (over half a megabyte) are truncated.?

!Check that this really happens!
2This restriction should be removed. It has caused Paul problems.

3 CALCULATING RELEVANCE OF DOCUMENTS

Padre offers two completely different ways of scoring the relevance of documents:

frequency-based A family of different formulae which use frequency of occurrence of query
terms in a particular document and in the collection as a whole to derive relevance scores.
Sometimes the length of the document is also taken into account.

distance-based A new family of formulae which ignore collection statistics and document
lengths completely. Instead scores are computed according to span lengths between groups
of terms. Of course there is a frequency component in that each span within a document
adds to its score.

The padre user must indicate the start of a new research topic by issuing the topic command
topic topicname. This command resets the cumulative relevance metric for each document in
the collection.

If desired, the cumulative relevance metrics for each document may be cleared using the
reset weights command. This command has no effect on the flags which indicate whether
the document is mandatorily included or excluded. This capability allows the searcher to define
a subset of documents for further consideration without the weights calculated in defining the
subset counting in the final relevance assessment. (See include and exclude commands below.

3.1 Frequency Based Measures

Each time a pattern matching, proximity or set operation is executed, the relevance of each
document containing matchpoints is updated according to how many matchpoints it contains
and how many matchpoints there are altogether. A bias against long documents is also applied.

Particular search terms may be assigned an importance weighting using the weight variable.
By default, the weight is 5. In the following example, the presence of Clinton or Yeltsin by
themselves is considered totally irrelevant but the presence of the two of them in proximity is
considered highly important.

>> {weight 0}
>> Clinton

>> Yeltsin

>> {weight 10}
>> near 2

Negative weights may be used to downgrade the assessed relevance of documents containing
particular patterns.

3.1.1 Using Alternative Relevance Formulae

Padre currently supports several alternative formulae for calculating a document’s raw weight
with respect to each padre operation. The user can select which one is used by changing the
relmode variable. Note that raw weights are multiplied by the manually assigned weight before
being accumulated.

relmode weighted - The default. Raw weight is calculated as the number of matches in a
document divided by log to the base 10 of the product of the document length and the
total number of matches.

relmode boolean - Raw weight is set to 1.0 if the document contains one or more matches, to
0.0 if it does not.

relmode nocf - As for weighted except that the total number of matches term (the collection
frequency is dropped.

relmode prologs - As for weighted except using the product of the logs rather than the log
of the product.

relmode squirrel - As for weighted except that sqrt rather than log is employed.

relmode zmode - Relevance is NOT accrued by normal searches at all . This allows conventional
ranking to be turned off while the znear (q.v.) command is being used.

relmode count - As for boolean but the raw weight is set to the number of matches in the
document.

3.2 Distance Based Measures

Calculating relevance on the basis of distance is best illustrated by example. Imagine that we
are seeking documents relevant to “the economic impact of recycling tyres”. We may believe
that relevant documents will include references to the three concepts represented by “economic
impact”, “recycling” and “tyres”.

Imagine that a document contains one instance of each concept. The closer together are the
instances, the higher will be the score, reflecting the increase in probability that the occurrences
are related.

Now imagine a document apparently containing only two of the concepts, say “recycling”
and “tyres”. Such a document should score less than a document containing all three concepts
but it should be given a non-zero score on the basis that the “economic impact” concept may
be present but in an unrecognised form such as “increased profits”.

In some cases, relevant documents may be identified by singleton terms or phrases. For
example, “self hypnosis”. These can be regarded as saturated complete spans of length 1.

3.2.1 Znear Command (*** Marked for Obsolescence ***)

The znear command operates in the same way and has the same function as the near but
updates relevance in a way which takes into account the minimum span (in words) between the
hits forming a proximity set. It scores nothing for partial spans.

3.3 Alternative Distance Based Formulae

For each span, a raw-weight is calculated as a fraction consisting of a numerator divided by a
denominator. The zmode variable is taken as a two digit decimal number in which the tens digit
controls what is used as the numerator: (0 implies unity, 1 implies the average of the number
of proximal hits for each participating term, 2 implies the sum of the proximal hits.) and the
units digit controls the denominator: (0 implies the span in words, 1 implies the square root of
the span and 2 implies the maximum of 5 and the span). The value of 33 gives the formula used
by the University of Waterloo in TREC4. The value of 01 is the formula found best by ANU in
TREC4.

10

3.3.1 Span Command

The span command differs from znear in that:

1. its parameters are specified on the command line
2. it produces no result set

3. it assigns scaled down scores for partial spans

There are three basic varieties of span command which differ in the way partial spans are
handled.

>> span all num_sets weight prox_limit min_num_sets
>> span leading num_sets weight prox_limit min_num_sets
>> span key num_sets weight prox_limit min_num_sets num_key_sets

All three variants require the specification of:

1. the number of sets over which relevance is to be computed,

2. the multiplicative factor (weight) used to scale resulting span scores,
3. the proximity range in characters to which spans are limited, and

4.

the minimum number of terms (one from each set) required to form a span.

The all variant computes span scores for all possible combinations of num_sets sets taken
min num_sets or more at a time. It may be useful when all the concepts in a concept intersection
are equally meaningful. If sets 1, 2, 3, 4 are on top of the matchset stack when the following
example command is processed,

>> span all 4 1000 1000 3
the following combinations of sets will be scored:
1,2,3,4,1,2,3,1,2,4,1,3,42,3,4

The leading variant computes span scores only for sequences of sets starting with the one
first placed on the stack. If sets 1, 2, 3, 4 are on top of the matchset stack when the following
example command is processed,

>> span leading 4 1000 1000 2
only the following combinations of sets will be scored:
1,2,3,4,1,2,3,1,2

The key variant computes span scores only for the combinations of sets which would be used
in the all variant minus those which do not include the key set or sets. The key set or sets
must be placed on the stack before the others. If sets 1, 2, 3, 4 are on top of the matchset stack
when the following example command is processed,

>> span key 4 1000 1000 3 1
only the following combinations of sets will be scored:
1,2,3,4,1,2,3,1,2,4,1,3,4

A key variant might be appropriate in a case where several of the concepts being intersected
were quite broad and one or two were very specific. For example, in retrieving documents
relevant to the economic management of film studios the concepts economic and management
are very broad whereas relatively few documents deal with film studios.

11

3.4 Forcing Documents to be Considered Relevant or Irrelevant

The include and exclude commands may be used to over-ride the normal relevance ranking
formula. Several modes are supported. They are described by means of examples.

>> "computer"
>> exclude current

Exclude current will cause documents containing matches in the current match set (in the
example all those containing the word computer) to be treated as irrelevant.

>> "computer"
>> exclude others

Exclude others will cause documents NOT containing matches in the current match set
in the example all those NOT containing the word computer) to be treated as irrelevant.
p g P

>> exclude biased

Exclude biased will cause documents whose accumulated positive relevance derives more
than 85% from a single search term to be treated as irrelevant.

>> exclude -0.5

Exclude -threshold will cause documents whose accumulated negative relevance exceeds a
threshold value to be treated as irrelevant. (Documents for which there is strong negative
evidence.)

>> exclude +0.5

Exclude +threshold will cause documents whose accumulated positive relevance does not
exceed a threshold value to be treated as irrelevant. (Documents for which positive evidence is
weak.)

>> "computer"
>> include current

Include current will cause documents containing matches in the current match set (in the
example all those containing the word computer) to be treated as relevant.

>> "computer"
>> exclude others

Include others will cause documents NOT containing matches in the current match set
(in the example all those NOT containing the word computer) to be treated as relevant.

>> include -0.5

Include -threshold will cause documents whose accumulated negative relevance does not
exceed a threshold value to be treated as relevant. (Documents for which negative evidence is
weak.)

>> include +0.5

Include +threshold will cause documents whose accumulated positive relevance exceeds a
threshold value to be treated as relevant. (Documents for which positive evidence is strong.)

12

3.5 Gory Details Of Ranking Relevance

Use of the include and exclude commands may result in apparent conflict or ambiguity in
ranking a particular document. Padre resolves such problems by dividing documents into three
categories:

1. Documents mandatorily included and NOT excluded.
2. Documents both included AND excluded OR neither.

3. Documents mandatorily excluded.

Within categories, documents are ranked according to the sum of their accumulated positive
and negative relevance. Documents in the first category are eligible to be returned even if this
sum is very small or negative. Documents in the second category are only eligible to be returned
if the sum exceeds zero. Documents in the third category are ineligible to be returned.

Category 1 documents are processed first, then category 2. If the number of documents
requested is less than the number of documents in category 1, the lowest ranked documents will
not be returned even though their inclusion is said to be mandatory.

4 ADVANCED USE OF PADRE

4.1 Changing Padre Behaviour

As has been seen in some examples, padre behaviour is controlled by the values of certain
variables. These variables are listed in Appendix C. Variable assignments are enclosed in braces:
{variable value}. For example:

{wsmode any}

The role of particular variables is described in the context of the functions they modify.

4.2 The Reset and Topic Commands

The weights modifier to the reset command has been mentioned earlier. Here is a full list of
modifiers:

all Clear all match sets, document accumulators, component tables and pseudo collections.
In the case where a loaddocs command has been used to load a subset of documents
as a pseudo textbase, the reset all command, clears everything related to the pseudo
textbase and reverts to SDmode with the previously active superdictionary.

bits clear all bits (include, exclude and future) bits associated with each document.

start Reverts padre to a state as close as possible to the state at the beginning of the current
execution.

vol clear all volatile sets from the stack.

weights clear the relevance accumulators associated with each document.

The topic command which requires a topic name as its argument has two effects. It
is used to label the lists of document ids produced in —trec mode and it also causes a
reset which clears match sets, document accumulators and component tables and resets
most variables which affect relevance (proximity, weight, casesensitive, WSmode) to their
standard values. Other variables are not altered.

13

4.3 Regular Expression Matching - FTS Method Only

Padre provides the ability to search for regular expressions. Regular expressions allow more
general patterns to be specified than with the other search methods. The regular expression
search routine comes from the gnu “Extended Regular Expression Matching and Search Library”.
To search for a regular expression, type the padre command regexp followed by the regular
expression to search for. Some examples are :

>> regexp "\<[a-z]*ize\>"

The above regular expression searches for words ending in ize, for example size and
privatize. To do this, the pattern matches the start of a word (\<), followed by zero or
more letters ([a-z]*), followed by ize, followed by an end of word marker (\>).

>> regexp "\<[a-z]*consider[a-z]*\>"

The above regular expression searches for words with consider in the middle, for example
considering and inconsiderate. To do this, the pattern matches the start of a word (\<),
followed by zero or more letters ([a-z]*), followed by consider, followed by zero or more letters
([a-z]*), followed by an end of word marker (\>).

>> regexp "\<[a-hj-z]*ila-hj-z]#*i[a-hj-z]*\>"

The above regular expression searches for words with exactly two i’s, for example participation
and building. To do this, the pattern matches the start of a word (\<), followed by zero or
more letters that are not i’s ([a-hj-z]*), followed by an i, followed by zero or more letters
that are not i’s ([a-hj-z]*), followed by an i, followed by zero or more letters ([a-hj-z]*),
followed by the end of word marker (\>).

See appendix A for syntax of regular expressions.

4.4 Proximity Operators

Proximity operators produce a result match set from an arbitrary number n of previously com-
puted match sets. The n operands are removed from the stack and replaced by the result
set.

Proximity is defined in terms of the number of characters separating two matchpoints. A
member is added to the result set if and only if an n-tuple satisfying the proximity relation can
be formed with one element from each of the component sets.

The range for the proximity searches is defined by the proximity variable. The default
proximity is 100 characters. To change the proximity to a different value, say 140 characters,
use the command :

>> {proximity 140}
The proximity is measured from the first character of the first match to the first character of

the second match. Proximity is not permitted to extend beyond the boundaries of a document.
In the following examples the prevailing proximity is represented as p.

14

4.4.1 Followed By

The result of a fby operation consists of all members of the first set followed within proximity
by a member of each of the other sets in order. The following example searches for occurrences
of cat that are followed by occurrences of dog followed by aardvark, all within p characters.

>> "cat "
>> "dog "
>> "aardvark "
>> fby 3

4.4.2 Not Followed By

The result of a not fby operation consists of all members of the first set which are not followed
within proximity by a member of the second set. The following example searches for occurrences
of cat that are not followed by an occurrence of dog within p characters.

>> "cat"
>> |Id0g||
>> not fby

4.4.3 Preceeded By - (*** NOT IMPLEMENTED **#%)

The result of a pby operation consists of all members of the first set preceeded within proximity
by a member of each of the other sets in order. The following example searches for occurrences
of cat that are preceeded by occurrences of dog preceeded by aardvark, all within p characters.

>> "cat "
>> "dog "
>> "aardvark "
>> pby 3

4.4.4 Not Preceeded By

The result of a not pby operation consists of all members of the first set which are not preceeded
within proximity by a member of the second set. The following example searches for occurrences
of cat that are not preceeded by an occurrence of dog within p characters.

>> "cat"
>> Ildogll
>> not pby

4.4.5 Near

The result of a near operation consists of all members of any of the component sets followed
within proximity by a member of each of the other sets , not necessarily in order. The following
example searches for occurrences of cat, dog and marmot within p characters of each other. The
result set is sorted into order.

15

>> "cat"

>> "dog"

>> "marmot"
>> near 3
>>

4.4.6 Not Near

The result of a not near operation consists of all members of the first component sets which are
not followed or preceded within proximity by a member of the second set. The following example
searches for occurrences of cat for which there is no occurrence of dog within p characters.

>> "cat"

>> "dog"

>> not near
>>

4.5 Restricting Searches To Components Of Documents

If parts of a document such as title, authorname, date etc. are delineated by start and end
markers, they can be defined as padre components. Subsequent searches can be constrained
to look only within particular named components. In the current version of padre only literal
searches can be restricted in this way, but this restriction may eventually be removed.

To define a chapter component with start marker <ch> and end marker </ch> the following
command may be used :

>> chapter = component <ch>..</ch>

In future versions of padre, regular expressions as start and end markers may be supported.
Indeed the within and including commands are ripe for redevelopment, so that more sophis-
ticated things can be done?

4.5.1 Within

The within command searches for text that is contained in a certain type of component. In the
following example, the result set includes only the occurrences of rubbish which occur between
the above markers.

>> "rubbish" within component chapter

4.5.2 Including

The including command searches for components of text that contain the specified pattern.
The result set produced by the following command includes pointers to all chapter components
containing the string rubbish.

>> component chapter including "rubbish"

3Change needed!

16

4.6 Operations on Match Sets

As stated above, the result of a search is called a match set, or more simply, a set, in which each
element is a pointer to the first character of a match in the text. The results of two searches can
be used to obtain a third set using one of the set operators. Each of the items in a set is a match
point, so the set operators do their comparisons on match points. To perform a set operation
on two sets, separate the commands to find the two sets with the desired set operator.

4.6.1 Set Operators

Union, Intersection and Difference operators are provided in both infix and “postfix” forms.
Infix operators are used within single line expressions and postfix operators replace the top n
sets on the stack with the result of applying the operator. A Negation operator is also provided
in both forms but converts its operand to a docset if it is not already one.

4.6.2 Infix Set Expressions

Multiple set operations are permitted within a single line. At present, all operators are considered
to have the same precedence and operators are evaluated left-to-right.

>> "dog " + "cat " + "cow " + "horse "

>> "communist "

>> ” - result is set of all docs not
- containing "communist "

4.6.3 Set Names

It is also possible to name a set, so that it can be used in a later set operation. A set is named
with the command :

>> {setname name} - where name is some alphanumeric string, where
the first character must be a letter, not a digit

The identifier name now refers to the most recent match set computed by padre. If name
has already been used in a previous setname command, then the old set value will be overwritten
with the new one. It is of course an error to perform a setname operation before any entry sets
have been computed.

Having named a set, it can be used within a set operation as follows:

>> colour
>> blue
>> fby 2

>> {setname bluecol}
>> colour
>> orange

>> fby 2
>> {setname orangecol}

17

>> {bluecol} "~ {orangecol}

1 matches in result set.
Time for set operation: elapsed = 0.05 sec., cpu = 0.000 sec

Invoking the name of a set causes a copy of it to be put on top of the matchset stack.
Setnames evaporate when a topic command is issued.
4.6.4 Union

The union operator builds a third set which contains every element of the first and second set.
The union operator creates an ordered set with no duplicate items. An example of using the
union operator is :

>> cat + dog - Find all patterns starting with cat or dog
Alternatively,

>> cat
>> dog
>> union 2

4.6.5 Intersection

The intersection operator builds a third set that contains only those elements that occur in both
the first and second set. An example of the infix intersection operator has already been given.
In postfix form:

>> {bluecol}
>> {orangecol}
>> intersection 2

4.6.6 Difference

The difference operator builds a third set that contains all elements that occur in the first set
but do not occur in the second set. An example of the difference operator is :

>> compute - computer - Find all matches starting with compute, but not
starting with computer.

Or, equivalently:

>> compute
>> computer
>> diff 2

18

4.6.7 Converting Match Sets

Not available in SD mode.

Padre provides an operator matchpreceding to replace each matchpoint in a match set
with the immediately preceding occurrence of some pattern (regular expression). Pre-defined
patterns are available to match sentence starts, paragraph starts or document starts, but the
user may supply their own. Using matchpreceding and the set operators allows one to find
sentences containing both of two terms. This functionality overlaps to some extent with the
component search operators and with the document set operators.

matchpreceding takes one argument, either sent, para, doc or a regular expression. The
following example finds all sentences containing "dog " or "dogs" and "fleas ".

>> bmg2 "dog ldogs "
>> matchpreceding sent
>> "fleas "

>> matchpreceding sent
>> intersection 2

4.6.8 Loading and Saving Match Sets

Sometimes the usefulness of a set of matchpoints (such as the set of occurrences of all terms
defining a U.S. context) outlives a particular topic or even a particular run of PADRE. Such
a matchset may be saved on option disk using the savematchset command. The filename is
assume to have a .mset suffix.

>> use matchsetfile filestem
>> savematchset name
>> loadmatchset name

The use matchsetfile command creates a new option disk file and writes a record identi-
fying the superdictionary or textbase in use plus some sort of CRC value so that attempts to
load irrelevant matchsets can be detected and avoided. Subsequent calls to savematchset write
a record recording name followed by the current set of match pointers. Name can be anything
specified by the user.

Loadmatchset retrieves the first matchset corresponding to name from the file and loads its
matchpoints as a new set on the top of the stack.

4.7 Creating and Working With Document Sets

A document set is a special case of a match set. Consequently, set and proximity operators may
be used with document sets. Some additional commands are needed to create and manipulate
document sets, however.

4.7.1 Converting a Matchset into a Document Set

The matchdocstarts command converts the topmost match set on the stack into an ordered
set of pointers to the starts of all documents which contained matches in the last set.

The negation command converts the topmost match set on the stack into an ordered set
of pointers to the starts of all documents which did not contain matches in the last set. The use
of both these commands is illustrated here:

19

DOCUMENTS:
Total=21705, min. no. per cell=122(88), max no. per cell=195(34)

6.29 >> "criminal "

763 matches.
Number of docs including matches: 451

14.95 >> matchdocstarts
312 duplicates eliminated

451 matches.
22.98 >> ~©

21254 matches.

4.7.2 Other Ways of Using the Negation Operator

In the example which follows, the negation operator is used as a unary operator within an infix
set expression.

>> "criminal "
>> {setname crimset}
>> © crimset + © "businessman"

4.7.3 The makedocset Command

This command provides various ways of making a document set. At present the only forms
implemented are:

e makedocset n - Make a document set of the n most relevant documents.

e makedocset mn - Make a document set of the n most relevant documents, but exclude
documents with lower rank (higher relevance) than m. Documents are ranked from zero
(most relevant).

Note that makedocset n is equivalent to makedocset On and that makedocset 23 will
return only the document of rank 2.

It is planned to eventually support the following additional modifiers to the makedocset
command:

e relevant,
e included,
e excluded, and

e current.

20

4.7.4 Making a Doc Set From a List of Document Names

The following commands may be used to create a set of pointers to documents whose names
match those in a list supplied either in the command line or in a host file.

finddocs "docl" "doc2"
findfiledocs "hostfile"

For example:

finddocs WSJ910603-0117 CRO3H-10986 AP880616-0185 FT941-16483

4.7.5 Using a Doc Set to Filter Matches

Sometimes one is interested only in matches found within certain documents. The withindocset
command removes from a matchset all those matchpoints which lie outside the documents spec-
ified in a doc set. In the following:

>> matchset
>> docset
>> withindocset

the matchset and the docset are replaced by a suitably filtered subset of the matchset. The
following example finds all occurrences of ”Oswald” which are in documents which also refer to
Kennedy. Note that there may be more than one match per document.

>> Oswald

>> Kennedy

>> matchdocstarts
>> withindocset

4.7.6 Loading Documents Indicated By a Doc Set

SD mode only.

The loaddocs command creates a new in-memory textbase containing only the documents
specified by the document set on top of the stack. This command is the key to the two phase
queries mentioned in the introduction. In the following example, the anyof defines a set of
documents worthy of further analysis. These are loaded into memory and processed. The
regexp is an illustration of something which can be done in FTS but not in SD mode. The
reset all command drops back to using the super dictionary.

>> usesd SDtwo

>> anyof "economic impact|recycl |tyre"
>> matchdocstarts

>> loaddocset

>> regexp "\$[1-9][0-9]="

>> ...

>> reset all

21

4.7.7 Listing Titles of Documents In a Docset

The listdocs command saves a list of the titles of the top matchset to a specified file. For
example:

>> ‘‘criminal “°¢
>> makedocset current
>> listdocs <file>

saves all the titles of documents including the word criminal in jfile;. The makedocset
current command is necessary to avoid duplicates.

4.7.8 Making Wordlists

The wordlist command saves in a file a listing of all distinct words which occurred within
documents in the topmost docset. With each word is shown the number of documents which
contained it. The first line of the file starts with a blank so it will remain first even if the file is
sorted and gives a count of the total number of documents in the set.

The wordlist2 command is exactly analogous to wordlist but each word is marked with
the number of documents in the first set which contained it and the number of documents in
the second set which contained it.

>> ‘‘criminal ¢

>> matchdocstarts
>> ‘‘entrepreneur’’
>> matchdocstarts
>> wordlist2 <file>

4.8 Displaying Lexicographic Context

In lexicographic or linguistic research, it is useful to display the context in which patterns occur
in the text. Padre is able to display contexts consisting of a fixed number of characters before
the match point, and a fixed number of characters after it. Padre shows the address of the
match in the form [cell-id, index within chunk, size of that chunk] folowed by the context of
the match. For example:

>> "cat"

>> sample

[o, 355/ 164703] .hest class or category (of roads, academic
[15, 102409/ 161730] .ed.</s2> <cmp>Cat’s-eye</cmp> <ge>Brit.</g
[15, 115852/ 161730] ./s2> <ds><drv>catastrophic</drv> <pr><ph>-
4.8.1 Print

To display the contexts of all matchpoints, use the print command. Its syntax is:

>> pr

22

4.8.2 Sample

When there are a large number of matching entries, the user may wish to see just a few of them.
Padre provides the sample command to do this.

>> sample

The default size of the sample is 10, but this can be changed by setting the variable samplesize
to the desired number. For example, to set the sample size to 20, use the following command :

>> {samplesize 20}

Assuming a numbered ordering of the matches 1,...,n, padre distributes the sample points
evenly across the interval.
4.8.3 Save

Padre provides the save command to save the contexts to a file rather than to the terminal.
>> save

The contexts will be written to the file padre.default_savefile. The file used for saving the
results can be changed by putting the desired filename in the variable savefile. For example to
change the savefile to newfile, type the following command :

>> {savefile newfile}

4.8.4 Changing the Form of the Output - Print, Sample and Save

The total number of characters of context printed by padre is controlled by the printcon-
textlength variable. The number of characters padre will print before the match point is con-
trolled by the printbefore variable:

>> {printbefore 107} - display 10 characters before the match point
>> {printcontextlength 140} - display 140 characters for the match

padre also makes it possible to change the position of all the match points in the last set
by using the shift command. The match point can be moved to the left or to the right. Some
examples of using the shift command are :

>> shift.5 - move the match point to the right 5 characters

>> shift.-3 - move the match point to the left 3 characters

4.8.5 Word-based Context

The context command is similar to save except that it works in words rather than characters,
does not cross document boundaries and ignores the printontextlength and printbefore variables.
Its format is

context jwords before; jwords after; jfile;

>> twaddle
>> context 10 10 "~ /contexts/twaddle.ctxt"

23

5 TERM CO-OCCURRENCE CAPABILITIES

Term co-occurrence information extracted from documents in a collection may be used to derive
phrases, associations of terms and possibly synonyms. These relations are potentially valuable
in forming queries.

These capabilities are now being built in to padre. They are being built on top of information
collected in building superdictionaries and indexes.

5.1 Term-Term Implications (*** Under Construction ***)

The various forms of the implications command cause a list of implication relationships be-
tween terms to be saved in a host file. As an illustration of what this means, if dog implies cat,
then, for the given collection, the probability that documents containing dog also contain cat
exceeds a given threshold.

>> implications -list SD_name wordlistfile low_freq high_freq resultfile
>> implications —allwords SD_name low_freq high_freq resultfile
>> implications -saved SD_name matchsetfile 1low_freq high_freq resultfile

>> implications —-phrases SD_name old_resultfile new_resultfile

Currently, the -phrases form is not implemented and only the -saved form has been tested.
Use of the others is not advised.

In order to adapt to different collection sizes, the frequency thresholds are interpreted as
rates. The low threshold is interpreted as words per billion and the high as words per million.
Useful values for low and high are expected to be 150 and 1000 respectively.

The meaning of each of the forms whose required argument lists are shown above is now
described.

-allwords Resultfile will include all implication relationships between pairs of terms whose
collection frequencies lie within the specified range. This operation is likely to be very
expensive.

-list Wordlistfile contains a list of words specified by the user. Implication relationships between
these terms and any of the terms from the collection (which match the frequency criteria)
are sought.

-saved Matchsetfile is an option disk file containing a list of matchsets saved previously (possibly
in an earlier run) using the savematchset command. This can be useful in finding terms
which are associated with document features not expressible as simple terms. For example,
phrases, proximity relations, and regular expressions. A simple-minded check is made to
ensure that the matchset corresponds with the specified superdictionary.

-phrases This takes a result file from a previous implications command and tries to find
useful phrases using pairs (or maybe triples etc of the words found to be associated with
a particular term or construct. For example, the matchpoint set arising from a search for
the phrase nuclear power could be fed into an implications -saved run which might

24

produce a list of words like uranium, fuel, rods, fast and breeder. All possible ordered
pairs of these terms are then checked to see how often they occur adjacently in the text
base. If the frequency constitutes a high proportion of their joint occurrence, then this
suggests that they may be a genuine phrase. Hopefully this process would throw up phrases
such as fuel rods, fast breeder and possibly uranium fuel rods.

The probability threshold is by default 0.2 but may be changed using the probthresh variable
(specifying a number of thousandths).

6 FACILITIES FOR TEXT BASE ADMINISTRATORS

6.1 Enabling More Efficient Loading

Padre incorporates the ability to compress the data held by each cell after loading and dump
it into a file called cell0, celll, etc. in a directory specified by the user.
The syntax of the compress command is :

>> compress ''mame of non-existent directory"

It is the user’s responsibility to ensure that sufficient disk space is available for the directory
of compressed data. A compression ratio of roughly 2:1 is achieved using the compression
algorithm.

In the specified directory will be placed a series of files called cell0, celll, ... etc
containing the compressed data for each cell and a . info file to record the start-of-entry marker.

Data compressed in this way may be loaded into an AP1000 with a different number of cells,
but the loadbalance command may be needed to ensure efficient processing and use of memory.

Padre also allows a loaded text base to be dumped onto cell option disks, to files in the
Local or HiDIOS filesystems.

>> dodump filestem - dump to option disk as filestem.tb

6.2 Removing entries from a text base

We should probably make the drop and longerthan commands work on docsets and then things
would be more orthogonal.

The drop relevant command removes every document from the collection which has a
relevance score (the sum of the positive and negative cumulative relevance measures). On the
other hand drop irrelevant removes all those with zero or negative relevance scores.

A search command longerthan has been defined to allow documents longer than a threshold
number of characters to be identified and possibly purged. In the following sequence, documents
containing computer and those longer than a million characters will have non-zero relevance
estimates and will be removed by the drop relevant command.

>> "computer "

>> longerthan 1000000

>> drop relevant

6.3 Removing components from a collection

The purge command takes a start marker and an end marker as arguments. All text in the

entire collection between pairs of markers (including the markers) is deleted.

25

6.4 Combining Text Bases

The merge command combines the top two collections on the collection stack.

>> doload newsl - load textbase newsl.tb from the option filesystem
>> load news2 - load textbase news2.tb from the host filesystem
>> cload news3dir - load compressed textbase news3

>> merge - combine last two tbs loaded (news2 and news3).

>> dodump news4 - save the result as the option disk file news4.tb

6.5 Dumping A Text Base

The current collection may be dumped to a host file using the command dump filestem.

7 DBMerging Simulation

For the purposes of participation in the TREC5 Database Merging track, a couple of facilities
have been added to PADRE. These may potentially developed to become applicable in other
circumstances as well.

7.1 Lightweight Probes

The probe command sends a list of terms to all cells. In response, the cells compute local fre-
quencies for each of the terms, for the near relation between the terms, for a conjunctive relation
between the terms, and for the total number of documents for which the cell is responsible. All
frequencies are in terms of number of documents satisfying the condition.

>> probe terml term2 ...
Currently, the probe command produces a line of output for each cell:
"topic" PROBE('"cell") "tot_docs" "near_f" "and_f" "terml_f" "term2_f"

Eventually, it is likely that it will produce no output but use the information returned by
the cells to set a cell mask pattern which may be transmitted to the cells. (See next section.)

7.2 Setting Cell Masks

Each cell maintains a cellmask which at present determines whether the cell participates in
query processing or not. The setcellmasks command causes a cellmask map maintained by
the host to be scattered to the cells.

Cell masks are reset so that all cells participate in query processing whenever a minor reset
occurs (most commonly due to topic command).

Two forms of the setcellmasks command are provided:

>> setcellmask - scatter previously loaded cellmask map
>> setcellmask cl1 c2 ... - Cells in list are turned on, others off

26

8 IMPROVING EFFICIENCY

8.1 Load Balance - FTS Method only

Padre works most efficiently if the document collection is evenly spread across the AP1000
cells. When a collection is loaded or altered, the current load imbalance is displayed. It is the
ratio of maximum chunk size to average chunk size. It should be as close as possible to 1.0. If
it is too high, load imbalance may be reduced by applying the loadbalance command as many
times as necessary.

Do not use the loadbalance command if the document collection must remain ordered.

9 MEMORY RESIDENT INDEX METHOD

To use this method, both the raw text and an index pre-computed by parson must be loaded.
Like the text, the index can be loaded from hostfile (loadindex filestem) or from option disks
(doloadindex filestem). For example:

>> doload wsj90
>> doloadindex wsjo90
>> "money "

10 SUPER DICTIONARY METHOD

Current work on padre is oriented toward dramatically increasing the amount of data which can
be handled on a given AP1000 configuration, hopefully without excessively reducing performance
or flexibility. The approach taken is to extend the number of searching modes which can be
performed using an inverted file index and to allow multiple parson-built indexes to be accessed
in a single search, without needing to load raw text data or the index files into memory on most
occasions.

A large number of files are generated for each component textbase, and a multi-union of
the information contained in the dictionary files for each textbase is formed, called a super-
dictionary (SD). The parson program is used to generate the SD and associated files; refer to
the parson manual for information on how to build them.

The rest of this section assumes that a SD has been built for a collection of textbases.
Super-dictionaries can only be stored on the HiDIOS file system at the current time.

10.1 Loading a super-dictionary

The padre program is started in the usual way. To load a given SD called, say sd do the
following:

>> usesd sd

10.2 Searching with a super-dictionary

Once loaded, searching with a SD behaves much like searching with normal text, but with the
following restrictions.

27

e Search terms will only match against the start of words; this is equivalent to having
{wsmode start} set.

e Only words consisting of alphanumeric characters can be found. A single punctuation
mark at the end of a word is also acceptable in a word search term, or at the end of the
last word in a phrase search term. Although there is currently no mechanism to match
punctuation after each word in a phrase, this will be added in the near future.

e No regular expression search terms can be used. A limited form of regular expression
matching for single words may be added in future, but is not currently permitted.

e The bmg2 command is not available. Multi-alternates can be specified with the anyof
command, although duplicates are not currently eliminated (ie. each alternate in the
command must be distinct from all others).

Two variables have particular importance when using SDs. These are the casesensitive
and pwprefixmode variables.

Normally, case sensitive searching is enabled with the {casesensitive 1} command. How-
ever, if instead the variable is set to 2 then words are matched as if they were proper names
- at least the first letter must be uppercase. This mode allows the user to obtain matches
for ‘BANK’, ‘Bank’, ‘BalNk’, but fail to match ‘bank’. The decision algorithm for determining
whether a word is a match is slightly complex, but can be described as follows:

e Search term is all uppercase - only hits of the term with all uppercase characters are
matched.

e Search term has first letter uppercase, and rest mixed or lowercase - hits of the term with
at least the first letter uppercase are matched.

e Search term is all lowercase - any hit of the term will be matched (as if in case insensitive
mode).

This flexibility is especially important when searching for phrase matches.

The second variable of significance is pwprefixmode. When set to 0 (the default) phrases
must match with at most 2 characters between any word in the phrase. (This mechanism allows
the searches to match over inter-word boundaries that are expanded because of a linebreak, but
still requires all the words to match exactly.) If instead the variable is set to 1 then words in
the phrase search term are treated in a limited degree as prefixes, and will allow matches to
occur where the gap between the start of two consecutive words in the phrase is the length of
the first prefix word + 5 characters. It is hoped that this will be generalised to perform fully
correct prefix matching of phrase word terms at some point in the future.

10.3 Restrictions on Use of Super Dictionaries

Only one SD can be loaded at a time; loading one removes any previously loaded collections and
indexes.

We believe that it would be possible to switch between different super dictionaries using
multiple usesd commands.

Once a usesd command has been issued, the normal loading commands will load data, but
will be ignored in subsequent search commands. This is a deficiency which may be remedied.

28

A pseudo-collection may however be loaded using the loaddocs command after a usesd
command. This leaves the super dictionary ”loaded” but suspends its use until the next reset
all command. While in this special mode, new textbases may be loaded and searched using
the normal commands.

29

A SYNTAX FOR REGULAR EXPRESSIONS

The syntax for the regular expressions in padre are the same as the syntax for regular expressions
in the public domain GNU egrep program. The following table is taken from the documentation
for GNU egrep.

c a single (non-meta) character matches itself.
matches any single character except newline.

? postfix operator; preceeding item is optional.

postfix operator; preceeding item 0 or more times.

+ postfix operator; preceeding item 1 or more times.

| infix operator; matches either argument.

matches the empty string at the beginning of a line.

$ matches the empty string at the end of a line.

\< matches the empty string at the beginning of a word.

\> matches the empty string at the end of a word.

[chars] match any character in the given class; if the first character

after [is =, match any character not in the given class; a
range of characters may be specified by first-last; for example,
\W (below) is equivalent to the class [~A-Za-z0-9]

() parentheses are used to override operator precedence.

\digit \n matches a repeat of the text matched earlier in the regexp by
the subexpression inside the nth opening parenthesis.

\ any special character may be preceded by a backslash to match it
literally.

(the following are for compatibility with GNU Emacs)

\b matches the empty string at the edge of a word.

\B matches the empty string if not at the edge of a word.
\w matches word-constituent characters (letters & digits).
\W matches characters that are not word-constituent.

30

Operator precedence is (highest to lowest) 7, *, and +, concatenation,
and finally |. All other constructs are syntactically identical to normal
characters.

(Note : This appendix is taken from the gnu grep manual, and the source for the
regular expression search routine is taken from the gnu “Extended Regular
Expression Matching and Search Library”, both of which are Copyright ©
Free Software Foundation, Inc.)

31

B SUMMARY OF COMMANDS

Loading Textbases
load filestem
cload directory
cload directory n
cload file
doload file

Dumping Textbases
dodump file
dump file

compress directory

Manipulating Textbases
merge
longerthan n
drop relevant
drop irrelevant
purge <sm>. .
loadbalance

Pattern Matching
pattern
"pattern"
regexp pattern
anyof patternl|pattern...
bmg?2 patternl|pattern. ..

Proximity Relationships
fby n
not fby
not pby
near n
znear n
not near

Set Operators
union n

intersect n

diff n

infix operators: 4+, =, =, ~
use matchsetfile filestem
savematchset name
loadmatchset name

load file.tb into memory.

load compressed files from directory into memory.
load every nth compressed files from directory.
load compressed files listed in file into memory.
load data from file on option disk filesystem.

dump current collection to file on local filesystem.
dump current collection to file on host filesystem.

compress current padre textbase into cell files in directory.

replace two top collections with a single merged collection

Find all documents at least n characters long
remove documents with positive relevance.

remove documents with negative or zero relevance.
remove text between markers.

Balance distribution of data across cells.

Search for words starting with pattern.

Search for a regular expression specified by pattern.
Search for any one of the patterns.
Search for any one of the patterns.

Replace top n sets with result set of prox operation.
ditto

ditto

ditto

ditto (but special relevance calculation performed.)
ditto

Replace top n sets with their union.
Replace top n sets with their intersection.
Replace top n sets with their set difference.

Replace top set with set of docs not containing matches.

union, intersect, diff, negate.

Select option disk file for savematchsets
Save current set in option disk file as name.
Load match set name from option disk file.

matchpreceding regex Replace each match with preceding instance of regex. Elim. dup.s
matchpreceding sent|paraldoc Ditto but use predefined patterns for sentence, para or document.

32

Component Operators
name = component <sm>. .Define a component of text that starts with <sm> and ends

with .

p within component ¢ Search for pattern p within specified components.

component ¢ including p Search for components of type ¢ that include pattern p.
Lexicographic Output

pr Print the last set of matches.

sample Print a sample of the last set of matches.

save Save the last set of matches to a file.

shift.n Shift the last set of match points to the right n characters.

shift.-n Shift the last set of match points to the left n characters.

context m n file Put m + n words of context for each match in file.

Relevance Ranking and Output
exclude biased|current|others| — t| 4+t
Mandatorily exclude documents from ranking.
include current|others| — t| + ¢ Mandatorily include documents in ranking.

topic topicname Reset cumulative relevance metrics and flags.

reset all Remove pseudo-collection, matchsets and reset all relevance records.
reset bits Reset relevance bits only.

reset start Make everything the way it was when padre started.

reset vol Clear all volatile sets from the match set stack.

reset weights Reset cumulative relevance metrics only.

top n list n Most relevant documents.

getdoc doc-id Display specified document.

retrieve n Retrieve n most relevant documents into a file.

Distance Based Relevance

span all n w Il m relevance due to m or more of top n > 1 sets, weight w, prox. limit [
span leading n w l m as for all but partial spans of length p must include first p

span key n wl m as for all but partial spans must include first k

znear n restricted form of span. Also computes a result set.

Operations on doc sets.

matchdocstarts Convert top matchset into a docset.

makedocset current Equivalent to matchdocstarts.

makedocset relevant Make a docset of all relevant docs.

makedocset mn Make a docset of n most relevant docs, excluding first m.

makedocset n Make a docset of n most relevant docs.

makedocset included Make a docset of all included docs.

makedocset excluded Make a docset of all excluded docs.

finddocs docid... Make a docset of the docs whose ids are listed.

findfiledocs file Make a docset of the docs whose ids are listed in the specified host file.
listdocs file Put docids of all docs in top set in file.

withindocs matches in second top set are removed if they are not in docs specified in t
wordlist file Put list of all unique wds (with doc count) in docset in file.

33

wordlist2 file As for wordlist but for top two docsets.
loaddocs Load all documents referenced in top docset as a pseudo-collection.

Selecting MRI or SD Methods.

loadindex filestem Load pre-computed index from host and use MRI.
doloadindex filestem Load pre-computed index from option disk and use MRI.
usesd filestem Load pre-computed super dictionary from option disk and use SD.

Term Co-occurrence
implications -allwds SD lo h: rsltfl - all words with suitable freq.s.
implications -list SD wdlist lo hi rslifl - specified words and other words.
implications -saved SD matchfile lo hi rslifl - specified matchpoints and other words.
implications -phrases SD oldrsitfl rslifl - find phrases in lists of words in previous rsltfl

DB Merging

probe t1... Send list of terms to all cells and display cell-by-cell doc freq.s
setcellmasks Scatter host-held cell map to cells to turn cells on/off.
setcellmasks cl... Turn specified cells on, others off.

Customise Operation of padre.
{variable new-value} Change value of variable to new-value.

Exit

quit Quit padre.

Not all of the above are yet implemented, see main text for details.

34

C SUMMARY OF VARIABLES

Below is a list of variables whose valuse control padre’s behaviour. In most cases default values
are listed.

e printcontextlength <number> (default 74)

e printbefore <number> (default 14)

e samplesize <number> (default 10)

e savefile <filename>

e proximity <number> (default 200)

e base <number>

e setname <name of set, starting with a letter>

e casesensitive 0 | 1 | 2 (default 0)

e weight <number> (default 5)

e mode parl | trec | dflt | test | dbm (default dfit)

e wsmode start | any (default start)

e pwprefixmode 0 | 1 (default 0)

e relmode wei | boo | noc | squ | pro | zmo | cou (default weighted)
e aomode onepass | sdcompat (default onepass)

e zmode <six-digit number> (default 01 - ANU TREC4) (33 - UW TREC4)
e zmode 1st digit - word count method 0 - dumb; 1 - sophist.

e zmode 2nd digit - partial span score 0 - lower than any longer| 1 - 0.1 * longer

e zmode 3rd digit - decay function 0 - num/denom; 1 - normal; 2 - exp decay; 3 -
custom

e zmode 4th digit - adaptive 0 - no; 1 - yes
e zmode 5th digit - numerator 0 - 1.0; 1 - hits/spanlen; 2 - hits
e zmode 6th digit - denominator 0 - len; 1 - sqrtlen;2—maxlen, 5

e probthresh <number> (default 500) - representing thousandths

35

References

[1] Fawcett, H., PAT 3.8 User’s Guide, University of Waterloo Centre for the New Oxford
English Dictionary, Waterloo, Ontario, Feb 1991

[2] PADRE WEB page, http:/cap.anu.edu.au/cap/projects/text retrieval/

36

